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Abstract. The Bluetooth standard authorized by IEEE 802.15.1 adopts
the two-level E0 stream cipher to protect short range privacy in wireless
networks. The best published attack on it at Crypto 2005 requires 238

on-line computations, 238 off-line computations and 233 memory (which
amount to about 19-hour, 37-hour and 64GB storage in practice) to
restore the original encryption key, given the first 24 bits of 223.8 frames.
In this paper, we describe more threatening and real time attacks against
two-level E0 based on condition masking, a new cryptanalytic technique
that characterizes the conditional correlation attacks on stream ciphers.
The idea is to carefully choose the condition to get better tradeoffs on
the time/memory/data complexity curve. It is shown that if the first 24
bits of 222.7 frames is available, the secret key can be reliably found with
227 on-line computations, 221.1 off-line computations and 4MB memory.
Our attacks have been fully implemented on one core of a single PC. It
takes only a few seconds to restore the original encryption key. This is
the best known-IV attack on the real Bluetooth encryption scheme so
far.

Keywords: Stream ciphers, Correlation, Condition masking, Bluetooth
two-level E0

1 Introduction

Bluetooth and WiFi wireless networks are ubiquitous nowadays. The Bluetooth
standard [3] adopts the two-level E0 stream cipher to protect the privacy between
different devices, such as personal computers, laptops and mobile phones, that
operate over a short range and at low power. Although being a long standing
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problem in stream ciphers, the security analysis of two-level E0 is still of great
practical importance, as pointed out by Prof. Preneel in [25].

Correlation attack [28] is a classical method in the cryptanalysis of stream
ciphers, which exploits some statistically biased relation between the produced
keystream and the output of certain underlying sequence. In the 90’s, the corre-
lation properties of combiners with memory is analyzed [9, 23] in theory. Based
on these correlations, for LFSR-based stream ciphers, the initial state of the tar-
get LFSR can be recovered by (fast) correlation attacks [4, 5, 12, 13, 22]. Further,
in [15, 16], the notion of correlation was extended to conditional correlation, that
studied the linear correlation of the inputs conditioned on a given output pattern
of some nonlinear function. Later at Crypto 2005 [17], the conditional correlation
is assigned with a dual meaning, i.e., the correlation of the output of a function
conditioned on some unknown input, called condition vector, which is uniformly
distributed and is applied to analyze the security of two-level E0. Usually, the
condition vector is some key related material and if a good conditional corre-
lation exists, it is expected that the adversary will observe the biased sample
sequence for the correct key and unbiased sequences for the wrong candidates.
Thus, a distinguisher can be mounted to restore the secret key given a pool of
sample sequences derived from the guessed values of the condition vector and
some public information.

In practice, the E0 cipher is frequently re-synchronized as a two-level scheme
and the keystream generated for each frame is only 2745 bits. Thus, most of
the published attacks [1, 6, 11, 14, 19, 26, 27] that work on one impractically long
frame of keystream remain the academic interest only and have little impact on
the practical usage of Bluetooth encryption. Currently, a few attacks [7, 8, 10,
17, 18, 24] apply to the two-level E0. The cube attack in [24] works under the
unrealistic assumption that the output of LFSRs at any clock cycle is available
and it is a chosen-IV attack. The best known-IV attack in [17] requires 238

on-line computations, 238 off-line computations and 233 memory to restore the
original encryption key, given the first 24 bits of 223.8 frames in theory (while
in experiments, it needs about 19-hour, 37-hour and 64GB storage, given the
first 24 bits of 226 frames). Note that this attack depends dominantly on the
external data transfer rate between the hard disk and main memory and the
pre-computation, which has to be done once for each key, is too time-consuming.

In this paper, we propose a new cryptanalytic technique, called condition
masking, to characterize the conditional correlation attacks on stream ciphers.
The attack in [17] considered the correlations conditioned on the whole condi-
tion vector, whereas we investigate the correlations only based on a subset of the
condition vector. This generalizes the concept of linear mask by depicting the
condition as the value selected according to a mask and studying how to choose
the condition to achieve better tradeoffs between time/memory/data complexi-
ties. Our main observation is that it is of high probability that only a subset of
bits in the whole condition vector determine the magnitude of the bias, e.g., in
the E0 combiner, only the latest four input bits to the FSM play the most impor-
tant role. The theoretical framework in [17] is refined based on this notion and
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it is shown that the time/memory complexities of the attack against two-level
E0 can be significantly reduced by properly choosing the condition mask.

Precisely, we first present the complete1 formula for fast computation of
unconditional correlations in the E0 combiner, and thus efficiently solve the 11-
year old open problem of Golić in [10]. Second, we precisely study the conditional
correlations in two-level E0 with the condition masking. The target function
inherent in E0 used to compute the conditional correlation in [17] is generalized
and a large class of correlations conditioned on both the linear mask and the
condition mask is presented. Although the correlation conditioned on the full
condition vector is maximum in the value, it is not generally optimum in the
global time/memory/data complexities aspect. The time/memory complexities
are closely associated with the condition. An adversary need not to guess the full
condition vector and what he has to guess is determined by the condition mask
he has chosen. In this way, the time/memory complexities can be considerably
reduced. Third, combined with the vectorial approach2, the data complexity of
our attack can be reduced or at least kept at the same magnitude level of that
in [17] as well. A necessary and sufficient condition that determines when the
adversary could gain in the correlation by moving from bit to small vector (or
from low-dimension to high-dimension) in the conditional correlation attack is
proved in theory. Based on it, the vectors used in our attack are constructed
and indeed work well to keep the data complexity as small as possible without
a penalty in the time or memory complexities. As a result of all the above
techniques, it is shown that if the first 24 bits of 222.7 frames is available, the
secret key can be reliably found with 227 on-line computations, 221.1 off-line
computations and 4MB memory. Other choices of tradeoff parameters are also
possible. Our attacks have been fully implemented in C language on one core of
a single PC. Due to the small memory consumption and low time complexity,
it is repeated thousands of times with randomly generated keys and IVs, while
the attack in [17] is only executed 30 times for a fixed key with 226 frames. On
average, it takes only a few seconds to restore the original encryption key. To
our knowledge, this is the best and most threatening known-IV attack on the
real Bluetooth encryption scheme so far.

This paper is organized as follows. A full description of the two-level E0
scheme is presented in Section 2. Various correlation properties about the E0
combiner, e.g., unconditional and conditional correlations based on condition
masking are studied in Section 3. Inspired by these findings, both bitwise and
vector-wise key recovery attacks based on condition masking are developed in
Section 4. In Section 5, the practical implementation of our attack is described
with the experimental results. Finally, some conclusions are provided and future
work are pointed out in Section 6.

1 Here ’complete’ means that the formula can cover all the correlated input and output
linear masks.

2 Using multiple linear approximations at the same time.
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2 Description of Bluetooth Two-Level E0

The description here is according to the official specification in [3]. The size
of the secret key used in two-level E0 is 128 bits and the IV is 74 bits. The
core is a modification of the summation generator with 4-bit memory. Precisely,
the keystream generator consists of four regularly-clocked LFSRs whose lengths
are 25, 31, 33 and 39 bits, respectively (128 bits in total). Their outputs are
combined by a Finite State Machine (FSM) with 4 bits memory. At each time
t, the following steps are executed.

The keystream generation of E0
Parameters:
1: Bt = (b1t , b

2
t , b

3
t , b

4
t ) ∈ GF (2)4 denote the output bits of four LFSRs

2: Xt ∈ GF (2)4 denotes the 4 memory bits (ct−1, ct) = (c1t−1, c
0
t−1, c

1
t , c

0
t )

3: zt is the keystream bit
Input: Xt, Bt

5: zt = b1t ⊕ b2t ⊕ b3t ⊕ b4t ⊕ c0t
6: st+1 = (s1t+1, s

0
t+1) = ⌊

b1t+b2t+b3t+b4t+2c1t+c0t
2 ⌋

7: c0t+1 = s0t+1 ⊕ c0t ⊕ c1t−1 ⊕ c0t−1, c
1
t+1 = s1t+1 ⊕ c1t ⊕ c0t−1

8: (ct−1, ct)← (ct, ct+1)
9: update the LFSRs

It is easy to see that the four LFSRs are equivalent to a single 128-bit LFSR
whose output bit Rt is obtained by xoring the outputs of the four basic LFSRs,
i.e., Rt = b1t ⊕ b2t ⊕ b3t ⊕ b4t and zt = Rt ⊕ c0t .

Next, we introduce the two-level E0 scheme, as shown in Fig. 1. We refer the
time instant t and t′ to the context of E0 level one and level two, and denote
c0t , c

0
t′ by αt, βt′ respectively.
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Fig. 1. Two-level E0 encryption scheme.

1. (The first level) The LFSRs are preset to zero. Given the secret key K
and some IV P i, the LFSRs are initialized linearly as Ri

[−199,··· ,−72] =

(Ri
−199, · · · , Ri

−72) = G1(K) ⊕ G2(P
i), where G1 and G2 are public affine

transformations over GF (2)128.3

3 Hereafter we always use the superscript i to indicate the context of the i-th frame.
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2. The initial 4 memory bits of FSM are all set to 0. After clocking E0 200 times,
we only keep the last produced 128-bit output Si

[−127,··· ,0] = Ri
[−127,··· ,0] ⊕

αi
[−127,··· ,0]. Let M be the state transmission matrix of the equivalent LFSR

over GF (2)128, i.e., Ri
[−127,··· ,0] = M72(Ri

[−199,··· ,−72]). Note that because of

the linear functions G1, G2 and M , the last 128 bits of Ri
t can be written as

Ri
[−127,··· ,0] = (M72 ◦G1)(K)⊕ (M72 ◦G2)(P

i).

3. Si
[−127,··· ,0] is used to initialized the four LFSRs by a byte-wise affine trans-

formation G3 : GF (2)128 → GF (2)128, detailed in Section 4.1 and Appendix
B, this process can be expressed by V i

[1,··· ,128] = G3(S
i
[−127,··· ,0]).

4. (The second level) The FSM initial state remains the same as it was in the
end of the first level. Then E0 produces the keystream zit′ = V i

t′ ⊕ βi
t′ of the

i-th frame for t′ = 1, · · · , 2745.

3 Correlations in the Bluetooth Combiner

In this section, we will carefully study both the unconditional and conditional
correlation properties of the E0 combiner.

3.1 Unconditional Linear Correlations

We first give the definition of correlation used in this paper.

Definition 1 The correlation (or bias) of a random Boolean variable X is ϵ(X) =
Pr(X = 1)− Pr(X = 0).4

Let Ω(a, (ω, u)) denote the correlation ϵ(a · st+1 ⊕ ω · ct ⊕ u · Bt), where
a ∈ GF (2)2, u ∈ GF (2)4, ω ∈ GF (2)2 and Bt denote the output bits of four
LFSRs at time t. From Section 2, note that st+1 is symmetric with respect to
each bit and depends only on wt(Bt).

5 Our complete formula for the computation
of unconditional correlations is as follows.

Theorem 2 Let h : (x1, x0)→ (x0, x1 ⊕ x0) be a permutation over GF(2)2 and
δ((a1, u1), · · · , (ad−1, ud−1), ad) = ϵ(a1 · c1 ⊕ u1 · B1 ⊕ · · · ⊕ ad−1 · cd−1 ⊕ ud−1 ·
Bd−1 ⊕ ad · cd), where a1, · · · , ad ∈ GF (2)2 and u1, · · · , ud−1 ∈ GF (2)4. If the
initial state of the FSM is uniformly distributed, then we have

δ((a1, u1), · · · , (ad−1, ud−1), ad) = −
∑

ω∈GF (2)2

Ω(ad, (ω, ud−1)) · δ((a1, u1),

· · · , (ad−3, ud−3), (ad−2 ⊕ h(ad), ud−2), ad−1 ⊕ ad ⊕ ω).

Theorem 2 is a generalization of the formula in [19, 20]. It can compute all the
unconditional correlations of the E0 combiner without any miss, e.g., it covers
all the results reported in [10].

4 Note that in some articles, ϵ(X) = Pr(X = 0)− Pr(X = 1). The only difference is
the sign of the correlation.

5 wt(·) denotes the Hamming weight of a vector.
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3.2 Conditional Correlations Based on Condition Masking

There are two sets of inputs to the FSM in E0 encryption scheme at time t,
i.e., the four LFSR output bits Bt = (b1t , b

2
t , b

3
t , b

4
t ) and the 4 memory regis-

ter bits Xt = (ct−1, ct) ∈ GF(2)4. Consider l continuous time instants and
let γ = (γ0, γ1, · · · , γl−1) ∈ GF (2)l be a linear mask with γ0 = γl−1 = 1.
γ̄ = (γl−1, γl−2, · · · , γ0) is the linear mask in reverse order. Define the inputs
Bt+1 = Bt+1Bt+2 · · ·Bt+l−2 ∈ GF(24(l−2)), Xt+1 = (ct, ct+1) ∈ GF(2)4 and the
FSM outputs Ct = (c0t , · · · , c0t+l−1). Then the function hγ

Bt+1
: Xt+1 → γ · Ct

conditioned on Bt+1 is well defined. It is shown in [17] that given Bt+1, γ ·Ct is
heavily biased for properly chosen linear mask γ.

Consider the function hγ
Bt+1

: Xt+1 → γ ·Ct. With the knowledge of Bt+1 and

Xt+1, we can recursively compute Ct. The bias ϵ(hγ
Bt+1

) can be easily computed
by an exhaustive search over all the possible values of Xt+1. For different values
of Bt+1, the bias ϵ(hγ

Bt+1
) may be different, while the mean value E[ϵ(hγ

Bt+1
)]

is a good estimate in the attacks. The following definitions are essential in our
attacks.

Definition 3 Let ξ be an arbitrary set, given the function f : ξ → GF (2)r,
the distribution Df of f(X) with X ∈ ξ uniformly distributed is Df (a) =
1
|ξ|

∑
X∈ξ 1f(X)=a, for all a ∈ GF (2)r. As in [2], the Squared Euclidean Imbal-

ance (SEI) of a distribution Df is defined as ∆(Df ) = 2r
∑

a∈GF (2)r (Df (a) −
1
2r )

2. SEI measures the distance between the target distribution and the uniform
distribution.

Specially, for r = 1, we have ∆(Df ) = ϵ2(Df ). For brevity, we use the ϵ(f),
∆(f) to represent ϵ(Df ), ∆(Df ) respectively hereafter. Similarly, E[∆(hB)] is
used to measure the conditional correlations. Now we are ready for the definition
of condition masking.

Definition 4 Given a function h : GF (2)u×GF (2)v → GF (2)r with inputs B ∈
GF (2)u, X ∈ GF (2)v, where B is the key related part and the possible condition
vector. Let B = (b0, · · · , bu−1) ∈ GF (2)u and λ = (λ0, λ1, . . . , λu−1) ∈ GF (2)u

with supp(λ) = {0 ≤ i ≤ u − 1|λi = 1} = {l1, · · · , lm} (lj < lj+1). Then the
shrunken vector of B defined by λ is B′ = (bl1 , · · · , blm) ∈ GF (2)m. Here λ is
called the condition mask of B. Further, other bits in B form another vector and
is denoted by B∗ ∈ GF (2)u−m, which is the complement part of B′. We define
an operator ′\′ to represent the above process and have B∗ = B \ B′.

This definition indicates that the adversary maybe not use the full vector as the
condition, but only search the correlations conditioned on a subset of B defined
by a mask λ. In the cryptanalysis of E0, Bt+1 is the key related input. Given
a condition mask λ = (λt+1, · · · , λt+l−2) ∈ GF(2)4(l−2), where λj ∈ GF(2)4

corresponds to Bj for j = t+1, · · · , t+ l−2, denote the condition vector defined
by λ by B′

t+1 and its complement by B∗
t+1 which includes the other bits. The

function hγ
Bt+1

can now be generalized as

hΛ
B′

t+1
: Xt+1,B∗t+1 → γ · Ct ⊕ ω · B∗

t+1, (1)
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where Λ = (γ, ω) and |ω| = |B∗
t+1|.6 As we can see, this function induces a large

class of correlations based on both the linear mask and the condition mask.
Although the computation process of Ct is frustrated by the condition mask

λ ̸= 1u, the bias can still be computed. For example, given l = 4 and λ = 0x0f ,7

we have Bt+1 = Bt+1Bt+2, B′
t+1 = Bt+2 and B∗

t+1 = Bt+1. We can guess Bt+2

and compute hΛ
Bt+2

for all the possible choices of Bt+1, Xt+1 to get ϵ(hΛ
Bt+2

).

Since Bt+1 is the outputs of the LFSRs, it is the key related material. In [17], the
attacker guesses the full vector Bt+1, while now he/she only needs to guess B′t+1,
a part of Bt+1, to mount the attack. This is the reason that the time/memory
complexities of the attack can be significantly reduced.

Note that in the initialization phase, Bt at level one can be expressed as
Bi
t = Lt(K) ⊕ L′

t(P
i), where Lt and L′

t are the public linear functions. The
knowledge of Bit will directly lead to the linear equations on the original key.
This motivates us to study the bias ϵ(hΛ

B′
t+1

) defined by a certain condition

mask λ. For 4 ≤ l ≤ 6, we have exhaustively searched the correlations based
on condition masking for all the possible condition masks on a PC. All the
significant biases obtained are also verified in computer simulations working on
sufficiently long output sequences. The time complexity of guessing is determined
by wt(λ). To get better time/memory complexities, we restrain ourselves to
the λs satisfying 1 ≤ wt(λ) ≤ 7. In the experiments, we have found many
important masks, one is listed in the following Table 1. Table 1 is computed
with λ = 0x00f, Λ = (γ, ω) = (0x1f,0|ω|). We get E[∆(hB′

t+1
)] ≈ 2−3.7, where

B′
t+1 = Bt+3. The following property, shows that the more knowledge of the

LFSR bits B, the larger conditional correlation we will obtain.

Proposition 5 Given a function f with a partial input B and two condition
masks λ1, λ2, let B1 be the condition vector defined by λ1 and B2 be the con-
dition vector defined by λ2. If supp(λ2) ⊆ supp(λ1), then we have E[∆(fB1)] ≥
E[∆(fB2)], where equality holds if and only if DfB1

is independent of B1 \ B2.

From this proposition, give a function h : GF (2)u×GF (2)v → GF (2)r with B ∈
GF (2)u, X ∈ GF (2)v and a condition mask λ, we have E[∆(hB)] ≥ E[∆(hB′)] ≥
∆(h). Moreover, for a fixed condition mask λ, its maximum bias among all the

Table 1. The bias with Λ = (γ, ω) = (0x1f,0|ω|) and λ = 0x00f

ϵ(hΛ
B′
t+1

) wt(Bt+3) cardinality of Bt+3

0.390625 2 6

−0.390625 0, 4 2

0.0625 3 4

−0.0625 1 4

linear masks Λ is an essential measure of it. The larger the maximum bias, the

6 | · | denotes the length of a vector
7 For brevity, we use the hexadecimal number to represent a vector.
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better the condition mask is. The following proposition indicates how to choose
the condition mask to make the bias large. We have verified this property by
searching over all the biases of hΛ

B′ for each combination of λ, γ and ω.

Proposition 6 For 4 ≤ l ≤ 6, let Bt+1 = Bt+1 · · ·Bt+l−2 ∈ GF (2)4(l−2), and
λ = (λt+1, · · · , λt+l−2), λ

′ = (λ′
t+1, · · · , λ′

t+l−2) are two condition masks with
wt(λ) = wt(λ′) ≥ 4, where λi, λ

′
i ∈ GF (2)4 correspond to Bi. If wt(λt+l−2) = 4

and wt(λ′
t+l−2) < 4, then maxΛ(E[∆(hΛ

B′
t+1

)]) > maxΛ′(E[∆(hΛ′

B′
t+1

)]),8 expect

that when l = 4, wt(λt+1) = 1, wt(λt+2) = 4 and wt(λ′
t+1) = 2, wt(λ′

t+2) = 3, in
which case the maximum values are equal.

From Proposition 6, wt(Bt+l−2) in Bt plays the most important role in the
correlation values based on condition masking, which determines the magnitude
of the corresponding bias. This fact tells us that when selecting the condition
masks, we should set the highest four bits of λ to 0xf .

4 Our Attacks with Condition Masking

In this section, our attack with the condition masking method is presented in a
step-by-step manner.

4.1 Preliminaries

A statistical distinguisher can be constructed based on the biased distribution
of γ · Ct in [17]. Since Bt+1 is the key related material, the adversary can guess
the involved key information and collect a set of sample sequences from the
keystream, IVs and the guessed key value. By properly choosing the involved
parameters, it is expected that with the correct key, the corresponding sample
sequence is biased, while for the wrong guesses, the underlying sequence will
behave like a random source.

As mentioned before, the essential problem lies in the core of the attack
is to distinguish a biased sample sequence from a pool of random-like sample
sequences. Since the involved sample sequences are derived from some key related
information, this distinguisher can be used to identify the correct key. Formally,
given a function f : GF (2)m ×GF (2)u−m ×GF (2)v → GF (2)r and a condition
mask λ, let fB′(B∗, X) = f(B′,B∗, X) with B = B′∪B∗ ∈ GF (2)u, X ∈ GF (2)v.
Here the condition vector defined by λ is B′ ∈ GF (2)m and B∗ = B \ B′. If B′

is determined by k-bit key information, then denote by B′K the value derived
when the guessing value of the key material is K, now the problem is as follows.

Definition 7 There are 2k sequences of n samples with the following charac-
teristics: one biased sequence has n samples (fB′K

i
,B′K

i ) (i = 1, . . . , n) with the

correct key K; the other 2k − 1 sequences consists of n independently and uni-
formly distributed random variables (ZK

i ,B′K
i ) (i = 1, . . . , n) with the wrong keys

8 maxΛ(·) is the maximum function for all Λ.
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K ̸= K. The problem is to efficiently distinguish the biased sequence from the
other sequences with the minimum number n of samples.

Following [2], the minimum number n of samples for an optimal distinguisher
using the unconditional correlation to effectively distinguish a sequence of n
output samples of f from (2k−1) truly random sequences of equal length is n =
4k log2
∆(f) , while with the smart distinguisher in [17] based on the condition vector

B, the number of samples needed is nB =
4k log2
E[∆(fB)] . Since E[∆(fB)] ≥ ∆(f), we

have nB ≤ n. In our condition masking terminology, detailed in Appendix A
Theorem 10, the data complexity becomes nB′ = 4k log 2

E[∆(fB′ )]
, and the online time

complexity are O(nB′ + k2k+1) with pre-computation O(k2k). Besides, |B′| = k.
We should not ignore the impact of the cardinality of the condition vector

|B′| = k on the time/memory complexities. It is easy to see that for λ ̸= 1u,
the cardinality k can be reduced and accordingly the time/memory complexities
can be exponentially reduced. It is expected that with a careful choice of the
condition mask, we can get better tradeoffs on the time/memory/data complex-
ity curve compared to the case λ = 1u. This is why we introduce the notion of
condition masking to represent this phenomenon. Further, note that not all the
bits in the condition vector B have the same influence on the correlation. In fact,
some are more important than others, i.e., it is of high probability that only a
subset of the condition bits can determine the magnitude of the correlation. For
example, Proposition 6 shows that in the E0 FSM, only the latest four bits of
Bt+1 play the most important role. This is the key observation of our attack.

Next, we build the linear approximations with condition masking. The linear
approximation is based on the re-initialization flaw of two-level E0 [18] detailed

in the Appendix B. Precisely, we have γ̄ · (Zi
t′ ⊕ Lt′(K) ⊕ L′

t′(P
i)) =

⊕4
j=1(γ ·

Ci
tj ) ⊕ γ̄ · Ci

t′ , for i = 1, · · · , n and Lt′ ,L′
t′ are public linear functions. Here we

have t′ ∈
∪2

d=0{8d+ 1, · · · , 8d+ 9− l}. By Eq.(1), we can rewrite this equation
as follow:

γ̄ ·(Zi
t′⊕Lt′(K)⊕L′

t′(P
i))⊕

4⊕
j=1

(ω ·B∗itj+1) =

4⊕
j=1

(γ ·Ci
tj⊕ω ·B∗i

tj+1)⊕ γ̄ ·Ci
t′ . (2)

For brevity, given masks λ and Λ, we use the simplified notations hΛ
B′i

t+1
, hγ̄ to

denote hΛ
B′i

t+1
(B∗i

t+1, X
i
t+1), h

γ̄(Bi
t′+1, X

i
t′+1) hereafter. Since B∗it+1 = Bi

t+1 \ B′it+1

is the linear combination of K and P i. Now Eq.(2) becomes

γ̄ · (Zi
t′ ⊕ Lt′(K)⊕ L′

t′(P
i))⊕ ω · (L1(K)⊕ L2(P

i)) =
4⊕

j=1

hΛ
B′i

tj+1
⊕ hγ̄ , (3)

where L1, L2 are public linear functions. Eq.(3) is the hybrid bitwise linear ap-
proximation based on condition masking for two-level E0, where hΛ

B′i
tj+1

are de-

rived from the first level and hγ̄ contains the unconditional correlation for the
second level.
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4.2 Key Recovery Attack with Bitwise Linear Approximation

From Section 3, the largest unconditional bias of hγ is 25
256 with γ = (1, 1, 1, 1, 1)

or (1, 0, 0, 0, 0, 1). To maximize the bias of Eq.(3), we choose these two γs in the
second level approximation, then |γ| = l = 5 or 6. Due to the high time/memory
complexities, the attack in [17] only considered l < 6. While in our attack, the
time/memory complexities are not dependent on |γ|, they are determined by
wt(λ), thus l = 6 can also be used in the condition masking setting.

Given the condition mask λ and the linear masks Λ = (γ, ω), we define the
following sign function to estimate the effective value of hΛ

B′i
t+1

(Eq.(1)):

gΛ(B′i
t+1) =

{
1, if ϵ(hΛ

B′i
t+1

) > 0

0, if ϵ(hΛ
B′i

t+1
) < 0

(4)

for all B′i
t+1 ∈ GF (2)wt(λ) such that ϵ(hΛ

B′i
t+1

) ̸= 0. For brevity, let

Biλ = (B′i
t1+1,B′it2+1,B′i

t3+1,B′it4+1),X i = (Y i
t1+1, Y

i
t2+1, Y

i
t3+1, Y

i
t4+1, X

i
t′+1,Bi

t′+1),

where Y i
tj+1 = (Xi

tj+1,B∗
tj+1) is the unknown input to hΛ

B′i
tj+1

, and Xi
t′+1,Bit′+1

are the inputs to hγ̄ . By Eq.(3), the knowledge of the key K is contained in
Bi
λ,Lt′(K) and L1(K). Let the 4wt(λ) bits K1 = (Lt1(K), Lt2(K), Lt3(K),

Lt4(K)) contained in Bi
λ and K2 = γ̄ ·Lt′(K)⊕ω ·L1(K) be the subkeys. Denote

by ·̃ the guessed value of the argument. The attack is detailed as follow.
First, choose an appropriate condition mask λ and guess the subkeys K̃1 and

K̃2. As P
i is known for each frame i = 1, · · · , n, we can compute the condition

vector Bi
λ. Second, to distinguish the correct keys from the wrong ones, we define

a mapping FΛ
Bi

λ
(X i) as follows.

FΛ
Bi

λ
(X i) =

{ ⊕4
j=1(h

Λ
B′i

t+1
⊕ gΛ(B̃′i

tj+1))⊕ hγ̄ , if
∏4

j=1 ϵ(h
Λ
B′i

tj+1
) ̸= 0

a truly random bit, otherwise

With Eq.(4) the value of FΛ
Bi

λ
(X i) can be computed as

FΛ
Bi

λ
(X i) = γ̄ · (Zi

t′ ⊕ L′
t′(P

i))⊕ ω · L2(P
i)⊕ K̃2 ⊕

4⊕
j=1

gΛ(B̃′i
tj+1).

If n frames are available, we can compute the value of FΛ
Bi

λ
(X i) for each possible

key by the above equation n times. With appropriate choice of Λ and λ, if
K1,K2 are correctly guessed, then E[∆(FΛ

Bi
λ
(X i))] > 0 and we expect FΛ

Bi
λ
(X i)

equals one most of the time. Otherwise, FΛ
Bi

λ
(X i) is estimated by the uniform

distribution, proved in [17]. Third, we get n outputs of the source for every
possible key. Submitting these samples to the distinguisher in Algorithm 1 in
Appendix A, with the k = 4wt(λ) + 1, u = 16(l− 2),m = wt(λ), v = 20+ 20(l−
2)− 4wt(λ) and r = 1, we are expected to successfully restore the correct keys.
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4.3 Key Recovery Attack with the Vectorial Approach

Now we enhance the above attack by using multiple linear approximations si-
multaneously. Since the correlations based on condition masking are not likely
to be larger than those based on the whole condition vector, we appeal to the
vectorial approach to keep the data complexity as low as possible.

Assume we use s mutually independent linear approximations and let Γ =
(Λ1, · · · , Λs) and Γ ′ = (γ̄1, · · · , γ̄s) denote the linear mask of these s approxi-
mations, where Λi = (γi, ωi), and |γ1| = · · · = |γs| = l with s < l. Especially, Λ1

is just the linear mask used in the above bitwise attack. For brevity, let gΓ =
(gΛ1(B′i

t+1), · · · , gΛs(B′i
t+1)), h

Γ
B′i

t+1
= (hΛ1

B′i
t+1

, · · · , hΛs

B′i
t+1

), FΓ
Bi

λ
(X i) = (FΛ1

Bi
λ

, · · · ,

FΛs

Bi
λ

) and hΓ ′
= (hγ̄1 , · · · , hγ̄s). Here the first gΛ1(B′it+1) in gΓ is determined by

Eq.(4). The other bits are determined as follow: e.g., for the j-th bit, we just
let it be an uniformly distributed bit if ϵ(hΛ1

B′i
tj+1

) = 0, otherwise take 0 or 1

according to the definition in Eq.(4). Since we have found the efficient condition
mask λ and linear mask Λ1 = (γ1, ω1) in the bitwise attack, we extend FΛ1

Bi
λ

to a

s-dimensional vector, i.e.,

FΓ
Bi

λ
(X i) =

{ ⊕4
j=1(h

Γ
B′i

tj+1
⊕ gΓ (B̃′i

tj+1))⊕ hΓ ′
, if

∏4
j=1 ϵ(h

Λ1

B′i
tj+1

) ̸= 0

a uniformly distributed s-bit vector, otherwise.

In this way, we have constructed an approximation of two-level E0 in the vecto-
rial approach. For the correct guess K̃ = K, we have FΓ

Bi
λ
(X i) =

⊕4
j=1(h

Γ
B′i

tj+1
⊕

gΓ (B′itj+1)) ⊕ hΓ ′
and E[∆(FΓ

Bi
λ
(X i))] > 0. For each wrong guess, the compo-

nents of the s-dimensional vector FΓ
Bi

λ
are uniformly distributed and we esti-

mate the distribution DFΓ

Bi
λ

(X i) as a s-bit uniform distribution for all i such

that E[∆(FΓ
Bi

λ
(X i))] = 0. With the appropriate choice of Γ = (Λ1, · · · , Λs), we

can get larger correlation values than those in the bitwise case. Thus, the da-
ta complexity nB′ is effectively reduced compared to the bitwise attack. Again,

submitting 2k sequences of nB′ pairs (FΓ
Bi

λ
(X i), B̃i

λ) to Algorithm 1 in Appendix

A, we can eventually recover the k-bit K.
Now we study how to choose the linear mask vector Γ . We first select a

linear mask Λ1 = (γ1, ω1) in the bitwise attack. Under this Λ1, we search for
other masks Λj (j ≥ 2) to maximize the total correlation. The following theorem
provides a guideline for an adversary to construct the vector by depicting the
criterion when he/she could gain in correlation by moving from (s−1)-dimension
unit to s-dimension unit.

Theorem 8 Let Γs = (Λ1, · · · , Λs) be the linear mask in the s-dimensional
attack with condition vector B and condition mask λ. Denote the joint probability
by Pa1···as = P (hΛ1

B′ = a1, · · · , hΛs

B′ = as), where ai ∈ GF (2) for 1 ≤ i ≤ s. Let
P00···00 = 1

2s + ξ00···00, P00···01 = 1
2s + ξ00···01, · · · , P11···11 = 1

2s + ξ11···11, where

− 1
2s ≤ ξj ≤ 1

2s for all j ∈ GF (2)s and
∑

j∈GF (2)s ξj = 0, then ∆(hΓs

B′ ) ≥
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∆(h
Γs−1

B′ ), where the equality holds if and only if ξ00···00 = ξ00···01, ξ00···10 =
ξ00···11, · · · , ξ11···10 = ξ11···11.

This theorem indicates that high-dimensional attack will always be better than
or at least be the same as low-dimensional attacks. Besides, if an adversary choose
the linear masks following the rules in this theorem, then he could always gain in
correlation. Further, there are some other rules when choosing Γ . First, the linear
masks γj for j = 1, · · · , s should be linearly independent with s ≤ l− 2. Second,

when the key is wrong, FΛj

Bi
λ

is an uniformly distributed bit for 1 ≤ j ≤ s in the

bitwise attack. If they are independent to each other, FΓ
Bi

λ
follows a s-bit uniform

distribution. Thus when choosing the new Λj = (γj , ωj) (j > 1), we should keep

the independence among the different components FΛj

Bi
λ

for j = 1, · · · , s. Third,
for a fixed Λ1, when we choose some new Λ = (γ, ω) to constitute the vector, we
should choose such γ that γ̄ makes the unconditional correlation ϵ(hγ̄) = 0 in
the second level approximation, as such γ does not increase the time complexity
after the extension to high-dimensional attack, which is shown in the following
theorem.

Theorem 9 Let Λ1 = (λ1, ω1) be a linear mask adopted in the bitwise attack,
if the jth-dimensional linear mask γj(j ≥ 2) makes the unconditional correla-
tion ϵ(hγ̄j ) = 0 in the approximation of the second level E0, then γj does not
increase the time complexity when extending the j − 1-dimensional vector to the
j-dimensional vector.

4.4 Theoretical Analysis

Now we present the theoretical justifications of our attack. We first introduce
the definition of Walsh Transform and the convolution transform.

Given f : GF (2)k → R, the Walsh transform f̂ is f̂(ω) =
∑

x∈GF (2)k f(x)

(−1)ω·x, and its inverse transform is f(x) = 2−k
∑

ω∈GF (2)k f̂(ω)(−1)ω·x. The

convolution function of f and g is (f ⊗ g)(a) =
∑

b∈GF (2)k f(b) · g(a ⊕ b) for

a ∈ GF (2)k. Further, the convolution and Walsh Transform are transformable,

i.e., f̂ ⊗ g(a) = f̂(a) · ĝ(a), for all a ∈ GF (2)k.
To compute the convolution function (f ⊗ g)(a), we just perform the FWT

of f and g, multiply them together and then use the inverse Walsh transform.
The time and memory complexities of FWT are O(k2k) and O(2k), respectively.

By the definition of gΛ, for a certain Bi
λ, gΛ(B̃′itj+1) is a fixed value not

depending on X i. Consequently, gΓ has no influence on ∆(FΓ
Bi

λ
). We apply the

Piling-up Lemma [21] and have the data complexity9

nB′ =
4k log 2

E[∆(FΓ
Bi

λ

)]
=

4k log 2

∆(hΓ ′)
∏4

j=1 E[∆(hΓ
B′i

tj+1
)]

=
4k log 2

∆(hΓ ′)E4[∆(hΓ
B′i

t+1
)]
. (5)

9 E[∆(hΓ
B′i
t+1

)] dose not depend on t.
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Now let us discuss the time complexity of our attack. From the expression of FΓ
Bi

λ
,

it can be easily verified that this expression fulfills Theorem 10 in Appendix A,
so our attack can also use the FWT to get the optimal time complexity. For all
the subkeys K = (K1,K2) ∈ GF (2)k−1 ×GF (2), where K1 and K2 are defined
in Section 4.2, we define H,H′ as follows:

H(K) =

nB′∑
i=1

1L′
t1

(P i),··· ,L′
t4

(P i)=K1 and (θ1,··· ,θs)=(K2,1,··· ,1),

H′(K) =

{
0, if

∏4
j=1 ϵ(h

Λ1

K1,j
) = 0

log 2kDFΓ
Kλ

((K2, 1, · · · , 1)⊕ (η1, · · · , ηs)), otherwise

where θj = γ̄j · (Zi
t′ ⊕ L′

t′(P
i)) ⊕ ωj · L2(P

i) and ηj =
⊕4

i=1 g
Λj (K1,i) for j =

1, · · · , s. In Algorithm 1 in Appendix A, the grade G(K) is a simple convolution

betweenH andH′ (also in [17]), thus we have G(K) = 1
2k
Ĥ′′(K) whereH′′(K) =

Ĥ(K) · Ĥ′(K). Note that Ĥ′ can be pre-computed in time O(k · 2k) and O(2k)

memory. The preparation of H needs O(nB′) online computation. Ĥ and Ĥ′′

need twice of FWT with time complexity O(k · 2k+1) and O(2k+1) memory.
Therefore, the total time complexity is O(nB′ + k · 2k+1).

To get the optimal performance of our attack, we should carefully choose
the parameters Γ and λ in the linear approximations. The experiments show
that there are many large correlations based on condition masking that can be
used in our attack. For example, for a condition mask λ = 0x00f , we choose 3
linear masks in the following Table 2, the experimental results show ∆(hΓ

B′
t+1

) ≈
2−2.6, where Γ = ((0x1f,0), (0x1d,0), (0x15, 0x1)). And ∆(hΓ ′

) ≈ 2−6.7, so we
conclude from Eq.(5) that the data complexity is nB′ ≈ 222.7. In this example,
we can recover the k = 17-bit subkey. Let us look at the time complexity in this

Table 2. Example: λ = 0x00f

λ γ ω E[∆(hΛ
B′
t+1

)]

(1, 1, 1, 1, 1) 0 2−3.7

0x00f (1, 1, 1, 0, 1) 0 2−3.7

(1, 0, 1, 0, 1) 0x1 2−7.6

case. The pre-computation of Ĥ ′ is 17 · 217, and we need time 2 · 17 · 217 ≈ 221.1

to compute Ĥ, Ĥ′′, and time nB′ = 222.7 to compute H, so the total time is
222.7 + 221.1.

5 Practical Implementation

Our attacks have been fully implemented on one core of a single PC, running
with Windows 7, Intel Core 2 Q9400 2.66GHz and 4GB RAM. In general, the
experimental results match the theoretical analysis quite well. We present the
details as follows.
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We choose the condition mask λ = 0x00f and γ1 = 0x1f, ω1 = 0, γ2 =
0x1d, ω2 = 0, t′ = 1, nB′ = 224 (slightly more than the theoretical estimate
223.1) in the experiments. The condition bits B′i

t+1 = Bi
t+3. We first collect

nB′ frames for a random key and store them in a binary file. It takes about 4
minutes and 80MB to fulfill this task. With these samples, we run Algorithm
1 in Appendix A to recover the key. The pre-computation of H′ and Ĥ′ needs
about one second and the results are stored in a 4MB table in RAM, not on the
hard disk. Computing H, Ĥ,H′′, Ĥ′′ in total takes about 2 seconds. Compared
with the 37 hours and 64GB table in [17], our attack can be easily carried out
in real time on a single PC.

Our attack is repeated 6000 times with different randomly generated keys and
IVs. In our experiments, the right key does not always rank first. The reason
is that when our guess is wrong, the distribution of gΛ(Bi

t+3) does not behave
exactly as the uniform distribution from the Table 1. We take the first 256
candidates in the list as the possible keys for each run (corresponding to the
256 key candidates equivalent to each other in the experiment of [17]). There is
only one correct key in their equivalent key candidates, thus they also need to
test these 256 equivalent key candidates to recover the right key. The success
probability of our attack is about 38.6% in this case, which can be raised very
high by running it several times or by taking more candidates in the rank list.
Note that in [17], the experiments are only carried out in the basic bitwise level
with 226 frames and repeated 30 times for a fixed key. If the key is changed,
the precomputation of the attack in [17] has to be done again. This fact greatly
weakens the practical effect of their attack.

During the experiments, we also found many other different condition masks
that can improve the attack in [17], some of which are listed in Table 3. The
detailed description of one run of our attack can be found in the full version of
the paper.

Table 3. The complexities of our attack with different condition masks

mask (γ1, · · · , γs) (ω1, · · · , ωs) Precom Time Frames Memory

0x00f (1f, 1d) (0, 0) 221.1 227 223.1 217

0x00f (1f, 1d, 15) (0, 0, 1) 221.1 227 222.7 217

0x101f (21, 23, 31, 35) (0, 0, 0, 0) 229.6 230.6 221.4 225

0x007f (21, 23, 33, 37) (0, 0, 0, 0) 233.9 234.9 220.2 229

6 Conclusions

In this paper, we have introduced a new cryptanalytic technique, called condition
masking, to characterize the conditional correlation attacks on stream ciphers.
Based on this new concept, we have investigated the conditional correlations
of the two-level E0 scheme and found many useful conditional correlations for
the first time. Combined these correlations with the vectorial approach, we s-
tudied the practical security of two-level E0 and developed the best and most
threatening known-IV attack on the real Bluetooth encryption scheme so far.
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Our attacks have been fully implemented in C code on one core of a single PC
and are repeated thousands of times with randomly generated keys and IVs.
On average, it takes only a few seconds to restore the original encryption key.
This clearly demonstrates the superiority of our new method. We believe our
new method is generic and applicable to other stream and block ciphers as well.
It is our future work to study the practical ciphertext-only attack on the real
Bluetooth encryption scheme using the condition masking method. Table 4 gives
a comparison of our attacks with the best previous attacks on two-level E0.

Table 4. Comparison of our attacks with the previous attacks on two-level E0

Attack Precom Time Frames Memory

[7] - 273 - 251

[8] 280 265 2 280

[10] 280 270 45 280

[18] - 240 235 235

[17] 238 238 223.8 233

Ours 221.1 227 222.7 217

Ours 229.6 230.6 221.4 225

Ours 233.9 234.9 220.2 229
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A The Key Recovery Distinguisher Based on Condition
Masking

Algorithm 1 The key recovery method based on condition masking
Parameters: n, λ, B and DfB′

input:
1: for i = 1, 2, . . . , n, B′Ki for all k-bit K
2: ZK

i = fB′(B∗K
i , Xi) for the right key K with uniformly and independently

distributed v-bit vectors Xi and B∗Ki = BK
i \ B′Ki

3: uniformly and independently distributed ZK
i for all the wrong keys K

such that K ̸= K
Goal: find K
Processing:
4: for all k-bit K do
5: G(K)← 0
6: for i = 1, · · · , n do
7: G(K)← G(K) + log2(2

r ·DfB′K
i

(ZK
i ))

8: end for
9: end for
10: output K that maximizes the grade G(K)

Theorem 10 Given a condition mask λ, the above Algorithm 1 solves the prob-
lem in Definition 7 with nB′ = 4k log 2

E[∆(fB′ )]
samples and the time complexity is

O(nB′ · 2k), where the condition bits B′ is defined by λ, the expectation is taken
over all the uniformly distributed B′. Further, if the B′K

i and ZK
i can be expressed

by
B′K
i = L(K)⊕ ai,

ZK
i = L′(K)⊕ a′i ⊕ g(B′K

i ),
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for all k-bit K and i = 1, 2, · · · , n, where g is an arbitrary function, L,L′ are
linear functions, and ai, a

′
i are independently and uniformly distributed con-

stants known to the distinguisher. Under these assumptions we can use the
FWT algorithm to achieve the optimal time complexity O(nB′ + k2k+1) with
pre-computation O(k2k). Besides, |B′| = k.

B The Linear Approximation of Two-level E0

Following the specification in [3], the last generated 128 bits Si
[−127,··· ,0] in

the first level are arranged in octets denoted by S[0], · · · , S[15], e.g., S[0] =
(Si

−127S
i
−126 · · ·Si

−120), where S
i
[−127,··· ,0] = Ri

[−127,··· ,0]⊕αi
[−127,··· ,0]. From Sec-

tion 2, we have V i
[1,··· ,128] = G3(R

i
[−127,··· ,0]) ⊕ G3(α

i
[−127,··· ,0]), where G3 is de-

picted in Fig.2. For brevity, we define (U i
1, · · · , U i

128) = G3(R
i
[−127,··· ,0]). Accord-

ing to Fig.2, V i
[1,··· ,24] can be expressed as V i

t′ = U i
t′⊕αi

t1⊕α
i
t2⊕α

i
t3⊕α

i
t4 , for t′ =

1, · · · , 24, where t1, t2, t3, t4 are the fixed time instants of αi before the applica-
tion of G3.

S[0] S[4] S[8]

S[1] S[5] S[9] S[12]

S[6] S[10] S[13]S[2]

S[3] S[7] S[11] S[14] S[15]

1

't
b

2

't
b

3

't
b

4

't
b

Fig. 2. Distribution of the last 128 bits in the first level.

Note that we have U i
t′ = Ht′(K)⊕H ′

t′(P
i), where Ht′ ,H

′
t′ are public linear

functions dependent on t′. At the second level, zt′ = Vt′ ⊕ βt′ holds. Hence we
have

zt′ ⊕Ht′(K)⊕H ′
t′(P

i) = αi
t1 ⊕ αi

t2 ⊕ αi
t3 ⊕ αi

t4 ⊕ βi
t′ , for t′ = 1, · · · , 24. (6)

Given a linear mask γ with |γ| = l, let Zi
t′ = (zit′ , · · · , zit′+l−1). Since at level

two (in Fig.2), the 128-bit keystream Si
t are loaded in the reverse order of that

at level one, then Eq.(6) can be rewritten with the linear mask notation as

γ̄ · (Zi
t′ ⊕ Lt′(K)⊕ L′

t′(P
i)) =

4⊕
j=1

(γ · Ci
tj )⊕ γ̄ · Ci

t′ , (7)

for i = 1, · · · , n and Lt′ ,L′
t′ are fixed linear functions which can be derived from

Ht′ ,H
′
t′ . Here we have t′ ∈

∪2
d=0{8d + 1, · · · , 8d + 9 − l}.10 Eq.(7) corresponds

to the case of λ = 1u.

10 From Eq.(7), the time instant tj in Ci
tj are continuous, so the approximation is only

set up in this requirement.


