
Non-Malleable Codes from Two-Source
Extractors?

Stefan Dziembowski1 and Tomasz Kazana2 and Maciej Obremski2

1 University of Warsaw and Sapienza University of Rome
2 University of Warsaw

Abstract. We construct an efficient information-theoretically non-mall-
eable code in the split-state model for one-bit messages. Non-malleable
codes were introduced recently by Dziembowski, Pietrzak and Wichs
(ICS 2010), as a general tool for storing messages securely on hardware
that can be subject to tampering attacks. Informally, a code (Enc :M→
L × R,Dec : L × R → M) is non-malleable in the split-state model if
any adversary, by manipulating independently L and R (where (L,R)
is an encoding of some message M), cannot obtain an encoding of a
message M ′ that is not equal to M but is “related” M in some way.
Until now it was unknown how to construct an information-theoretically
secure code with such a property, even forM = {0, 1}. Our construction
solves this problem. Additionally, it is leakage-resilient, and the amount
of leakage that we can tolerate can be an arbitrary fraction ξ < 1/4 of
the length of the codeword. Our code is based on the inner-product two-
source extractor, but in general it can be instantiated by any two-source
extractor that has large output and has the property of being flexible,
which is a new notion that we define.
We also show that the non-malleable codes for one-bit messages have
an equivalent, perhaps simpler characterization, namely such codes can
be defined as follows: if M is chosen uniformly from {0, 1} then the
probability (in the experiment described above) that the output message
M ′ is not equal to M can be at most 1/2 + ε.

1 Introduction

Real-life attacks on cryptographic devices often do not break their mathematical
foundations, but exploit vulnerabilities in their implementations. Such “physi-
cal attacks” are usually based on passive measurements such as running-time,
electromagnetic radiation, power consumption (see e.g. [24]), or active tamper-
ing where the adversary maliciously modifies some part of the device (see e.g.
[3]) in order to force it to reveal information about its secrets. A recent trend

? This work was partly supported by the WELCOME/2010-4/2 grant founded within
the framework of the EU Innovative Economy (National Cohesion Strategy) Opera-
tional Programme. The European Research Council has provided financial support
for this work under the European Community’s Seventh Framework Programme
(FP7/2007-2013) / ERC grant agreement no CNTM-207908.

in theoretical cryptography, initiated by [34, 31, 30] is to design cryptographic
schemes that already on the abstract level guarantee that they are secure even
if implemented on devices that may be subject to such physical attacks. Con-
trary to the approach taken by the practitioners, security of these constructions
is always analyzed formally in a well-defined mathematical model, and hence
covers a broad class of attacks, including those that are not yet known, but may
potentially be invented in the future. Over the last few years several models
for passive and active physical attacks have been proposed and schemes secure
in these models have been constructed (see e.g. [31, 30, 22, 2, 35, 7, 15, 25]). In
the passive case the proposed models seem to be very broad and correspond to
large classes of real-life attacks. Moreover, several constructions secure in these
models are known (including even general compliers [27] for any cryptographic
functionality). The situation in the case of active attacks is much less satisfac-
tory, usually because the proposed models include an assumption that some part
of the device is tamper-proof (e.g. [26]) or because the tampering attacks that
they consider are very limited (e.g. [30] or [13] consider only probing attacks, and
in [37] the tampering functions are assumed to be as linear). Hence, providing
realistic models for tampering attacks, and constructing schemes secure in these
models is an interesting research direction.

In a recent paper [23] the authors consider a very basic question of storing
messages securely on devices that may be subject to tampering. To this end they
introduce a new primitive that they call the non-malleable codes. The motivating
scenario for this concept is as follows. Imagine we have a secret message m ∈M
and we want to store it securely on some hardware D that may be subject to the
tampering attacks. In order to increase the security, we will encode the message
m by some (randomized) function Enc and store the codeword x := Enc(m) on
D. Since we later want to recover m from D we obviously also need a decoding
function Dec : X →M∪{⊥} such that for every m ∈M we have Dec(Enc(m)) =
m. Now, suppose the adversary can tamper with the device in some way, which
we model by allowing him to choose a function F : X → X , from some fixed
set F of tampering functions and substitute the contents of D by F (x). Let
m′ := Dec(F (Enc(m))) be the result of decoding such modified codeword.

Let us now think what kind of security properties one could expect from
such an encoding scheme. Optimistically, e.g., one could hope to achieve tamper-
detection by which we would mean that m′ = ⊥ if F (x) 6= x. Unfortunately this
is usually unachievable, as, e.g., if the adversary chooses F to be a constant
function equal to Enc(m̃) then m′ = m̃. Hence, even for very restricted classes F
(containing only the constant functions), the adversary can force m′ to be equal
to some message of his choice. Therefore, if one hopes to get any meaningful
security notion, one should weaken the tamper-detection requirement.

In [23] the authors propose such a weakening based on the concept of non-
malleability introduced in the seminal paper of Dolev et al. [19]. Informally, we
say that a code (Enc,Dec) is non-malleable if either (1) the decoded message m′

is equal to m, or (2) the decoded message m′ is “independent” from m. The
formal definition appears in Section 3, and for an informal discussion of this

concept the reader may consult [23]. As argued in [23] the non-malleable codes
can have vast applications to tamper-resistant cryptography. We will not discuss
them in detail here, but let us mention just one example, that looks particularly
appealing to us. A common practical way of breaking cryptosystems is based
on the so-called related-key attacks (see, e.g. [5, 4]), where the adversary that
attacks some device D(K) (where K is the secret key) can get access to an
identical device containing a related key K ′ = F (K) (by for example tampering
with K). Non-malleable codes provide an attractive solution to this problem. If
(Enc,Dec) is a non-malleable code secure with respect to same family F , then
we can store the key K on D in an encoded form, and prevent the related key
attacks as long as the “relation F” is in F . This is because, the only thing that
the adversary can achieve by applying F to Enc(K) is to produce encoding of
either a completely unrelated key K ′, or to keep K ′ = K. It is clear that both
cases do not help him in attacking D(K).

It is relatively easy to see that if the family F of tampering functions is
equal to the entire space of functions from X to X then it is impossible to
construct such a non-malleable code secure against F . This is because in this
case the adversary can always choose F (x) = Enc(H(Dec(x))) for any function
H :M→M, which yields m′ = Dec(x) = Dec(Enc(H(Dec(Enc(m))))) = H(m),
and therefore he can relate m′ to m in an arbitrary way. Therefore non-malleable
codes can exist only with respect to restricted classes F of functions. The authors
of [23] propose some classes like this and provide constructions of non-malleable
codes secure with respect to them. One example is the class of bit-wise tamper-
ing functions, which tamper with every bit of x “independently”, more precisely:
the ith bit x′i of x′ is a function of xi, and does not depend on any xj for j 6= i.
This is a very strong assumption and it would be desirable to weaken it. One
natural idea for such weakening would be to allow x′i to depend on the bits of
x from positions on some larger subset Ii ({1, . . . , |x|}. Observe that I always
needs to be a proper subset of {1, . . . , |x|}, as, for the reasons described above,
allowing xi to depend on entire x would render impossible any secure construc-
tion. It is of course not clear what would be the right “natural” subsets Si that
one could use here. The authors of [23] solve this problem in the following sim-
ple way. They assume that the codeword consists of two parts (usually of equal
size), i.e.: x = (L,R) ∈ L×R, and the adversary can tamper in an arbitrary way
with both parts, i.e., F consists of all functions Mallf,g that can be defined as
Mallf,g(L,R) = (f(L), g(R)) (for some f : L → L and g : R → R). In practical
applications this corresponds to a scenario in which L and R are stored on two
separate memory parts that can be tampered independently. A similar model
has been used before in the context of leakages and is called a split-state model
[22, 14, 28, 16]. The authors of [23] show existence of non-malleable codes secure
in this model in a non-constructive way (via the probabilistic argument). They
also provide a construction of such codes in a random oracle model, and leave
constructing explicit information-theoretically secure codes as an open problem.
A very interesting partial solution to this problem came recently from Liu and
Lysyanskaya [33] who constructed such codes with computationally-security, as-

suming a common reference string. Their construction comes with an additional
feature of being leakage-resilient, i.e. they allow the adversary to obtain some
partial information about the codeword via memory leakage (the amount of leak-
age that they can tolerate is a 1

2 − o(1) fraction of the length of the codeword).
However, constructing the information-theoretically secure nonmalleable codes
in this model remained an open problem, even if messages are of length 1 only
(i.e. M = {0, 1}).

Our contribution We show a construction of efficient information-theoretically
secure non-malleable codes in the split-state model forM = {0, 1}. Additionally
to being non-malleable, our code is also leakage-resilient and the amount of
leakage that we can tolerate is an arbitrary constant ξ < 1

4 of the length of
the codeword (cf. Thm. 2). Our construction is fairly simple. The codeword is
divided into two parts, L and R, which are vectors from a linear space Fn, where
F is a field of exponential size (and hence log |F| is linear). Essentially, to encode
a bit B = 0 one chooses at a random pair (L,R) ∈ Fn × Fn of orthogonal
vectors (i.e. such that 〈L,R〉 = 0), and to encode B = 1 one chooses a random
pair of non-orthogonal vectors (clearly both encoding and decoding can be done
very efficiently in such a code). Perhaps surprisingly, the assumption that F is
large is important, as our construction is not secure for small F’s. An interesting
consequence is that our code is “non-balanced”, in the sense that a random
element of the codeword space with an overwhelming probability encodes 1. We
actually use this property in the proof.

Our proof also very strongly relies on the fact that the inner product over
finite field is a two-source extractor (cf. Sect. 2). We actually show that in general
a split-state non-malleable code for one-bit messages can be constructed from any
two source-extractor with sufficiently strong parameters (we call such extractors
flexible, cf. Sect. 2).

We also provide a simple argument that shows that our scheme is secure
against affine mauling functions (that look at the entire codeword, hence not in
the split-state model).

Typically in information-theoretic cryptography solving a certain task for
one-bit messages automatically gives a solution for multi-bit messages. Unfor-
tunately, it is not the case for the non-malleable codes. Consider for example a
naive idea of encoding n bits “in parallel” using the one bit encoding function
Enc, i.e. letting Enc′(m1, . . . ,mn) := ((L1, . . . , Ln), (R1, . . . , Rn)), where each
(Li, Ri) = Enc(mi). This encoding is obviously malleable, as the adversary can,
e.g., permute the bits of m by permuting (in the same way) the blocks L1, . . . , Ln
and R1, . . . , Rn. Nevertheless we believe that our solution is an important step
forward, as it may be useful as a building blocks for other, more advanced con-
structions, like, e.g., tamper-resilient generic compilers (in the spirit of [31, 30,
13, 20, 27]). This research direction looks especially promising since many of the
leakage-resilient compliers (e.g. [20, 27]) are based on the same inner-product
extractor.

We also show that for one-bit messages non-malleable codes can be defined
in an alternative, and perhaps simpler way. Namely we show (cf. Lemma 2) that

any code (Enc,Dec) (not necessarily defined in the split-state model) in non-
malleable with respect to some family F of functions if and only if “it is hard to
negate the encoded bit B with functions from F”, by which we mean that for a
bit B chosen uniformly from {0, 1} any F ∈ F we have that

P [Dec(F (Enc(B))) 6= B] ≤ 1

2
. (1)

(the actual lemma that we prove involves also some small error parameter ε
both in the non-malleability definition and in (1), but for the purpose of this
informal discussion let us omit them). Therefore, the problem of constructing
non-malleable bit encoding in the split state model can be translated to a much
simpler and perhaps more natural question: can one encode a random bit B as
(L,R) in such a way that independent manipulation of L and R produces an
encoding (L′, R′) of B with probability at most 1/2? Observe that, of course, it
is easy to negate a random bit with probability exactly 1/2, by deterministically
setting (L′, R′) to be an encoding of a fixed bit, 0, say. Informally speaking,
(Enc,Dec) is non-malleable if this is the best that the adversary can achieve.

In the full version of this paper [21] we analyze the general relationship
between the two-source extractors and the non-malleable codes in the split state
model pointing out some important differences. We also compare the notion of
the non-malleable codes with the leakage-resilient storage [14] also showing that
they are fundamentally different.

Related and subsequent work Some of the related work was already described
in the introduction. There is no space here to mention all papers that propose
theoretical countermeasures against tampering. This research was initiated by
Ishai et al. [30, 26]. Security against both tampering and leakage attacks were
also recently considered in [32]. Unlike us, they construct concrete cryptosystems
(not encoding schemes) secure against such attacks. Another difference is that
their schemes are computationally secure, while in this work we are interested
in the information-theoretical security.

The notion of non-malleability (introduced in [19]) is used in cryptography
in several contexts. In recent years it was also analyzed in the context of ran-
domness extractors, starting from the work of Dodis and Wichs [18] on non-
malleable extractors (see also [17, 12]). Informally speaking an extractor ext is
non-malleable if its output ext(S,X) is (almost) uniform even if one knows the
value ext(F (S), X) for some “related” seed F (S) (such that F (S) 6= S). Un-
fortunately, it does not look like this primitive can be used to construct the
non-malleable codes in the split-state model, as this definition does not capture
the situation when X is also modified.

Constructions of non-malleable codes secure in different (not split-state)
models were recently proposed in [8–10].

Recently, Aggarwal, Dodis and Lovett [1] solved the main open problem
left in this paper, by showing a non-malleable code that works for messages of
arbitrary length. This exciting result is achieved by combining the inner-product
based encoding with sophisticated methods from the additive combinatorics.

Acknowledgments We are very grateful to Divesh Aggarwal and to the anony-
mous CRYPTO reviewer for pointing out errors in the proof of Lemma 3 in
the previous versions of this paper. We also thank Yevgeniy Dodis for helpful
discussions.

2 Preliminaries

If Z is a set then Z ← Z will denote a random variable sampled uniformly from
Z. We start with some standard definitions and lemmas about the statistical
distance. Recall that if A and B are random variables over the same set A then
the statistical distance between A and B is denoted as ∆(A;B), and defined as
∆(A;B) = 1

2

∑
a∈A |P [A = a] − P [B = a] |. If the variables A and B are such

that ∆(A,B) ≤ ε then we say that A is ε-close to B, and write A ≈ε B. If
X ,Y are some events then by ∆(A|X ; B|Y) we will mean the distance between
variables A′ and B′, distributed according to the conditional distributions PA|X
and PB|Y .

If B is a uniform distribution over A then d(A|X) := ∆(A|X ;B) is called
statistical distance of A from uniform given the event X . If moreover C is inde-
pendent from B then d(A|C) := ∆((A,C); (B,C)) is called statistical distance
of A from uniform given the variable C. More generally, if X is an event then
d(A|C,X) := ∆((A,C)|X ; (B,C)|X). It is easy to see that d(A|C) is equal to∑
c P [C = c] · d(A|C = c).

Extractors As described in the introduction, the main building block of our
construction is a two-source randomness extractor based on the inner product
over finite fields. The two source extractors were introduced (implicitly) by Chor
and Goldreich [11], who also showed that the inner product over Z2 is a two-
source extractor. The generalization to any field is shown in [36].

Our main theorem (Thm. 1) does not use any special properties of the inner
product (like, e.g., the linearity), besides of the fact that it extracts randomness,
and hence it will be stated in a general form, without assuming that the un-
derlying extractor is necessarily an inner product. The properties that we need
from our two-source extractor are slightly non-standard. Recall that a typical
way to define a strong two-source extractor3 (cf. e.g. [36]) is to require that
d(ext(L,R)|L) and d(ext(L,R)|R) are close to uniform, provided that L and R
have min-entropy at least m (for some parameter m). For the reasons that we
explain below, we need a slightly stronger notion, that we call flexible extrac-
tors. Essentially, instead of requiring that H∞(L) ≥ m and H∞(R) ≥ m we
will require only that H∞(L) + H∞(R) ≥ k (for some k). Note that if k = 2m
then this requirement is obviously weaker than the standard once, and hence the
flexibility strengthens the standard definition.

Formally, let L,R and C be some finite sets. A function ext : L×R → C is a
strong flexible (k, ε)-two source extractor if for every L ∈ L and R ∈ R such that

3 Recall also that a random variable A has min-entropy k, denoted H∞(A) = k if
k = mina (− logP [A = a]).

H∞(L) + H∞(R) ≥ k we have that d(ext(L,R)|L) ≤ ε and d(ext(L,R)|R) ≤ ε.
Since we are not going to use any weaker version of this notion we will often
simply call such extractors “flexible” without explicitly stating that they are
strong. As it turns out the inner product over finite fields is such an extractor.

Lemma 1. For every finite field F and any n we have that ext : Fn × Fn → F
defined as extnF(L,R) = 〈L,R〉 is a strong flexible (k, ε)-extractor for any k and
ε such that

log (1/ε) =
k − (n+ 4) log |F|

3
− 1. (2)

Although this lemma appears to be folklore, at least in case of the “weak”
flexible extractors (i.e. when we require only that d(ext(L,R)) ≤ ε), we were not
able to find it in the literature for the strong flexible extractors. Therefore for
completeness in the full version of this paper [21] we provide a proof of it (which
is straightforward adaptation of the proof of Theorem 3.1 in [36]).

Note that since ε can be at most 1, hence (2) makes sense only if k ≥ 6+4 |F|+
n log |F|. It is easy to see that it cannot be improved significantly, as in any flex-
ible (k, ε)-extractor ext : L ×R → C we need to have k > max (log |L| , log |R|).
To see why it is the case, suppose we have such a flexible (k, ε)-extractor ext
for k = log |L| (the case k = log |R| is obviously symmetric). Now let L′ be a
random variable uniformly distributed over L and let R′ ∈ R be constant. Then
obviously H∞(L′) +H∞(R′) = log |L|+ 0 = k, but ext(L′, R′) is a deterministic
function of L′, and hence d(ext(L′, R′)|L′) is large. Therefore, in terms of the en-
tropy threshold k, the inner product is optimal in the class of flexible extractors
(up to a small additive constant). Note that this is in contrast with the situation
with the “standard” two-source extractors where a better extractor is known [6].

The reason why we need the “flexibility” property is as follows. In the proof
of Lemma 3 we will actually use in two different ways the fact that ext is an
extractor. In one case (in the proof of Claim 2 within the proof of Lemma 3)
we will use it in the “standard” way, i.e. we will apply it to two independent
random variables with high min-entropy. In the other case (proof of Claim 1) we
will use the fact that d(ext(L,R)|R) ≤ ε even if L has relatively low min-entropy
(H∞(L) = k−|R|) while R is completely uniform (and hence H∞(L)+H∞(R) =
k).4 Hence we will treat ext as standard seeded extractor. It should not be
surprising that we can use the inner product in this way, as it is easy to see
that the inner product is a universal hash function, and hence the fact that it
is a seeded strong extractor follows from the leftover hash lemma [29]. Hence
Lemma 1 in some sense “packs” these two properties of the inner product into
one simple statement.

The observation that the inner product extractor is flexible allows us as also
to talk about the sum of leakages in Section 5, instead of considering bounded
leakage from L and R separately (as it is done, e.g., in [14]). We would like to
stress that this is actually not the main reason for introducing the “flexibility”
property, as it would be needed even if one does not incorporate leakages into
the model.

4 We will also use a symmetric fact for d(ext(L,R)|L).

3 Non-malleable codes and the hardness of negation

In this section we review the definition of the non-malleable codes from [23],
which has already been discussed informally in the introduction. Formally, let
(Enc : M→ X ,Dec : X → M∪ {⊥}) be an encoding scheme. For F : X → X
and for any m ∈M define the experiment TamperFm as:

TamperFm =


X ← Enc(m),
X ′ := F (X),
m′ := Dec(X ′)

output: m′


Let F be a family of functions from X to X . We say that an encoding scheme
(Enc,Dec) is ε-non-malleable with respect to F if for every function F ∈ F there
exists distribution DF on M∪ {same∗,⊥} such that for every m ∈M we have

TamperFm ≈ε

 d← DF

if d = same∗ then output m
otherwise output d.

 (3)

The idea behind the “⊥” symbol is that it should correspond to the situation
when the decoding function detects tampering and outputs an error message.
Since the codes that we construct in this paper do not need this feature, we will
usually drop this symbol and have Dec : X → M. The “⊥” symbol is actually
more useful for the strong non-malleable codes (another notion defined in [23])
where it is required that any tampering with X should be either “detected” or
should produce encoding of an unrelated message. Our codes do not have this
property. This is because, for example, permuting the elements of the vectors L
and R in the same manner does change these vectors, but does not change their
inner product. Fortunately, for all applications that we are aware of this stronger
notion is not needed. The following lemma, already informally discussed in Sect.
1, states that for one-bit messages non-malleability is equivalent to the hardness
of negating a random encoded bit. It turns out that such a characterization of
the non-malleable codes is much simpler to deal with. We also believe that it
may be of independent interest.

Lemma 2. Suppose M = {0, 1}. Let F be any family of functions from X to
X . An encoding scheme (Enc :M→ X ,Dec : X →M) is ε-non-malleable with
respect to F if and only if for any F ∈ F and B ← {0, 1} we have

P [Dec (F (Enc(B))) 6= B] ≤ 1

2
+ ε. (4)

The proof of this lemma appears in the full version of this paper [21]. In this
paper we are interested in the split-state codes. A split-state code is a pair
(Enc : M → L × R,Dec : L × R → M). We say that it is ε-non-malleable
if it is ε-non-malleable with respect to a family of all functions Mallf,g defined
as Mallf,g(L,R) = (f(L), g(R)).

4 The construction

In this section we present a construction of a non-malleable code in the split-state
model, together with a security proof. Before going to the technical details, let us
start with some intuitions. First, it is easy to see that any such code (Enc,Dec)
needs to be a 2-out-of-2 secret sharing scheme, where Enc is the sharing function,
Dec is the reconstruction function, and (L,R) = Enc(M) are shares of a secret
M . Informally speaking, this is because if one of the “shares”, L, say, reveals some
non-trivial information about M then by modifying L we can “negate” stored
secret M with probability significantly higher than 1/2. More precisely, suppose
that M = {0, 1} and that we know that there exist some values `0, `1 ∈ L such
that for b = 0, 1 if L = `b then M is significantly more likely to be equal to b.
Then (f, g) where g is an identity and f is such that f(`0) = `1 and f(`1) = `0
would lead to M ′ = Dec(f(L), g(R)) = 1 − M with probability significantly
higher than 1/2 (this argument is obviously informal, but it can be formalized).

It is also easy to see that not every secret sharing scheme is a non-malleable
code in the split-state model. As an example consider Enc : Za → Za × Za (for
some a ≥ 2) defined as Enc(M) := (L,L + M (mod a)), where L ← Za, and
Dec(L,R) := L + R mod m. Obviously it is a good 2-out-of-2 secret sharing
scheme. However, unsurprisingly, it is malleable, as an adversary can, e.g., easily
add any constant w ∈ Za to a encoded message, by choosing an identity function
as f , and letting g be such that that g(R) = R+w mod a. Obviously in this case
for every L and R that encode some M we have Dec(f(L), g(R)) = M+w mod a.

We therefore need to use a secret sharing scheme with some extra security
properties. A natural idea is to look at the two-source randomness extractors, as
they may be viewed exactly as “2-out-of-2 secret sharing schemes with enhanced
security”, and since they have already been used in the past in the context of
the leakage-resilient cryptography. The first, natural idea, is to take the inner
product extractor ext : Fn × Fn → F and use it as a code as follows: to encode
a message M ∈ F take a random pair (L,R) ∈ Fn × Fn such that 〈L,R〉 = M
(to decode (L,R) simply compute 〈L,R〉). This way of encoding messages is a
standard method to provide leakage-resilience in the split-state model (cf. e.g.
[14]). Unfortunately, it is easy to see that this scheme can easily be broken by
exploiting the linearity attacks of the inner product. More precisely, if the adver-
sary chooses f(L) := a ·L and g(R) := R (for any a ∈ F) then the encoded secret
gets multiplied by a. Obviously, this attack does not work for F = Z2, as in this
case the only choices are a = 0 (which means that the secret is deterministically
transformed to 0) and a = 1 (which leaves the secret unchanged). Sadly, it turns
out that for F = Z2 another attack is possible. Consider f and g that leave their
input vectors unchanged except of setting the first coordinate of the vector to
1, i.e.: f (L1, . . . , Ln) := (1, L2, . . . , Ln) and g (R1, . . . , Rn) := (1, R2, . . . , Rn).
Then it is easy to see that 〈f(L), g(R)〉 6= 〈L,R〉 if and only if L1 ·R1 = 0, which
happens with probability 3/4 both for M = 0 and for M = 1.

Note that the last attack is specific for small F’s, as over larger fields the
probability that L1 ·R1 = 0 is negligible. At the first glance, this fact should not
bring any hope for a solution, since, as described above, for larger fields another

attack exists. Our key observation is that for one-bit messages it is possible to
combine the benefits of the “large field” solution with those of the “small field”
solution in such a way that the resulting scheme is secure, and in particular
both attacks are impossible! Our solution works as follows. The codewords are
pairs of vectors from Fn for a large F. The encoding of 0 remains as before –
i.e. we encode it as a pair (L,R) of orthogonal vectors. To encode 1 we choose a
random pair (L,R) of non-orthogonal vectors, i.e. such that 〈L,R〉 is a random
non-zero element of F. Before going to the technical details let us first “test” this
construction against the attacks described above. First, observe that multiplying
L (or R) by some constant a 6= 0 never changes the encoded bit as 〈a · L,R〉 =
a 〈L,R〉 which is equal to 0 if and only if 〈L,R〉 = 0. On the other hand if a = 0
then 〈a · L,R〉 = 0, and hence the secret gets deterministically transformed to
0, which is also ok. It is also easy to see that the second attack (setting the first
coordinates of both the vectors to 1) results in 〈f(L), g(R)〉 close to uniform (no
matter what was the value of 〈L,R〉), and hence Dec(f(L), g(R)) = 1 with an
overwhelming probability.

Let us now define our encoding scheme formally. As already mentioned in
Sect. 2 our construction uses a strong flexible two-source extractor ext : L×R →
C in a black-box way (later we show how to instantiate it with an inner product
extractor, cf. Thm. 2). This in particular means that we do not use any special
properties of the inner product, like the linearity. Also, since C does not need to
be a field, hence obviously the choice to encode 0 is by a pair of vectors such
that 〈L,R〉 = 0 (in the informal discussion above) was arbitrary, and one can
encode 0 as any pair (L,R) such that 〈L,R〉 = c, for some fixed c ∈ F. Let
ext : L × R → C be a strong flexible (k, ε)-extractor, for some parameters k
and ε, and let c ∈ C be arbitrary. We first define the decoding function. Let
Dcext : L ×R → {0, 1} be defined as:

Dcext(L,R) =

{
0 if ext(X) = c
1 otherwise.

Now, let Ecext : {0, 1} → L × R be an encoding function defined as Ecext(b) :=
(L,R), where (L,R) is a pair chosen uniformly at random from the set {(L,R) :
Dcext(L,R) = b}. We also make a small additional assumption about ext. Namely,
we require that L̃ and R̃ are completely uniform over L and R (resp.) then
ext(L̃, R̃) is completely uniform. More formally

for L̃← L and R̃← R we have d(ext(L̃, R̃)) = 0. (5)

The reason why we impose this assumption is that it significantly simplifies the
proof, thanks to the following fact. It is easy to see that if ext satisfies (5), then
for every x ∈ C the cardinality of each set {(`, r) : ext(`, r) = x} is exactly 1/ |F|
fraction of the cardinality of L×R. Hence, if B ← {0, 1} and (L,R)← Ecext(B),
then in the distribution of (L,R) every (`, r) such that ext(`, r) = c is exactly
(|C| − 1) more likely than any (`′, r′) such that ext(`′, r′) 6= c. Formally:

P [(L,R) = (`, r)] = (|C| − 1) · P [(L,R) = (`′, r′)] . (6)

It is also straightforward to see that every extractor can be easily converted to
an extractor that satisfies (5)5. Lemma 3 below is the main technical lemma of
this paper. It states that (Ecext,D

c
ext) is non-malleable, for an appropriate choice

of ext. Since later (in Sect. 5) we will re-use this lemma in the context of non-
malleability with leakages, we prove it in a slightly more general form. Namely,
(cf. (8)) we show that it is hard to negate an encoded bit even if one knows that
the codeword (L,R) happens to be an element of some set L′ × R′ ⊆ L × R.
Note that we do not explicitly assume any lower bound on the cardinality of
L′×R′. This is not needed, since this cardinality is bounded implicitly in (7) by
the fact that in any flexible extractor the parameter k needs to be larger than
max (log |L| , log |R|) (cf. Sect. 2). If one is not interested in leakages then one
can read Lemma 3 and its proof assuming that L′ × R′ = L × R. Lemma 3 is
stated abstractly, but one can, of course, obtain a concrete non-malleable code,
by using as ext the two-source extractor extnF . We postpone presenting the choice
of concrete parameters F and n until Section 5, where it is done in a general
way, also taking into account leakages.

Lemma 3. Let L′ and R′ be some subsets of L and R respectively. Suppose
ext : L ×R → C is a strong flexible (k, ε)-extractor that satisfies (5), where, for
some parameter δ we have:

k =
2

3
· (log |L′|+ log |R′|)− 2

3
· log(1/δ). (7)

Take arbitrary functions f : L → L and g : R → R, let B be chosen uniformly
at random from {0, 1} and let (L,R)← Ecext(B). Then

P [Dcext(f(L), g(R)) 6= B | (L,R) ∈ (L′,R′)] ≤
1

2
+

3

2
|C|−1 + 6 |C|2 ε+ δ/(|C|−1 − ε), (8)

and, in particular (Ecext,D
c
ext) is

(
3
2 |C|

−1
+6 |C|2 ε+δ/(|C|−1− ε)

)
-non-malleable.

Proof. Before presenting the main proof idea let us start with some simple obser-
vations. First, clearly it is enough to show (8), as then the fact that (Ecext,D

c
ext) is(

|C|−1 + 2 |C|2 ε+δ/(|C|−1− ε)
)
-non-malleable can be obtained easily by assum-

ing that L′ ×R′ = L×R and applying Lemma 2. Observe also that (8) implies
that log |L′|+log |R′| ≥ k, and hence, from the fact that ext is a (k, ε)-two source
extractor we obtain that if L̃← L′ and R̃← R̃′ then

d(ext(L̃, R̃)) ≤ ε. (9)

We will use this fact later. The basic idea behind the proof is a as follows. Denote
B′ := Mallf,g(Enc(B)). Recall that our code is “non-balanced” in the sense that

5 The inner-product extractor satisfies (5) if we assume, e.g., that the fist coordinate
of L and the last coordinate of R are non-zero. In general, if ext : L × R → C is
any extractor, then ext′ : (L×C)×R → C defined as ext((C,L), R) = ext(L,R) +C
(assuming that (C,+) is a group) satisfies (5).

a random codeword (L,R) ∈ L′×R′ with only negligible probability encodes 0.
We will exploit this fact. Very informally speaking, we would like to prove that
if B = 1 then the adversary cannot force B′ to be equal to 0, as any independent
modifications of L and R that encode 1 are unlikely to produce an encoding of
0. In other words, we would hope to show that P [B′ = 0|B = 1] is small. Note
that if we managed to show it, then we would obviously get that P [B′ 6= B]
cannot be much larger than 1/2 (recall that B is uniform), and then the proof
would be finished. Unfortunately, this is too good to be true, as the adversary
can choose f and g to be constant such that always Dcext(f(L), g(R)) = 0, which
would result in B′ = 0 for any value of B. Intuitively, what we will actually
manage to prove is that the only way to obtain B′ = 0 if B = 1 is to apply
such a “constant function attack”. Below we show how to make this argument
formal.

Let us first observe that any attack where f and g are constant will never work
against any encoding scheme, as in this case (f(L), g(R)) carries no information
about the initial value of B. Our first key observation is that for our scheme,
thanks to the fact that it is based on extractor, this last statement holds even if
any of f and g is only “sufficiently close to constant”. Formalizing this property
is a little bit tricky, as, of course, the adversary can apply “mixed” strategies,
e.g., setting f to be constant on some subset of L′ and to be injective (and hence
“very far from constant”) on the rest of L′. In order to deal with such cases we
will define subsets LFFC ⊆ L′ and RFFC ⊆ R′ on which f and g (resp.) are “very
far from constant”. Formally, for L̃← L′ and R̃← R′ let

LFFC :=
{
` ∈ L′ : H∞(L̃ | f(L̃) = f(`)) < k + 1− log |R′|

}
,

and

RFFC :=
{
r ∈ R′ : H∞(R̃ | g(R̃) = g(r)) < k + 1− log |L′|

}
,

where FFC stands for “far from constant”. Hence, in some sense, we define a
function to be “very far from constant on some argument x” if there are only
a few other arguments of this function that collide with x. We now state the
following claim (whose proof appears in the full version of this paper [21]) that
essentially formalizes the intuition outlined above, by showing that if either
L 6∈ LFFC or R 6∈ RFFC then (f, g) cannot succeed in negating B.

Claim 1 Let B ← {0, 1} and (L,R)← Ecext(B). Then:

P
[
Dcext(Mallf,g(L,R)) 6= B | L 6∈ LFFC ∨R 6∈ RFFC

]
≤ 1

2
+

3

4
· |C|−1 + 6 |C|2 ε.

(10)

Hence, what remains is to analyze the case when (L,R) ∈ LFFC ×RFFC. We will
do it only for the case B = 1, and when LFFC × RFFC is relatively large, more
precisely we will assume that

|LFFC ×RFFC| ≥ δ · |L′ ×R′| . (11)

This will suffice since later we will show (cf. (23)) that the probability that
Enc(B) ∈ LFFC × RFFC is small for small δ’s (note that this is not completely
trivial as (L,R) does not have a uniform distribution over L′×R′). We now have
the following claim whose proof appears in the full version of this paper [21].

Claim 2 Let (L1, R1)← Ecext(1) and suppose LFFC and RFFC are such that (11)
holds. Then

P
[
Dcext

(
Dec(f(L1), g(R1))

)
= 0 |(L1, R1) ∈ LFFC ×RFFC

]
≤ 2 |C|−1 + 2ε. (12)

To finish the proof we need to combine the two above claims. A small technical
difficulty, that we need still to deal with, comes from the fact that Claim 2 was
proven only under the assumption (11). Let us first expand the left-hand-side of
(8). We have

P
[
Dcext(Mallf,g(L,R) 6= B|(L,R) ∈ L′ ×R′

]
(13)

=

(∗)︷ ︸︸ ︷
P
[
Dcext(Mallf,g(L,R) 6= B | L 6∈ LFFC ∨R 6∈ RFFC

]
(14)

· P [L 6∈ LFFC ∨R 6∈ RFFC]

+

(∗∗)︷ ︸︸ ︷
P
[
Dcext(Mallf,g(L,R) 6= B | (L,R) ∈ LFFC ×RFFC

]
· P [(L,R) ∈ LFFC ×RFFC] (15)

From Claim 1 we get that (∗) is at most 1
2 + 1

2 · |C|
−1

+ 2 |C|2 ε. Now consider
two cases.
Case 1 First, suppose that (11) holds (i.e. |LFFC ×RFFC| ≥ δ · |L × R|). In this
case we get that (∗∗) is a equal to

≤ 2|C|−1+2ε by Claim 2︷ ︸︸ ︷
P
[
Dcext(Mallf,g(L,R) 6= B|B = 0 ∧ (L,R) ∈ LFFC ×RFFC

]

·

≥ 1
2−|C|ε︷ ︸︸ ︷

P [B = 0|(L,R) ∈ LFFC ×RFFC] + (16)

P
[
Dcext(Mallf,g(L,R) 6= B|B = 1 ∧ (L,R) ∈ LFFC ×RFFC

]
︸ ︷︷ ︸

≤1

· P [B = 1|(L,R) ∈ LFFC ×RFFC]︸ ︷︷ ︸
≤ 1

2+|C|ε

(17)

≤ 1

2
+ |C|−1 − ε+ |C| (ε− ε2) ≤ 1

2
+ |C|−1 + |C| ε. (18)

The inequalities in (16) and (18) follow from the fact that LFFC × RFFC is a
large set and the fact that B depends on ext(L,R), where ext is a randomness

extractor. The detailed proof of these inequalities appears in the full version of
this paper [21]. Now, since (13) is a weighted average of (∗) and (∗∗), hence
obviously

(13) (19)

≤ max

(
1

2
+

3

2
· |C|−1 + 6 |C|2 ε, 1

2
+ |C|−1 + |C| ε

)
(20)

≤ 1

2
+

3

2
|C|−1 + 6 |C|2 ε. (21)

Case 2 Now consider the case when (11) does not hold, i.e.:

|LFFC ×RFFC| < δ · |L × R| (22)

We now give a bound on the probability that (L,R) is a member of LFFC×RFFC.

P [(L,R) ∈ LFFC ×RFFC]

=
1

2
· P [Ecext(0) ∈ LFFC ×RFFC] +

1

2
· P [Ecext(1) ∈ LFFC ×RFFC]

=
1

2
· P
[
(L̃, R̃) ∈ LFFC ×RFFC | ext(L̃, R̃) = c

]
+

1

2
· P
[
(L̃, R̃) ∈ LFFC ×RFFC | ext(L̃, R̃) 6= c

]
≤ 1

2
·
P
[
(L̃, R̃) ∈ LFFC ×RFFC

]
P
[
ext(L̃, R̃) = c

] +
1

2
·
P
[
(L̃, R̃) ∈ LFFC ×RFFC

]
P
[
ext(L̃, R̃) 6= c

]
≤ 1

2
·
P
[
(L̃, R̃) ∈ LFFC ×RFFC

]
|C|−1 − ε

+
1

2
·
P
[
(L̃, R̃) ∈ LFFC ×RFFC

]
(|C| − 1) · |C|−1 − ε

(23)

≤ δ/(|C|−1 − ε),

where in (23) we used (9). Hence, in this case, (15) is at most equal to δ/(|C|−1−
ε), and therefore, altogether, we can bound (13) by

(13) ≤ (∗) + δ/(|C|−1 − ε) (24)

=
1

2
+

3

2
|C|−1 + 6 |C|2 ε+ δ/(|C|−1 − ε) (25)

Since analyzing both cases gave us bounds (21) and (25), hence all in all we can
bound (13) by their maximum, which is at most

1

2
+

3

2
|C|−1 + 6 |C|2 ε+ δ/(|C|−1 − ε).

Hence (8) is proven.

5 Adding Leakages

In this section we show how to incorporate leakages into our result. First, we
need to extend the non-malleability definition. We do it in the following, straight-
forward way. Observe that we can restrict ourselves to the situation when the
leakages happen before the mauling process (as it is of no help to the adversary
to leak from (f(L), g(R) if he can leak already from (L,R)). For any split-state
encoding scheme (Ecext : M → L × R,Dcext : L × R → M), a family of func-
tions F , any m ∈ M and any adversary A define a game TamperAm (where λ
is some parameter) as follows. First, let (L,R) ← Ecext(m). Then the adversary
A chooses a sequence of functions (v1, w1, . . . , vt, wt), where each vi has a type
vi : L → {0, 1}λi and each wi has a type wi : R → {0, 1}ρi where the λ’s and
ρ’s are some parameters such that

λ1 + · · ·+ λt + ρ1 + · · · ρt ≤ λ. (26)

He learns Leak(L,R) =
(
v1(L), w1(R), . . . , vt(L), wt(R)

)
. Moreover this process

is adaptive, i.e. the choice of an ith function in the sequence (26) can depend on
the i − 1 first values in the sequence Leak(L,R). Finally the adversary chooses
functions f : L → L and g : R → R. Now define the output of the game as:
TamperAm := (f(L), g(R)). We say that the encoding scheme (Ecext,D

c
ext) is ε-non-

malleable with leakage λ if for every adversary A there exists distribution DA

on M∪ {same∗} such that for every m ∈M we have

TamperAm ≈ε

 d← DA

if d = same∗ then output m,
otherwise output d.


Theorem 1. Suppose ext : L×R → C is a flexible (k, ε)-extractor that satisfies
(5), where, for some parameters δ and λ we have

k =
2

3
· (log |L|+ log |R| − λ)− 4

3
· log(1/δ). (27)

Then the encoding scheme is
(
3
2 |C|

−1
+ 6 |C|2 ε + 2δ/(|C|−1 −ε)

)
-non-malleable

with leakage λ.

The proof of this theorem appears in the full version of this paper [21]. We
now show how to instantiate Theorem 1 with the inner-product extractor from
Sect. 2.

Theorem 2. Take any ξ ∈ [0, 1/4) and γ > 0 then there exist an explicit split-
state code (Enc : {0, 1} → {0, 1}N/2 × {0, 1}N/2,Dec : {0, 1}N/2 × {0, 1}N/2 →
{0, 1}) that is γ-non-malleable with leakage λ := ξN such that N = O(log(1/γ) ·
(1/4− ξ)−1). The encoding and decoding functions are computable in O(N ·
log2 (log(1/γ))) and the constant hidden under the O-notation in the formula
for N is around 100.

The proof of this theorem appears in the full version of this paper [21]. We would
like to remark that it does not look like we could prove, with our current proof
techniques, a better relative leakage bound than ξ < 1

4 . Very roughly speaking
it is because we used the fact that the inner product is an extractor twice in the
proof. On the other hand we do not know any attack on our scheme for relative
leakage ξ ∈

(
1
4 ,

1
2

)
(recall that for ξ = 1

2 obviously any scheme is broken). Hence,
it is quite possible, that with a different proof strategy (perhaps relying on some
special features of the inner product function) one could show a higher leakage
tolerance of our scheme.

6 Security against affine mauling

Interestingly, we can also show that our encoding scheme (Ecext,D
c
ext), instantiated

with the inner product extractor, is secure in the model where (L,R) ∈ Fn×Fn
can be mauled simultaneously (i.e. we do not use the split-model assumption),
but the class of the mauling functions is restricted to the affine functions over
F, i.e. each mauling function h is of a form

h((L1, . . . , Ln), (R1, . . . , Rn)) = M · (L1, . . . , Ln, R1, . . . , Rn)T + V T , (28)

where M is an (2n× 2n)-matrix over F and V ∈ F2n. We now argue informally
why it is the case, by showing that every h that breaks the non-malleability of
this scheme can be transformed into a pair of functions (f, g) that breaks the
non malleability of the scheme(

Ecext : Fn+2 ×Fn+2 → {0, 1},Dcext : {0, 1} → Fn+2 ×Fn+2
)

in the split-state model. Let (L,R) ∈ Fn+2 × Fn+2 denote the codeword in this
scheme. Our attack works only under the assumption that it happened that
(L,R) ∈ L′ × R′, where L′ × R′ := (Fn × {0} × {0}) × (Fn × {0} × {0}) (in
other words: the two last coordinates of both L and R are zero). Since L′×R′ is
large, therefore this clearly suffices to obtain the contradiction with the fact that
our scheme is secure even if (L,R) happen to belong to some large subdomain
of the set of all codewords (cf. Lemma 3). Clearly, to finish the argument it is
enough to construct the functions f and g such that

〈f(L), g(R)〉 =
〈
(L′1, . . . , L

′
n+2), (R′1, . . . , R

′
n+2)

〉
,

where (L′1, . . . , L
′
n+2, R

′
1, . . . , R

′
n+2) = h(L1, . . . , Ln, R1, . . . , Rn). It is easy to

see that, since h is affine, hence the value of
〈
(L′1, . . . , L

′
n+2), (R′1, . . . , R

′
n+2)

〉
can be represented as a sum of monomials over variables Li and Rj where each
variable appears in power at most 1. Hence it can be rewritten as the following
sum:

n∑
i=1

Li ·∑
j∈Ji

Rj

+
∑

j∈Jn+1

Lj +
∑

i,j∈Kn+1

LiLj + y +
∑

j∈Jn+2

Rj +
∑

i,j∈Kn+2

RiRj ,

where each Ji is a subset of the indices {1, . . . , n} and y ∈ F is a constant. It is
also easy to see that the above sum is equal to the inner product of vectors V
and W defined as:

V :=
(
L1, . . . , Ln,

∑
j∈Jn+1

Lj +
∑

i,j∈Kn+1

LiLj , 1
)

W :=
(∑
j∈J1

Rj , . . . ,
∑
j∈Jn

Rj , 1, y +
∑

j∈Jn+2

Rj +
∑

i,j∈Kn+2

RiRj

)
.

Now observe that V depends only on the vector L, and similarly, W depends
only on R. We can therefore set f(L) := V and g(R) := W . This finishes the
argument.

References

1. D. Aggarwal, Y. Dodis, and S. Lovett. Non-malleable codes from additive combina-
torics. Cryptology ePrint Archive, Report 2013/201, 2013. http://eprint.iacr.org/.

2. A. Akavia, S. Goldwasser, and V. Vaikuntanathan. Simultaneous hardcore bits
and cryptography against memory attacks. TCC, pages 474–495, 2009.

3. R. Anderson and M. Kuhn. Tamper resistance - a cautionary note. In The Second
USENIX Workshop on Electronic Commerce Proceedings, November 1996.

4. M. Bellare and T. Kohno. A theoretical treatment of related-key attacks: Rka-prps,
rka-prfs, and applications. EUROCRYPT 2003, pages 647–647, 2003.

5. E. Biham. New types of cryptanalytic attacks using related keys. Journal of
Cryptology, 7(4):229–246, 1994.

6. J. Bourgain. More on the sum-product phenomenon in prime fields and its appli-
cations. International Journal of Number Theory, 1(01):1–32, 2005.

7. Z. Brakerski, Y. T. Kalai, J. Katz, and V. Vaikuntanathan. Overcoming the hole
in the bucket: Public-key cryptography resilient to continual memory leakage. In
51st Annual IEEE Symposium on Foundations of Computer Science (FOCS), pages
501–510. IEEE, 2010.

8. H. Chabanne, G. Cohen, J. Flori, and A. Patey. Non-malleable codes from the
wire-tap channel. In Information Theory Workshop (ITW), 2011 IEEE, pages
55–59. IEEE, 2011.

9. H. Chabanne, G. Cohen, and A. Patey. Secure network coding and non-malleable
codes: Protection against linear tampering. In Information Theory Proceedings
(ISIT), 2012 IEEE International Symposium on, pages 2546–2550, 2012.

10. S. Choi, A. Kiayias, and T. Malkin. Bitr: built-in tamper resilience. ASIACRYPT
2011, pages 740–758, 2011.

11. B. Chor and O. Goldreich. Unbiased bits from sources of weak randomness and
probabilistic communication complexity. SIAM Journal on Computing, 17(2):230–
261, 1988.

12. G. Cohen, R. Raz, and G. Segev. Non-malleable extractors with short seeds and
applications to privacy amplification. In Computational Complexity (CCC), pages
298–308, 2012.

13. D. Dachman-Soled and Y. Kalai. Securing circuits against constant-rate tampering.
CRYPTO 2012, pages 533–551, 2012.

14. F. Dav̀ı, S. Dziembowski, and D. Venturi. Leakage-resilient storage. Security and
Cryptography for Networks, pages 121–137, 2010.

15. Y. Dodis, K. Haralambiev, A. Lopez-Alt, and D. Wichs. Cryptography against
continuous memory attacks. In 51st Annual IEEE Symposium on Foundations of
Computer Science (FOCS), pages 511–520. IEEE Computer Society, 2010.

16. Y. Dodis, A. Lewko, B. Waters, and D. Wichs. Storing secrets on continually leaky
devices. In Foundations of Computer Science (FOCS), 2011 IEEE 52nd Annual
Symposium on, pages 688–697. IEEE, 2011.

17. Y. Dodis, X. Li, T. Wooley, and D. Zuckerman. Privacy amplification and non-
malleable extractors via character sums. In FOCS 2011, pages 668–677, 2011.

18. Y. Dodis and D. Wichs. Non-malleable extractors and symmetric key cryptography
from weak secrets. In STOC, pages 601–610, 2009.

19. D. Dolev, C. Dwork, and M. Naor. Nonmalleable cryptography. SIAM review,
45(4):727–784, 2003.

20. S. Dziembowski and S. Faust. Leakage-resilient circuits without computational
assumptions. TCC, pages 230–247, 2012.

21. S. Dziembowski, T. Kazana, and M. Obremski. Non-malleable codes from two-
source extractors. Cryptology ePrint Archive, 2013. Full version of this paper,
http://eprint.iacr.org/.

22. S. Dziembowski and K. Pietrzak. Leakage-resilient cryptography. In FOCS’08,
pages 293–302. IEEE, 2008.

23. S. Dziembowski, K. Pietrzak, and D. Wichs. Non-malleable codes. ICS, pages
434–452, 2010.

24. ECRYPT. European Network of Excellence. Side Channel Cryptanalysis Lounge.
http://www.emsec.rub.de/research/projects/sclounge.

25. S. Faust, K. Pietrzak, and D. Venturi. Tamper-proof circuits: How to trade leakage
for tamper-resilience. In ICALP 2011, volume 6755 of Lecture Notes in Computer
Science, pages 391–402. Springer, 2011.

26. R. Gennaro, A. Lysyanskaya, T. Malkin, S. Micali, and T. Rabin. Algorithmic
tamper-proof (atp) security: Theoretical foundations for security against hardware
tampering. TCC, pages 258–277, 2004.

27. S. Goldwasser and G. Rothblum. How to compute in the presence of leakage. In
FOCS 2012, pages 31–40, 2012.

28. S. Halevi and H. Lin. After-the-fact leakage in public-key encryption. TCC, pages
107–124, 2011.

29. J. H̊astad, R. Impagliazzo, L. Levin, and M. Luby. A pseudorandom generator
from any one-way function. SIAM Journal on Computing, 28(4):1364–1396, 1999.

30. Y. Ishai, M. Prabhakaran, A. Sahai, and D. Wagner. Private circuits ii: Keeping
secrets in tamperable circuits. EUROCRYPT, pages 308–327, 2006.

31. Y. Ishai, A. Sahai, and D. Wagner. Private circuits: Securing hardware against
probing attacks. CRYPTO, pages 463–481, 2003.

32. Y. Kalai, B. Kanukurthi, and A. Sahai. Cryptography with tamperable and leaky
memory. CRYPTO 2011, pages 373–390, 2011.

33. F. Liu and A. Lysyanskaya. Tamper and leakage resilience in the split-state model.
CRYPTO 2012, pages 517–532, 2012.

34. S. Micali and L. Reyzin. Physically observable cryptography. TCC, pages 278–296,
2004.

35. M. Naor and G. Segev. Public-key cryptosystems resilient to key leakage. CRYPTO
2009, pages 18–35, 2009.

36. A. Rao. An exposition of bourgain 2-source extractor. In Electronic Colloquium
on Computational Complexity (ECCC), volume 14, page 034, 2007.

37. H. Wee. Public key encryption against related key attacks. PKC 2012, pages
262–279, 2012.

