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Abstract. Differential privacy (DP) is a well-studied notion of privacy
that is generally achieved by randomizing outputs to preserve the privacy
of the input records. A central problem in differential privacy is how much
accuracy must be lost in order to preserve input privacy?
Our work obtains general upper bounds on accuracy for differentially pri-
vate two-party protocols computing any Boolean function. Our bounds
are independent of the number of rounds and the communication com-
plexity of the protocol, and hold with respect to computationally un-
bounded parties. At the heart of our results is a new general geomet-
ric technique for obtaining non-trivial accuracy bounds for any Boolean
functionality.
We show that for any Boolean function, there is a constant accuracy
gap between the accuracy that is possible in the client-server setting and
the accuracy that is possible in the two-party setting. In particular, we
show tight results on the accuracy that is achievable for the AND and
XOR functions in the two-party setting, completely characterizing which
accuracies are achievable for any given level of differential privacy.
Finally, we consider the situation if we relax the privacy requirement
to computational differential privacy. We show that to achieve any no-
ticeably better accuracy than what is possible for differentially private
two-party protocols, it is essential that one-way functions exist.

1 Introduction

SFE and differential privacy. Secure function evaluation (SFE) is a fun-
damental concept in cryptography. Informally, SFE allows two parties to com-
pute a joint function of their inputs without learning anything other than the
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value of the function. An important research program in SFE is characteriza-
tion of assumptions necessary for computing various classes of functionalities.
For instance, an early result of Chor and Kushilevitz [7] established a zero-
one law for Boolean functions in the information-theoretic model (against a
computationally-unbounded passive adversary).

Differential privacy (DP) is a theoretically sound and practically important
notion of privacy [10,12]. In contrast with SFE (which places the “output correct-
ness first and privacy second”), it limits information leaked through the output
of the function (i.e., places “privacy first and output correctness second”). Dif-
ferential privacy mechanisms work by randomizing the output to preserve the
privacy of the input records. Thus the main question in differential privacy is
quantitative rather than qualitative: How much accuracy must be lost in order
to preserve input privacy?

The problem of characterizing accuracy of differentially private mechanisms
is well-defined and very challenging even in the case of a single party’s holding
the input (the client-server setting). However if the input is distributed across
several parties, output needs to be computed through an interactive protocol.
Throughout the protocol, parties are restricted in how much information their
messages should reveal about their input, and this would seem to degrade the
quality of the output.

In other words, differential privacy gives a new set of restrictions on a proto-
col. Compared with the long line of research on feasibility and completeness of
SFEs and MPCs for various functionalities in the semi-honest computationally-
unbounded setting [3,6,24,1,7,22,23], our understanding of the corresponding
properties of differentially private protocols is remarkably incomplete.

The notion of differential privacy has been studied in the distributed setting,
starting with the seminal work of Dwork and Nissim [13]. In their work, there
are multiple parties each holding a dataset as the input. The study of limitations
on accuracy of distributed differentially private protocols was initiated in works
of Beimel et al. [2] for the case of n parties each holding its own input, followed
up by Chan et al. [5], and of McGregor et al. [25] for the setting of two parties
with n-bit inputs. The latter work considers several natural and constructed
functionalities that exhibit a stark gap in accuracy that can be as large as Θ(n)
between client-server and two-party protocols.

However, many questions remain. While we have several examples of func-
tionalities for which there is an accuracy gap between the client-server setting
and the distributed setting, does such a gap exist for any non-trivial function-
ality? How large must this gap be? Answering these questions for a large and
natural class of functionalities in the two-party setting is the main focus of this
work.

Boolean Functionalities. In this work, we focus on protocols that attempt
to compute a Boolean function. While much work in differential privacy has fo-
cused on computing statistics, we note that computing Boolean functions has
long been a motivating goal in differential privacy (e.g., answering questions
“Does smoking cause cancer?” or “Do millionaires pay proportionally less in
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tax than their secretaries?”). Our goal is to obtain a characterization of which
Boolean functions must suffer accuracy loss in the two-party setting, as well as
lower bounds on how much accuracy loss is inherently needed. We note that our
understanding of Boolean functions has been particularly (and perhaps surpris-
ingly) weak: Before this work, even for computing simple Boolean gates, like
AND and XOR, we did not understand whether any accuracy loss is essential to
the two-party setting.

1.1 Our Results

Before we describe our results, we must define the notion of accuracy that we
measure. Since our focus is on functions with Boolean output, there is only one
natural choice for accuracy measure: the probability that the output is correct.
We note that other metrics considered in the literature do not apply to the
Boolean setting.

Now we discuss our setting in more detail. There are two parties Alice and
Bob holding inputs x and y respectively and interested in computing a Boolean
function f(x, y). The protocol should be such that the differential privacy of each
bit of x as well as of y should be preserved5. We assume that Alice and Bob
follow the protocol as specified, but keep a record of what transpired during the
protocol (i.e., they are semi-honest in the cryptographic sense).

For a protocol to achieve accuracy a, it must be the case that for any possi-
ble inputs (x, y) to the protocol, the protocol computes the correct output with
probability at least a, over the coins of the protocol. We concentrate on the
worst-case (over the parties’ inputs) measure of accuracy as it is the most gen-
eral type of guarantee for a randomized protocol, independent of distributional
assumptions.

Informally speaking, the differential privacy (DP) constraint for Alice states
that for any two inputs x0, x1 for Alice that differ only in one bit, and for
any input y for Bob, the following must hold: For every possible execution of
the protocol, the resulting view v of Bob must be such that the probability
that v arises on inputs (x0, y) is within a multiplicative factor of eϵ from the
probability that v arises on inputs (x1, y) (see Section 2 for the formal definition
of differential privacy). Thus, no matter what Bob sees, he remains uncertain
about the value of each bit of Alice’s input even if he knows every other bit in
her input. Here ϵ is the key privacy parameter. We will denote by λ the value eϵ.
It is easy to see that in the client-server setting, it is always possible to achieve
an accuracy of λ

1+λ (= .5 +Θ(ϵ) for ϵ→ 0).
Our work obtains general upper bounds on accuracy. Our bounds are in-

dependent of the number of rounds and the communication complexity of the
protocol, and hold with respect to computationally unbounded parties. At the

5 Stronger notions of privacy are also interesting: for example, where symbols larger
than bits, or the entire input of each party should be protected. However, since our
focus is on obtaining lower bounds on error, we use the weaker notion of the privacy
stated here, with respect to bits.
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heart of our results is a new general geometric technique for obtaining non-trivial
accuracy bounds for any Boolean functionality.
General Boolean Functions. Our strategy to obtain results on two-party
differentially private protocols for general Boolean functions begins by reducing
the problem of obtaining upper bounds for general Boolean functions to specific,
simple functions. We first note that Boolean functions where one party’s input
completely determines the output can, of course, be computed just as accurately
in the two-party setting as in the client-server setting. We call such functions
trivial, following works on classifying which Boolean functions have statistically-
secure two-party SFE protocols. We then show that the existence of an ϵ-DP
protocol with accuracy a for any non-trivial function implies the existence of
an ϵ-DP protocol with accuracy a for either the AND or XOR functionalities
(defined below). Thus, if we can obtain upper bounds on accuracy for AND and
XOR, we obtain upper bounds on accuracy for all non-trivial Boolean functions.
Computing an AND gate. The AND functionality is as follows: Alice and Bob
each hold a bit denoted by x and y respectively and are interested in computing
the AND of the two bits. Given the output (and the protocol transcript), each
input bit should remain private. Naively, the best differentially private protocol
for this task is the randomized response protocol: each party individually per-
turbs its input and sends it out. The parties then compute the output based on
the two input bits appearing in the protocol transcript. It is easy to see that the
output and the protocol transcript still maintain privacy of each individual bit;
moreover, both players’ bits are released with maximal possible accuracy. The

randomized response technique gives protocols for AND with accuracy λ2

(1+λ)2 ,

which for λ < 1 +
√
2 is worse than a random guess.

We show that by augmenting the parties’ outputs with one additional symbol,
it is possible to improve on the näıve protocol. The new protocol can achieve

an accuracy of λ(λ2+λ+2)
(1+λ)3 . Moreover, we show that this accuracy is optimal for

AND, even for protocols with any number of rounds and unbounded (finite)
communication complexity. For ϵ → 0 and λ ≈ 1 + ϵ the protocol’s advantage
over a random guess is Θ(ϵ), in line with the canonical protocol in the client-
server setting.
Computing an XOR gate. The XOR functionality is defined analogously to
the AND functionality above, except the XOR of the two input bits is to be
computed. For the XOR case, the randomized response technique provides an

accuracy of 1+λ2

(1+λ)2 = .5+Θ(ϵ2) for ϵ→ 0. We show that this is, in fact, optimal

for XOR.
Combining the results above, we establish the following: There does not exist

any non-trivial Boolean functionality which can be computed with a differential
private protocol in the two party setting with accuracy matching that of the client-
server setting. In fact, we obtain a separation between the level of accuracy
obtainable in the client-server setting and the two-party setting for every non-
trivial Boolean functionality, where the separation is tight in the case of AND and
XOR, and for the XOR functionality is asymptotically significant. Our bounds
are shown in Figure 1.
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Fig. 1. Bounds on accuracy: for arbitrary Boolean functionalities (DP bound); for
protocol-compatible ϵ-DP AND and XOR. Every ϵ-DP protocol for any non-trivial
Boolean functionality must be subject to either the AND or XOR bound.

Computational Differential Privacy: What assumption is necessary?
One option to restore accuracy in a distributed setting is to resort to a relaxed
computational notion of differential privacy [26]. In computational differential
privacy (CDP), we relax the privacy condition to require that no efficient ad-
versary can predict any bit of the input with probability greater than λ

1+λ , even
if the adversary knows all other bits. We ask the question: what computational
assumptions are necessary for CDP to enable greater accuracy?

We show that to achieve any noticeably greater accuracy with CDP protocols
than what is possible with DP protocols, one-way functions are required. We
show this by presenting a more general result, showing that if one-way functions
do not exist, then any CDP protocol must in fact also be a DP protocol.

When discussing CDP protocols, it is important to consider the relation-
ship between CDP protocols and secure computation protocols from cryptog-
raphy [30,15]. The two notions answer essentially orthogonal problems of what
and how :

– In (computationally) differentially private protocols, “privacy comes first”.
We would like to ensure privacy of each individual input and then with this
constraint, would like to compute an accurate output (the what question).

– In secure computation protocols, “accuracy comes first”. We would like to
release an accurate output to the function we are computing and then with
this constraint, would like to ensure privacy of inputs (the how question).

Nevertheless, it is immediate that general secure computation methods do give a
way to achieve the same level of accuracy in CDP two-party protocols as in the
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client-server setting. To this end, a secure computation can be used to compute
the algorithm that the server would perform on the joint input in the client-
server setting. However, general secure computation is essentially equivalent to
secure Oblivious Transfer [21,19]. It remains an important open question whether
accuracy better than what is possible with DP protocols may be achievable based
on assumptions weaker than the existence of secure Oblivious Transfer protocols.

1.2 Our Techniques

We present a new general geometric technique for bounding the accuracy of
differentially private protocols. At a high level, our technique gives us a method
for taking the truth table of a function f , a privacy parameter ϵ, and an accuracy
level a, and converting this into a linear program P . We prove that if there does
exist an ϵ-DP protocol for computing f with accuracy a, then this linear program
must have a solution. By analyzing this LP in the case of specific functions, we
can show that no solution exists when a is greater than a bound a∗. This proves
that no ϵ-DP protocol can exist with accuracy greater than a∗.

For simplicity, let us focus on protocols for Boolean functions where each
party holds a single bit. To obtain our bounds, we first think of every possible
“transcript” corresponding to some execution of the protocol. We can associate
with each such transcript a 2-by-2 “transcript matrix,” whose entries are the
probability that this transcript occurs when Alice and Bob start with a particular
pair of inputs. Now, each such transcript has an associated output value. If we
sum together all the transcript matrices with output value 0, we get a 2-by-2
“protocol matrix,” whose entries show the probability that the protocol outputs
0 when Alice and Bob start with a particular pair of inputs.

Now let us consider what constraints we can place on these matrices. Two
types of constraints are immediate: (1) the differential privacy conditions on
each input linearly constrain each transcript matrix; and (2) the accuracy con-
ditions linearly constrain the protocol matrix. But these constraints alone would
not yield any bound better than λ

1+λ , which is achievable in the client-server
setting. The key to obtaining better bounds, and our main obstacle, are condi-
tions which capture the constraint that these matrices must actually arise from
a protocol between two players. We consider a condition that we call protocol
compatibility that essentially captures the fact that if the two parties’ inputs are
drawn from independent distributions, then they must remain independent even
when conditioned on any particular protocol transcript. This post-execution in-
dependence has been useful in other works on differential privacy including the
work of McGregor et al. [25], as well as in works on secure computation such as
the work of Kilian [23].

The protocol-compatibility constraint manifests itself as a non-linear con-
straint on transcript matrices. Note that there can be an enormous (exponential
in communication complexity) number of possible transcript matrices, and we do
not want to have to consider such a large space of variables. In particular, we do
not want our bounds to depend in any way on the communication complexity or
the number of rounds in the protocol. We avoid this by proving a key lemma that
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shows how to optimally combine the linear differential privacy constraints with
the non-linear protocol-compatibility constraint to yield a new linear constraint
(Lemma 3.6 in Section 3). This combined linear constraint establishes an upper
bound on sums of probabilities from a transcript matrix that combine both the
upper and lower bounds from the differential privacy constraints. Because these
constraints are linear, they immediately give constraints on the protocol matrix,
as well. This gives us our linear program.

We analyze the linear programs that arise specifically for the AND and XOR
functionalities, and prove that the linear program is not satisfiable when the
accuracy a is higher than a certain value. We prove that these bounds are tight
by showing that this accuracy can be achieved for both the AND and XOR
functionalities. We stress that our technique is more general, and can be applied
to other specific functions to obtain potentially stronger, although not necessarily
tight, bounds. (As mentioned above, we focus our attention on AND and XOR
because every non-trivial Boolean function must contain an embedded AND or
XOR function.)
Related Work. In addition to the works mentioned above, several other works
have focused on the issue of accuracy and privacy. In the client-server setting
(i.e., where only one party owns the entire database), limitations for a wide class
of private algorithms were first shown by Dinur and Nissim [9]. The optimality
of differentially private mechanisms has since been studied in different models
such as answering multiple linear queries [17], contingency tables [20], or certain
classes of low-sensitivity queries [8]. In a surprising result of Ghosh et al. [14], a
simple geometric mechanism (a discrete version of the additive Laplacian mech-
anism) was shown to be universally optimal for releasing a single count query to
Bayesian consumers. Recently, Haitner et al. [16] showed that CDP two-party
protocols with accuracy improving upon the information-theoretic bound of Mc-
Gregor et al. cannot be black-box reduced to random oracles.

In the secure function evaluation model against computationally unbounded
semi-honest adversaries, characterization of deterministic Boolean functionalities
was completed by Chor and Kushilevitz [7], and for randomized functionalities
by [23]. These results establish the “all or nothing” nature of two-party computa-
tion under information-theoretic reductions. A related question of characterizing
complete deterministic functionalities in the computational setting was consid-
ered by Harnik et al. [18]. Complete classification of randomized functionalities
in the computational setting remains an important research problem.

2 Notation and Definitions

Standard notation. We use symbols ¬,∨,∧, and ⊕ to denote the standard
Boolean operations: not, or, and, and xor respectively. The set of natural
numbers is denoted by N; for n ∈ N, we write by [n] as shorthand for the
set {1, 2, . . . , n}. The Hamming distance between two strings x, y ∈ {0, 1}n is
defined as: |x− y|h = | {i ∈ [n] : xi ̸= yi} |, where xi, yi denote the ith bit of x, y
respectively. We denote by e, the base of the natural logarithm.
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We now recall the definition of ϵ-differential privacy [10] and (ϵ, δ)-differential
privacy [11].

Definition 2.1 (ϵ-Differential Privacy). We say that a randomized function
M : {0, 1}n 7→ R, with a finite range R, is an ϵ-differentially-private (ϵ-DP)
mechanism for ϵ ≥ 0 if for every (x, y) ∈ {0, 1}n×{0, 1}n satisfying |x−x′|h = 1
and every subset S ⊂ R we have that over the randomness of M :

Pr[M(x) ∈ S] ≤ eϵ × Pr[M(x′) ∈ S].

Definition 2.2 ((ϵ, δ)-Differential Privacy). We say that a randomized func-
tion M : {0, 1}n 7→ R, with a finite range R, is an (ϵ, δ)-differentially-private
mechanism for ϵ, δ ≥ 0 if for every (x, y) ∈ {0, 1}n×{0, 1}n satisfying |x−x′|h =
1 and every subset S ⊂ R we have that over the randomness of M :

Pr[M(x) ∈ S] ≤ eϵ × Pr[M(x′) ∈ S] + δ.

We next recall the definition of computational differential privacy which cap-
tures differentially privacy for polynomial time tests. We work with the weakest
definition, namely ϵ-ind-cdp [26]. In the following, k denotes the security pa-
rameter, implicitly available to all algorithms; algorithms are assumed to run in
time polynomial in k unless stated otherwise.

Definition 2.3 (ϵ-IND-CDP Privacy). We say that an ensemble {Mκ}k∈N
of randomized functions Mk : {0, 1}n 7→ Rk provides ϵ-ind-cdp if there exists
a negligible function negl(·) such that for every probabilistic polynomial time
distinguisher A, for every polynomial p(·), for any adjacent strings x, x′ ∈ {0, 1}n
(i.e., |x−x′|h = 1), for every sufficiently large k ∈ N, and for every advice string
zk of size at most p(k), it holds that

Pr [Ak(Mk(x)) = 1] ≤ eϵ × Pr [Ak(Mk(x
′)) = 1] + negl(κ),

where we write Ak(x) for A(1k, zk, x) and the probability is taken over the ran-
domness of mechanism Mk and the distinguisher A.

Interactive Setting. Let π := ⟨A,B⟩ be a two-party protocol. Let viewA
π (x, y)

be the random variable which, in a random execution of π with inputs x, y for
A,B respectively, consists of (x,RA, trans), where RA is the randomness used
by A and trans is the sequence of messages exchanged between the parties in
the sampled execution. For each x, viewA

π (x, y) is a mechanism over the y’s.
Define viewB

π (x, y) analogously. When dealing with the computational notion,
we consider the family of protocols {πk}k∈N and denote the view of A (resp., B)
by viewA

π (k, x, y) (resp., view
B
π (k, x, y)).

Definition 2.4 (Two-Party Differentially Privacy). We say that a protocol
π := ⟨A,B⟩ is ϵ-DP (resp., (ϵ, δ)-DP) if the mechanism viewA

π (x, y) is ϵ-DP
(resp., (ϵ, δ)-DP) for all values of x and the same holds for viewB

π (x, y). A
family of protocols {πk}k∈N is ϵ-ind-cdp if the mechanism viewA

π (k, x, y) is ϵ-
ind-cdp for all values of x and every sufficiently large k, and the same holds
for viewB

π (k, x, y).
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Finally, our measure of accuracy for Boolean functions simply looks at how
often a randomized mechanism outputs the correct output bit in the worst case.

Definition 2.5 (Accuracy). The accuracy of a randomized Boolean mecha-
nism M : {0, 1}n 7→ {0, 1} with respect to a Boolean function f : {0, 1}n 7→ {0, 1}
is defined as:

Accf(M) = min
x
{Pr[M(x) = f(x)]},

where the probability is taken over the randomness of M .

The accuracy of a two party protocol π := ⟨A,B⟩ w.r.t. to f : {0, 1}n ×
{0, 1}n 7→ {0, 1} is defined as the accuracy of the mechanism outπ : {0, 1}n ×
{0, 1}n 7→ {0, 1} which returns the (official) output of the protocol in a randomly
sampled execution of π. The accuracy for a family of protocols {πk}k∈N is defined
analogously for each k.

3 Geometric Analysis

It can be shown that AND and XOR gates are embedded on adjacent inputs into
any non-trivial Boolean two-party functionality, i.e., any functionality whose
output is not fully determined by one side’s input (the proof appears in the full
version). Therefore, it will be sufficient to analyze AND/XOR gates. A similar
claim also appears in [4] but does not guarantee the adjacency of inputs that
embed AND/XOR gates. Adjacency is crucial in our case, since otherwise we can-
not conclude that the protocol for AND/XOR have the same privacy parameter
ϵ.

We then formulate necessary conditions for existence of a differentially private
two-party protocol implementing a randomized two-party Boolean functionality
(Section 3.1), and use these conditions towards tight analysis of accuracy of
AND and XOR gates achievable via differentially private protocols (Sections 3.2
and 3.3).

3.1 Differential privacy and protocol compatibility

We begin by introducing several definitions pertaining to properties of matrices
that describe joint distributions of protocol outcomes as a function of two inputs.
For compactness we will use λ = eϵ without stating it explicitly throughout the
section.

Definition 3.1 (ϵ-DP matrix). A 2n × 2n matrix P indexed by strings x, y ∈
{0, 1}n is ϵ-DP if its elements satisfy the following conditions for all adjacent
pairs x, x′ ∈ {0, 1}n and y, y′ ∈ {0, 1}n:

pxy ≤ λ · pxy′ ,

pxy ≤ λ · px′y,
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Definition 3.2 (Protocol-compatible matrix). A 2n × 2n matrix P is pro-
tocol compatible if for all x1, x2, y1, y2 ∈ {0, 1}n it holds that

px1y1 · px2y2 = px1y2 · px2y1

The next two definitions extend the concepts of differential privacy and pro-
tocol compatibility to two-party Boolean functionalities. By convention, we say
that a 2n× 2n matrix P represents a randomized Boolean functionality f of two
inputs if pxy = Pr[f(x, y) = 0] for all x, y ∈ {0, 1}n.

Definition 3.3 (ϵ-DP functionality). We call a 2n × 2n matrix P an ϵ-DP
functionality if both P and 1 − P are ϵ-DP matrices, where 1 is the all-ones
matrix.

Definition 3.4. A 2n×2n matrix P is protocol-compatible ϵ-DP functionality
if both matrices P and 1 − P can be expressed as sums of protocol-compatible
ϵ-DP matrices, where 1 is the all-ones matrix.

The following theorem establishes necessary conditions for existence of a
differentially private two-party protocol for computing a randomized predicate
of two n-bit inputs.

Theorem 3.5. Let π be a randomized ϵ-DP two-party protocol defined over
x, y ∈ {0, 1}n and π(x, y) be the Boolean output of the protocol. Let P be a
matrix of probabilities pxy = Pr[π(x, y) = 0]. Then P is a protocol-compatible
ϵ-DP functionality.

Proof. We start by showing that P can be expressed as sums of protocol-
compatible ϵ-DP matrices. The proof for 1− P is analogous.

Let T0 be the set of all transcripts τ for which the protocol output is 0, i.e.
π(x, y) = 0. For a fixed x, y, let τ ← π(x, y) denote that event that in a random
execution of π with inputs (x, y), the transcript is τ . Let Pτ be a 2n× 2n matrix
indexed by n-bit strings such that Pτ (x, y) = Pr[τ ← π(x, y)] = pτ,xy (say).
Then,

pxy = Pr[π(x, y) = 0] =
∑
τ∈T0

Pr[τ ← π(x, y)] =
∑
τ∈T0

pτ,xy.

Therefore, it holds that P =
∑

τ∈T0
Pτ . It is easy to verify that the matrices

Pτ are ϵ-DP matrices. To complete the proof, we now show that each Pτ is
protocol-compatible (following [23]).

Let X and Y be independently and uniformly distributed random variables
taking values in {0, 1}n. Then, using Bayes’ rule we see that for any two strings
x, y, pτ,xy = Pr[X = x, Y = y|τ ← π(X,Y )] · Pr[τ ← π(X,Y )]/Pr[X = x, Y =
y]. It is well known in communication complexity (e.g., see [25]) that for any two-
party protocol π, if the inputs X and Y are independent before the execution,
then for any transcript τ of the protocol, X and Y remain independent when
conditioned on the transcript being τ . That is, Pr[X = x, Y = y|τ ← π(X,Y )] =
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Pr[X = x|τ ← π(X,Y )] · Pr[Y = y|τ ← π(X,Y )]. Using this with our previous
relation, we see that

pτ,xy = px,τ · py,τ · pτ · 22n,

where px,τ = Pr[X = x|τ ← π(X,Y )]; py,τ and pτ are defined analogously. It
then follows that for any distinct x1, y1, x2, y2:

pτ,x1y1 · pτ,x2,y2 = px1,τpx2,τpy1,τpy2,τ · p2τ · 24n = pτ,x1y2 · pτ,x2y1 .

This completes the proof for protocol-compatibility, and hence the theorem. ⊓⊔

The following lemma plays a critical role in our analysis, as it replaces a per-
transcript quadratic constraint imposed by the protocol-compatibility condition
with a system of linear inequalities.

Lemma 3.6. If P is protocol-compatible ϵ-DP functionality, then for all adja-
cent pairs x, x′ ∈ {0, 1}n and y, y′ ∈ {0, 1}n

pxy′ + px′y ≤ pxy/λ+ px′y′ · λ,
pxy′ + px′y ≤ pxy · λ+ px′y′/λ,

and

pxy + px′y′ ≤ pxy′/λ+ px′y · λ,
pxy + px′y′ ≤ pxy′ · λ+ px′y/λ.

Proof. We first verify the statement for protocol-compatible ϵ-DP matrices Q.
Indeed, by the ϵ-DP condition qxy′ , qx′y ∈ [qxy/λ, qx′y′ · λ] and by protocol-
compatible qxy′ · qx′y = qxy · qx′y′ . If the product of two reals is fixed, their
sum is maximized when they are most apart, which corresponds exactly to the
endpoints of the feasible interval for qxy′ , qx′y. To formalize this, we observe that
by simple algebra, the condition

qxy/λ ≤ qxy′ ≤ qx′y′ · λ

is equivalent to the quadratic inequality

q2xy′ − (qxy/λ+ qx′y′ · λ)qxy′ + qxy · qx′y′ ≤ 0,

since all probabilities must be non-negative. Rewriting this inequality and divid-
ing by qxy′ , and using the fact that qx′y = qxy · qx′y′/qxy′ , we obtain the desired
bound:

qxy′ + qx′y ≤ qxy/λ+ qx′y′ · λ.

Moreover, the bound is linear in all qxy, qxy′ , qx′y, qx′y′ and holds for all
protocol-compatible ϵ-DP matrices. Therefore, it would also hold for the sum of
these matrices, and thus for protocol-compatible ϵ-DP functionalities. The other
bounds follow similarly and this completes the proof. ⊓⊔
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Lastly, we introduce the following definition that relaxes the notion of the
protocol-compatible ϵ-DP functionality to allow for a (typically small or negli-
gible) fraction of non-private transcripts.

Definition 3.7. A 2n×2n matrix P is protocol-compatible ϵ-DP functionality
if both matrices P and 1−P −∆ can be expressed as sums of protocol-compatible
ϵ-DP matrices, where 1 is the all-ones matrix and all entries of ∆ are between
0 and δ.

An analogue of Theorem 3.5 exists for (ϵ, δ)-functionalities defined over bi-
nary inputs:

Theorem 3.8. Let π be a randomized (ϵ, δ)-DP two-party protocol defined over
x, y ∈ {0, 1} and π(x, y) be the Boolean output of the protocol. Let P be a matrix
of probabilities pxy = Pr[π(x, y) = 0]. Then P is a protocol-compatible (ϵ+

√
δ)-

DP O(
√
δ)-close functionality.

Proof. In the notation of the previous theorem, define the set of “bad” tran-
scripts B as

B = {τ : ∃ adjacent x, x′, y, y′ ∈ {0, 1}, s.t. Pτ (x, y) > eϵ+
√
δPτ (x

′, y′)}.

We claim that for all x, y ∈ {0, 1}, the probability that Pr[τ ∈ B : τ ← π(x, y)] <
O(
√
δ). Applying Theorem 3.5, it is sufficient to prove the claim.

For any two pairs of adjacent inputs x, x′, y, y′ define

Bx,x′,y,y′ = {τ : Pτ (x, y) > eϵ+
√
δPτ (x

′, y′)}. (1)

The probability of seeing a transcript from Bx,x′,y,y′ on input (x, y) is less than

O(
√
δ), since by the guarantee of (ϵ, δ)-DP and (1):

Pr[τ ∈ Bx,x′,y,y′ : τ ← π(x, y)} ≤ eϵ Pr[τ ∈ Bx,x′,y,y′ : τ ← π(x′, y′)}+ δ

< e−
√
δ Pr[τ ∈ Bx,x′,y,y′ : τ ← π(x, y)}+ δ,

from which a O(
√
δ) bound on Pr[τ ∈ Bx,x′,y,y′ : τ ← π(x, y)} follows immedi-

ately.
Applying the (ϵ, δ)-DP condition again, we find that

Pr[τ ∈ Bx,x′,y,y′ : π(x′′, y′′)] = eϵO(
√
δ)

for all x′′, y′′ ∈ {0, 1}. Since the event B is the union of all events Bx,x′,y,y′ ,
summing over all pairs of adjacent inputs and assuming that ϵ is constant, we
complete the proof. ⊓⊔

The next two sections apply Theorem 3.5 to tight analysis of accuracy of
differentially private protocols for computing two Boolean functionalities of two
bit inputs: AND and XOR.
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3.2 Analysis of the AND functionality

We first define accuracy of a Boolean functionality for computing the AND of two
bit inputs specified as a 2× 2 matrix of probabilities. Recall that by convention,
the matrix P consists of elements pxy signifying the probability of obtaining
output 0 on inputs (x, y).

Definition 3.9 (AND-Accuracy). Define AND-accuracy of a 2 × 2 matrix( p00 p01
p10 p11

)
as

AND-Acc(
( p00 p01
p10 p11

)
) = min(p00, p01, p10, 1− p11).

Note that this notion is identical to the accuracy defined in Section 2. We
prove the following theorem establishing the maximal accuracies achievable by
protocol-compatible and arbitrary ϵ-DP functionalities and, in particular, show-
ing that there is a gap between the two quantities.

Theorem 3.10. For any λ ≥ 1 and a 2× 2 matrix M we have the following:

1. If M is a ϵ-DP functionality, then AND-Acc(M) ≤ λ
1+λ , where λ = eϵ.

2. If M is a ϵ-DP protocol-compatible functionality, then

AND-Acc(M) ≤ λ(λ2 + λ+ 2)

(1 + λ)3
.

In both cases the equality can be achieved.

Proof. Let M =
( p00 p01
p10 p11

)
and a = AND-Acc(M).

Claim 1. The accuracy condition implies p01 ≥ a and 1−p11 ≥ a. On the other
hand, by the ϵ-DP constraint p01 ≤ p11 · λ. Put together we have a/λ ≤ p11 ≤
1− a, which implies a ≤ λ/(1 + λ).

The following matrix is indeed a ϵ-DP functionality with accuracy λ/(1+λ):

M =

(
λ/(1 + λ) λ/(1 + λ)
λ/(1 + λ) 1/(1 + λ)

)
.

Claim 2. The following conditions relate the probabilities p00, p01, p10, p11 to
each other and to the accuracy parameter a:

p11 ≤ 1− a

p01 + p10 ≥ 2 · a
p01 + p10 ≤ p00/λ+ p11 · λ

(1− p01) + (1− p10) ≤ (1− p00) · λ+ (1− p11)/λ.

The first two inequalities are implied by the accuracy requirement, the last two
by applying Lemma 3.6 to M and

( 1−p00 1−p01

1−p10 1−p11

)
.
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By introducing a new variable q = p01+p10 and rewriting the above inequal-
ities, we have

q ≥ 2 · a (2)

q ≤ p00/λ+ p11 · λ (3)

q ≥ 2− (λ+ 1/λ) + p00 · λ+ p11/λ. (4)

Consider the intersection of two lines bounding the half-planes (2) and (4),
where q and p00 are considered as free variables and λ, a, and p11 are parameters.
It is easy to verify that the lines intersect at the point (p∗00, q

∗), where

p∗00 = 1 + 1/λ2 − 2/λ+ 2a/λ− p11/λ
2 and q∗ = 2 · a.

The following lemma argues that (p∗00, q
∗) satisfies (3):

Lemma 3.11. Let p∗00 be defined as above. Then the following holds:

2 · a ≤ p∗00/λ+ p11 · λ.

Proof. Towards a contradiction, assume that

2 · a > p∗00/λ+ p11 · λ. (5)

Consider two cases:
Case p00 ≤ p∗00. Then

q
(3)

≤ p00/λ+ p11 · λ ≤ p∗00/λ+ p11 · λ
(5)
< 2 · a,

contradicting (2).
Case p00 > p∗00. Then

(p00 − p∗00)/λ+ 2 · a
(5)
> p00/λ+ p11 · λ

(3)

≥ q
(4)

≥
2− (λ+ 1/λ) + p00 · λ+ p11/λ = (p00 − p∗00) · λ+ p∗00 · λ+ 2

− (λ+ 1/λ) + p11/λ
def of p∗

00= (p00 − p∗00) · λ+ 2 · a,

which is a contradiction since λ ≥ 1 and p00 > p∗00, concluding the proof of the
Lemma. ⊓⊔

Finally, by substituting the value of p∗00 into the statement of Lemma 3.11
and using that p11 ≤ 1− a, we have

2 · a ≤ (1 + 1/λ2 − 2/λ+ 2a/λ− p11/λ
2)/λ+ p11 · λ

≤ λ+ 1/λ− 2/λ2 + a · (2/λ2 − λ+ 1/λ3),

from which after collecting like terms and simplifying, the claim AND-Acc(M) =
a ≤ λ(λ2 + λ+ 2)/(1 + λ)3 follows.

The protocol with optimal accuracy appears in Appendix thus proving tight-
ness of the bound. ⊓⊔
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We remark that Claim 2 of Theorem 3.10 also applies to δ-close ϵ-DP pro-
tocol compatible functionalities, with the upper bound on the accuracy in-
creasing by (2 + λ + 1/λ)δ = O(δ). The proof changes in its application of
Lemma 3.6 to

( 1−p00 1−p01

1−p10 1−p11

)
that becomes instead

( 1−p00−δ00 1−p01−δ01
1−p10−δ10 1−p11−δ11

)
, where

δ00, δ01, δ10, δ11 ∈ [0, δ]. It is easy to verify that changes in the inequality (4) can
be absorbed by reducing the value of a by (2 + λ+ 1/λ)δ = O(δ).

Maximal accuracies attained by ϵ-DP functionalities and protocol-compatible
ϵ-DP functionalities are shown in Figure 1.

3.3 Analysis of the XOR functionality

Recall that we consider the worst-case accuracy of a randomized protocol, i.e.,
the lowest probability over all inputs of producing a correct answer.

Definition 3.12 (XOR-Accuracy). Define XOR-accuracy of a 2 × 2 matrix( p00 p01
p10 p11

)
as

XOR-Acc(
( p00 p01
p10 p11

)
) = min(p00, 1− p01, 1− p10, p11).

Note that this notion is identical to the accuracy defined in Section 2. The
following theorem bounds XOR-accuracy of DP functionalities and protocol-
compatible DP functionalities.

Theorem 3.13. For any λ ≥ 1 and a 2× 2 matrix M we have the following:

1. If M is a ϵ-DP functionality, then XOR-Acc(M) ≤ λ
1+λ .

2. If M is a ϵ-DP protocol-compatible functionality, then XOR-Acc(M) ≤ 1+λ2

(1+λ)2 .

In both cases the equality can be achieved.

Proof. Let M =
( p00 p01
p10 p11

)
and a = AND-Acc(M).

Claim 1. By the accuracy condition p00 ≥ a and 1 − p01 ≥ a. On the other
hand, by the ϵ-DP constraint p00 ≤ p01 · λ. Put together we have 1− a ≥ p01 ≥
p00/λ ≥ a/λ, which implies a ≤ λ/(1 + λ).

The following matrix is indeed a ϵ-DP functionality with accuracy λ/(1+λ):

M =

(
λ/(1 + λ) 1/(1 + λ)
1/(1 + λ) λ/(1 + λ)

)
.

Claim 2. Lemma 3.6 gives the following bounds on the entries of ϵ-DP protocol-
compatible matrices:

p00 + p11 ≤ p10/λ+ p01 · λ,
p00 + p11 ≤ p10 · λ+ p01/λ.

Summing the inequalities and dividing by two, we have

p00 + p11 ≤
λ2 + 1

2λ
(p10 + p01). (6)
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Observe that XOR-Acc(M) = min(p00, 1−p01, 1−p10, p11) ≤ min(p00+p11

2 , 1−
p10+p01

2 ). Denote p00+p11

2 by x and p10+p01

2 by y, and write

XOR-Acc(M) = min(x, 1− y)
(6)

≤ min(x, 1− 2λ

1 + λ2
x),

which attains its maximal value when x = 1 − 2λ
1+λ2x. Solving this for x and

substituting in the above expression, we prove that

XOR-Acc(M) ≤ 1 + λ2

(1 + λ)2
.

This value of accuracy for computing the XOR functionality is achieved by
the randomized response protocol (see Appendix). ⊓⊔

4 One-Way Functions from CDP

In this paper, we show that one-way functions are implied by the existence
of a family of computationally differentially private (CDP) two-party protocols
that achieve better accuracy than the bounds proven for DP two-party protocols
proven in the previous section. We show this by presenting a more general result:
we show that if one-way functions do not exist, then the existence of a family of
CDP protocols imply the existence of DP protocols with only negligible loss in
accuracy and privacy.

Definition 4.1. An infinite family of two-party protocols Π = {πk} is defined
to be an infinite family of (ϵ, δ = negligible)-DP protocols achieving accuracy a
for a functionality F if for every constant c > 0, there exists an infinite sequence
of πk ∈ Π such that each πk is an (ϵ+ k−c, δ = k−c)-DP protocol with accuracy
a− k−c for functionality F .

Proof of the following theorem appears in the full version:

Theorem 4.2. Suppose that one-way functions do not exist. Then given any
infinite family Π of efficient ϵ-IND-CDP two-party protocols achieving accuracy
a for a functionality F , it must be that there is an infinite subfamily Π ′ ⊂ Π
such that Π ′ is an infinite family of (ϵ, δ = negligible)-DP protocols achieving
accuracy a for the functionality F .
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