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Abstract. Error correction and message authentication are well studied
in the literature, and various efficient solutions have been suggested and
analyzed. This is however not the case for data streams in which the
message is very long, possibly infinite, and not known in advance to
the sender. Trivial solutions for error-correcting and authenticating data
streams either suffer from a long delay at the receiver’s end or cannot
perform well when the communication channel is noisy.

In this work we suggest a constant-rate error-correction scheme and an
efficient authentication scheme for data streams over a noisy channel
(one-way communication, no feedback) in the shared-randomness model.
Our first scheme does not assume shared randomness and (non-efficiently)
recovers a (1− 2c)-fraction prefix of the stream sent so far, assuming the
noise level is at most c < 1/2. The length of the recovered prefix is tight.

To be able to overcome the c = 1/2 barrier we relax the model and
assume the parties pre-share a secret key. Under this assumption we
show that for any given noise rate c < 1, there exists a scheme that
correctly decodes a (1− c)-fraction of the stream sent so far with high
probability, and moreover, the scheme is efficient. Furthermore, if the
noise rate exceeds c, the scheme aborts with high probability. We also
show that no constant-rate authentication scheme recovers more than a
(1− c)-fraction of the stream sent so far with non-negligible probability,
thus the relation between the noise rate and recoverable fraction of the
stream is tight, and our scheme is optimal.
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Our techniques also apply to the task of interactive communication (two-
way communication) over a noisy channel. In a recent paper, Braverman
and Rao [STOC 2011] show that any function of two inputs has a constant-
rate interactive protocol for two users that withstands a noise rate up
to 1/4. By assuming that the parties share a secret random string, we
extend this result and construct an interactive protocol that succeeds
with overwhelming probability against noise rates up to 1/2. We also
show that no constant-rate protocol exists for noise rates above 1/2 for
functions that require two-way communication. This is contrasted with
our first result in which computing the “function” requires only one-way
communication and the noise rate can go up to 1.

Keywords: data stream, private codes, adversarial noise, authentication, tree
codes, interactive communication.

1 Introduction

The tasks of error-correction and of authentication are well studied in the
literature. In both cases, a sender (Alice) wishes to send a message over a one-way,
noisy channel to a receiver (Bob). To do so, Alice produces a longer, redundant
message and sends it over the channel. The added redundancy helps Bob in
recovering the original message if possible, or aborting otherwise. The overhead of
this process is the amount of redundancy added to each message; in this work we
focus on constant-rate schemes, i.e., schemes in which the transmitted message is
at most constant-times longer.

Interestingly, in all known authentication schemes (and in many of the error-
correction codes) there are two important assumptions: (1) the message to be
communicated has a given length n and (2) the message is fully known to
the sender in advance. These two assumptions don’t hold anymore when the
information to be transmitted is in the form of a data stream, which is a long,
possibly infinite, sequence of symbols x1, x2, . . . over some alphabet Σ, where
each xi arrives at the sender’s end at time i and is unknown beforehand.

In this paper, we investigate the question of transmitting data streams over
an adversarially noisy channel. Within this framework we consider two related
questions, namely, error-correction and authentication of data streams. Loosely
speaking, in error-correction schemes, the receiver decodes the correct message
as long as the noise level is below some threshold (but possibly outputs a wrong
message if the noise exceeds that threshold). In authentication schemes, the
receiver’s task is to indicate whether or not the received (decoded) message is
indeed the one sent to him. To see the relation between these two tasks note
that if the corruption level of an adversary is guaranteed to be lower than the
threshold, any error-correction guarantees that the receiver decodes the original
message. However, while no constant-rate error-correction scheme can withstand
a noise level higher than 1/2, this is not the case for authentication schemes that
are capable of indicating a change in the message even when the adversary has a



full control of the channel. On the other hand for the task of authentication, it is
generally assumed that the parties pre-share a secret key.

Standard error-correction and authentication methods do not apply directly
to the model of data streams. The straightforward method to perform error-
correction (or authentication) of a data stream is to cut the stream into chunks
and separately encode each chunk. The problem now is that while the adversary
is limited to some global noise rate, there is no restriction on the noise level of any
local part of the stream. Specifically, the adversary can corrupt a single chunk
in its entirety (while not exceeding the global amount of allowed noise), and
cause Bob to decode this chunk in a wrong way. Even if this event is noticed by
Bob since the chunk fails the authentication, the information carried within this
chunk is lost unless Bob requests a retransmission of that chunk, i.e., unless the
communication is interactive. The same problem exists (with high probability)
when the noise is random rather than adversarial, given that the stream is long
enough or infinite.

A possible mitigation to the above is to increase the chunks’ size. This,
however, has an undesirable side effect—Bob needs to wait until receiving a
complete chunk in order to decode and authenticate it. This means that the
information received in the very recent bits is inaccessible to Bob until the chunk
is completely received. Our goal is thus, to construct a constant-rate scheme that
can withstand a constant fraction of errors (globally) and still guarantee the
correct decoding and authenticity of the information received so far. To the best
of our knowledge, no such solution is known.

1.1 Our Results

In this work we construct optimal encoding schemes for both interactive and
non-interactive (streaming) communication, and show a dramatic difference
between these two cases in the following sense. For each case, we show an upper
bound on the noise rates that allow a successful constant-rate communication,
and construct a protocol that achieves the bound. Interestingly, the bound for
one-way communication is different from the interactive one.

Specifically, our result for one-way communication is a constant-rate coding
scheme for data streams that withstands noise rates of less than 1/2. Informally,
as long as the global noise rate up to some time n does not exceed some parameter
c < 1/2, a fraction of 1− 2c of the stream sent up to time n can be recovered
(see Section 4). For constant-rate schemes, it is clear that c < 1/2 is a hard limit
and no scheme can succeed when the noise is higher. In order to achieve schemes
that withstand higher noise rates we must relax the model and give the users
more resources. Indeed, with the use of shared randomness (i.e., a shared secret
key) we can break the c = 1/2 barrier. To emphasize the fact that the parties are
allowed to share a secret key, we refer schemes in this model as authentication
schemes rather than error-correction schemes, based on the relation of these two
tasks mentioned above (codes that assume a private shared key are also known
as private codes [16], see Related Work).



This leads to our first main result: we construct a constant-rate authentication
scheme for data streams sent over a noisy (possibly adversarial) channel. For any
constant fraction of noise c less than 1, our scheme succeeds in decoding at least
a (1− c)-fraction of the stream so far, with high probability. The decoded part is
always the prefix of the stream. The decoded prefix is authenticated, meaning
that there is only a negligible probability that the scheme outputs a different
string. Furthermore, our scheme is efficient. More formally (see formal theorems
in Section 5), we show that for any noise rate 0 ≤ c < 1 and small constant ε > 0:

– There exists an efficient constant-rate scheme that, at time n, decodes a
prefix of length at least (1− c)n− εn of the stream sent so far.

– Any constant-rate protocol that decodes a prefix of length (1 − c)n + εn
succeeds with probability at most 2−Ω(εn) in the worst case.

Our scheme is unconditionally secure and does not make any (cryptographic)
assumptions, other than pre-sharing a secret random string. The amount of
randomness utilized by the scheme grows with the message length, and can
be unbounded if the data stream is infinite. However, if we only consider a
computationally bounded adversary, the required amount of randomness is
relatively small (polynomial in the security parameter). With the aid of a pseudo-
random generator, the parties only need to pre-share a small seed, from which they
generate randomness at will. Moreover, such a solution scales to the multiparty
case by a simple public-key infrastructure construction. Each user generates a
pair of a public and a secret key, and any pair of users perform Diffie-Hellman
key-exchange [6] to obtain a secret shared authentication-key used as the pseudo-
random generator’s seed.

We apply the same techniques used in our streaming-authentication scheme
onto the task of interactive communication to get our second main result. In the
interactive communication scenario, two parties perform an arbitrary interactive
protocol over a noisy channel, while keeping the amount of exchanged data only
a constant factor more than an equivalent protocol for a noiseless channel (i.e.,
the encoding is constant-rate). This question was initially considered for both
random and adversarial noise by Schulman [22,23,24] who showed a constant-
rate encoding scheme that copes with a noise rate of up to 1/240, and recently
revisited by Braverman and Rao [5] who showed how to deal with noise rates less
than 1/4. In addition, Braverman and Rao show that 1/4 is the highest error
rate any protocol can withstand, as long as the protocol defines whose turn it is
to speak at every round regardless of the observed noise. The fascinating open
question left by the work of Braverman and Rao is whether other methods could
extend the 1/4 bound.

In this work we improve the bound obtained by [5] by allowing the parties
to pre-share a secret key. Specifically, we show how to convert any interactive
protocol (for noiseless channel) into a constant-rate protocol that withstands
any adversarial noise level smaller than 1/2, given pre-shared randomness. We
also show that for higher noise rates, no constant-rate interactive protocol exists
for tasks that depend on inputs of both parties. Similarly to previous results for



interactive communication with adversarial noise [24,5,9], our decoding scheme
is inefficient. Very recently, Brakerski and Kalai [2] showed how to augment
previous results of interactive communication protocols and achieved efficient
schemes that withstand adversarial noise (the computation efficiency was further
improved by Brakerski and Naor [3] to O(N logN)). Note that the bounds (on
adversarial noise) obtained by [2] are improved by our work as well, since we
improve the bounds of the underlying schemes used by [2].

1.2 Our Methods

The Blueberry code. The main ingredient of our construction is an error-detection
code we name the Blueberry code5. The Blueberry code uses the shared random-
ness in order to detect corruptions made by the channel, and marks them as
erasures. One can think about this code as a weak message authentication code
(MAC) that authenticates each symbol separately with a constant probability
(see [11] for a formal definition of MAC). To this end, each symbol of the input
alphabet Σ is randomly and independently mapped to a larger alphabet Γ (the
channel alphabet). This means that only a small subset of the channel alphabet
is meaningful and the other symbols serve as “booby-traps”. Since each symbol is

encoded independently, any corruption is caught with constant probability |Σ|−1|Γ |−1
and marked with a special sign ⊥ to denote it was deleted by the channel. Most of
the corruptions made by an adversary become erasures and only a small fraction
(arbitrarily small, controlled by the size of |Γ |) turns into errors.
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Fig. 1. A demonstration of the Blueberry code: at any given time each symbol in Σ
is randomly mapped to a symbol of Γ . Symbols of Γ with no incoming arrow are
“booby-traps”, which serve to detect corruptions.

5 The name of the Blueberry code is inspired by the children’s book “The case of the
hungry stranger” [1] in which a blueberry pie is gone missing, and the thief (who
turns out to be the dog) is identified by his big blue grin.



The main insight that leads to our results is the different ways error correction
codes deal with errors and erasures. We observe that, in terms of Hamming
distance, the impact of a single error is twice as harmful as a single erasure.
Indeed, assume that the Hamming distance of two strings, x and y, is m. Then
if x was communicated but y is decoded it means that at least m/2 errors
have occurred, or alternatively, at least m erasures. More generally, assuming
we decode by minimizing the Hamming distance, then our decoding fails if the
number of errors e and the number of erasures d satisfy 2e+ d ≥ m.

Combining Blueberry codes and tree codes. The second ingredient of our work is
encoding via tree codes [24], an online encoding that has a “self-healing” property:
when decoding a stream at time n, the tree will decode correctly up to a particular
time t such that the stream suffix between times t and n is the longest suffix
in which the error rate is high. This means, for instance, that even if all the
transmissions until some time t′ were corrupted (and thus the decoding failed at
those times), if the noise rate up to time n > t′ is low enough, not only can we
decode between t′ and n, but we will also be able to decode the entire stream up
to time n.

Encoding via both a tree code and a Blueberry code immediately gives a
streaming authentication method: the Blueberry code prevents the adversary
from corrupting too many transmissions without being noticed, and given that
the noise level is low enough, the tree code correctly decodes a prefix of the
stream whose length is determined by the average noise level up to that time.

Efficient constructions. The only caveat of the above construction is that tree
code decoding is not necessarily efficient and may be in the worst case exponential
in the length of the received transmission. We obtain an efficient authentication
scheme by splitting the stream into small segments and repeatedly sending
random segments of the history. That way, even if some part of the transmission
was changed by the channel, the same information will keep being retransmitted
at random future times, and eventually (with high probability) will be received
at the other side intact.

Roughly speaking, we use n/ log n tree codes to encode chunks of the stream
(each of length roughly log n). Note that as n grows, so does the number of the
trees in use, and the expected depth of each tree. At each time step, we randomly
select one of the n/ log n trees and transmit the next label of the path defined
by the corresponding chunk of the stream. For most of the trees, the expected
number of labels transmitted is Θ(log n), and the decoding of the specific chunk
succeeds except with polynomially small probability. Since each tree code is used
to encode a word of length O(log n), the decoding can be performed efficiently
by an exhaustive search.

1.3 Other Related Works

The works of Even, Goldreich and Micali [7] and Gennaro and Rohatgi [10]
consider authentication of data streams, however the focus of these schemes is not



only to authenticate the message but also to prevent the sender from denying hav-
ing signed the information. These constructions rely on cryptographic primitives
such as one-time signatures. Another related line of research [21,19,12] pursues
authentication of streams over lossy channels, usually in the multicast setting.

Coding schemes that assume the parties pre-share some randomness (also
known as Private Codes [16]) first appeared in [25], and were greatly ana-
lyzed since. The main advantage of such codes is that they can deal with
adversarial noise, rather than a random noise. Langberg [16] considers private
codes for adversarial channels that approach Shannon’s bound and require only
O(log n) randomness for block size n, as well as an Ω(log n) lower bound for the
needed randomness. The construction of Langberg also implies an efficient code
with O(n log n) randomness. This result was improved to n+ o(n) randomness
by Smith [26]. Explicit constructions with o(n) randomness are yet unknown
(see [26]).

Error correction codes for computationally bounded noise models were first
addressed by Lipton [17] who constructs error-correction codes given pre-shared
randomness and later considered by Micali, Peikert, Sudan and Wilson [18] who
only assume sharing a short public-key, and recently by the surprising result of
Guruswami and Smith [13] who assume no shared setup between the users. Locally
Decodable codes with constant-rate in the public-key model were introduced
by Hemenway and Ostrovsky [14] and later improved by Hemenway, Ostrovsky,
Strauss and Wootters [15].

2 Preliminaries, Model and Definitions

We denote the set {1, 2, . . . , n} by [n], and for a finite set Σ we denote by Σ≤n

the set ∪nk=1Σ
k. The Hamming distance ∆(x, y) of two strings x, y ∈ Σn is the

number of indices i for which xi 6= yi. Throughout the paper, log() denotes the
binary logarithm (base 2) and ln() denotes the natural logarithm (base e).

Shared randomness model. We assume the following shared-randomness model.
The legitimate users (Alice and Bob) have access to a random string R of
unbounded length, which is unknown to the adversary (Eve). Protocols in this
model are thus probabilistic, and are required to succeed with high probability
over the choice of R. We assume that all the randomness comes from R and that
for a fixed R the protocols are deterministic.

Tree codes. A d-ary tree code [24] over alphabet Σ is a rooted d-regular tree of
arbitrary depth N whose edges are labeled with elements of Σ. For any string
x ∈ [d]≤N , a d-ary tree code T implies an encoding of x, TCencT (x) = w1w2..w|x|
with wi ∈ Σ, defined by concatenating the labels along the path defined by x,
i.e., the path that begins at the root and whose i-th node is the xi-th child of the
(i− 1)-th node. We usually omit the subscript T when the tree is clear from the
context. Note that tree code encoding is online: to communicate TCenc(xσ) where
σ ∈ [d] given that TCenc(x) was already communicated, we only need to send
one symbol of Σ. Hence, if |Σ| = O(1) the encoding scheme has a constant rate.



For any two paths (strings) x, y ∈ [d]≤N of the same length n, let ` be the
longest common prefix of both x and y. Denote by anc(x, y) = n−|`| the distance
from the n-th level to the least common ancestor of paths x and y. A tree code
has distance α if for any k ∈ [N ] and any distinct x, y ∈ [d]k, the Hamming
distance of TCenc(x) and TCenc(y) is at least α · anc(x, y).

For a string w ∈ Σn, decoding w using the tree code T means returning the
string x ∈ [d]n whose encoding minimizes the Hamming distance to the received
word, namely,

TCdecT (w) = argmin
x∈[d]n

∆(TCencT (x), w).

A theorem by Schulman [24] proves that for any d and α < 1 there exists
a d-ary tree code of unbounded depth and distance α over alphabet of size
dO(1/(1−α)). However, no efficient construction of such a tree is yet known. For a
given depth N , Peczarski [20] gives a randomized construction for a tree code with
α = 1/2 that succeeds with probability at least 1−ε, and requires alphabet of size

at least dO(
√

log ε−1). Braverman [4] gives a sub-exponential (in N) construction
of a tree code, and Gelles, Moitra and Sahai [9] provide an efficient construction
of a randomized relaxation of a tree code of depth N , namely a potent tree code,
which is powerful enough as a substitute for a tree code in most applications.

Communication model. Our communication model consists of a channel ch :
Σ → Σ subject to corruptions made by an adversary (or by the channel itself).
The noise model is such that any symbol σ sent through the channel can turn
into another symbol σ̃ ∈ Σ. It is not allowed to insert or delete symbols. For all
of our applications we assume that one symbol σi ∈ Σ is sent at any time slot i.6

We say that the adversarial corruption rate is c if for n transmissions, at most
cn symbols were corrupted.

3 The Blueberry Code

Definition 3.1. For i ≥ 1 let Bi : [L + 1] → [L + 1] be a random and inde-
pendently chosen permutation. The Blueberry code maps a string x of arbitrary
length n to

B(x) = B1(x1)B2(x2) · · ·Bn(xn).

We denote such a code as B : [L+ 1]∗ → [L+ 1]∗.

We use the Blueberry code in the shared-randomness model where the legitimate
parties share the random permutations Bi, unknown to the adversary (these kind
of codes, determined by a random string unknown to the channel are referred to
as private codes by [16]). Although Bi is a permutation on [L+ 1], we actually
use it to encode strings over a smaller alphabet [S + 1] with S < L; that is, we

6 The channel time slots need not correspond with the times in which stream symbols
are received. I.e, it is possible that between the arrival of stream elements xi and xi+1,
several channel-symbols are transmitted.



focus on the induced mapping B : [S + 1]∗ → [L+ 1]∗. The adversary does not
know the specific permutations Bi, and has probability of at most S/L to change
a transmission into a symbol whose pre-image is in [S + 1].

Definition 3.2. Assume that at some time i, yi = Bi(xi) is transmitted and
ỹi 6= yi is received. If B−1i (ỹ) /∈ [S + 1], we mark the transmission as an erasure
(specifically, the decoding algorithm outputs ⊥); otherwise, this event is called an
error.

Corollary 3.3. Let x ∈ [S+1]n and assume B(x) is communicated over a noisy
channel. Every symbol altered by the channel will cause either an error with
probability S/L, or an erasure with probability 1− S/L.

Assuming S � L, most of the corruptions done by the channel are marked as
erasures, and only a small fraction of the corruptions percolate through the
Blueberry code and cause an error.

Lemma 3.4. Let S,L ∈ N be fixed and assume a Blueberry code B : [S + 1]∗ →
[L + 1]∗ is used to transmit a string x ∈ [S + 1]n over a noisy channel. For
any constant 0 ≤ c ≤ 1, if the channel’s corruption rate c, then with probability
1− 2−Ω(n) at least a (1− 2SL )-fraction of the corruptions are marked as erasures.

Proof. Denote by zi the random variable which is 1 if the i-th corrupted-
transmission is marked as an erasure and 0 otherwise. These are independent
Bernoullis with probability 1− S

L . Let Z =
∑
i zi and note that E[Z] = cn(1− S

L ).
By Chernoff-Hoeffding inequality,

Pr
R

[
1

n

∑
i

zi < c
(
1− 2SL

)]
< e−2n(cS/L)

2

.

Corollary 3.5. Let S,L ∈ N be fixed. If out of n received transmissions, cn were
marked as erasures by a Blueberry code B : [S + 1]∗ → [L+ 1]∗, then except with
probability 2−Ω(n) over the shared randomness, the adversarial corruption rate is
at most c/(1− 2SL ).

We will use the Blueberry code concatenated with another (outer) code that
is less sensitive to erasures than to errors. From the outer code’s point of view,
this effectively increases the channel’s “error rate resilience” from 1 − 2c to
1 − c(1 + S/L). The construction of the code B from independent Bi’s allows
us to encode and decode each xi independently, which is crucial for on-line
applications in which the message x to be sent is not fully known in advance.

4 Error Correction of Data Streams

Before we reach our main result, we begin with a simple, non-efficient, constant-
rate error-correction scheme for data streams that withstands noise c < 1/2 and
decodes a prefix of length 1−2c of the stream sent so far. The scheme is obtained
by simply encoding the stream via a tree code T with large enough distance
parameter α ∈ (0, 1) and a constant-size alphabet, which depends on α.



Theorem 4.1. For any constants c < 1/2 and ε > 0 there exists a constant-rate
error-correction scheme for data stream x1, x2, . . . such that at any given time n
the receiver outputs a string x′1, x

′
2, . . . , x

′
n, and if the noise rate until time n is

at most c, then

x′1, x
′
2, . . . , x

′
(1−2c)n−εn = x1, x2, . . . , x(1−2c)n−εn

that is, a prefix of the stream of length at least (1− 2c)n− εn is correctly decoded.

Proof. Assume Alice encodes each stream symbol using TCencT () using some
tree code T whose parameters we fix shortly.

For a specific time n, consider a string x̃ ∈ {0, 1}n, such that anc(x, x̃) ≥
(2c + ε)n. Due to the tree distance property, the Hamming distance between
TCenc(x̃) and TCenc(x) is at least α(2c + ε)n. Assume Eve causes e errors, a
maximal-likelihood decoding will prefer x over x̃ as long as bα(2c+ ε)nc > 2e.
Since Eve’s corruption rate is limited to c, we know that e ≤ cn. By setting
α > 2c

2c+ε we guarantee that α(2c+ ε)n > 2e, and Bob decodes a string x′ such
that anc(x, x′) < (2c+ ε)n with certainty. ut

5 Perpetual Authentication

Sending a data stream over a noisy channel is not a simple task, especially
when the noise model is adversarial. Our goal is to design an encoding and
decoding scheme such that the encoding has a constant rate and the decoding
recovers the encoded transmitted stream, or else aborts. Furthermore, we wish
an “authentication” guarantee, that is, if the decoding scheme did not abort, it
decodes the correct data with high probability (note that the probability that the
scheme aborts potentially differs from the probability that the decoding scheme
outputs incorrect data). The amount of recoverable data depends on the noise
and the goal is to output (and authenticate) the longest possible prefix of the
stream, given a constant corruption rate.

Definition 5.1. A (c(n), γ(n), κ(n))-Streaming Authentication Scheme with con-
stant rate r is an encoding e : {0, 1}∗ × {0, 1}∗ → {0, 1}r that encodes a stream
x1, x2, . . . into a stream y1 = e(x1, R), y2 = e(x1x2, R), . . ., yi = e(x1 · · ·xi, R),
and a decoding d : {0, 1}∗ × {0, 1}∗ → {0, 1}∗ ∪ {⊥} such that the following
holds. For any n, and for any adversary Adv(x1 · · ·xn, y1 · · · yn) = y′1 · · · y′n,
either d(y′1 · · · y′n, R) = x′1x

′
2 · · ·x′n or d(y′1 · · · y′n, R) = ⊥, and if at most c(n)

transmissions were corrupted, then

1. the scheme aborts with probability at most κ(n),

Pr
R

[d(y′1 · · · y′n, R) = ⊥] < κ(n).

2. if not aborted, the probability to decode an incorrect γ(n)-prefix of the stream
is at most κ(n),

Pr
R

[d(y′1 · · · y′n, R) 6= ⊥ ∧ x′1 · · ·x′γ(n) 6= x1 · · ·xγ(n)] < κ(n).



Eve is given both the raw stream and the channel transmissions, however she does
not know the shared random string R used as the secret authentication key. It is
desired that as long as Eve corrupts only a small fraction of the transmissions,
Bob will be able to correctly decode a prefix of the stream, or otherwise be aware
of the adversarial intervention and abort.

We show the following dichotomy: If the adversarial corruption rate is some
constant c, then there exists a streaming authentication stream that decodes a
prefix of at most (1− c)-fraction of the stream received so far. In addition, there
does not exist a streaming authentication scheme that is capable of decoding a
longer prefix with non-negligible probability.

Theorem 5.2. In the shared-randomness model, for every constants c, ε such
that 0 ≤ c < 1 and 0 < ε ≤ (1− c)/2 there exists a constant-rate (cn, (1− c)n−
εn, 2−Ω(n))-Streaming Authentication Scheme. Moreover, there exists an efficient
constant-rate (cn, (1− c)n− εn, 2−Ω(logn))-Streaming Authentication Scheme.

For any constant cth > c, if the adversarial corruption rate exceeds cth, the
schemes abort with overwhelming probability over the shared randomness.

Theorem 5.3. Assume that a bitstream x1, x2, . . . is communicated using some
encoding protocol with a constant rate, and assume that at time n the receiver
decodes the bitstring x′1, . . . , x

′
n. If the rate of adversarial corruptions is 0 ≤ c ≤ 1,

then for any constant ε > 0,

Pr[x′1 · · ·x′(1−c)n+εn = x1 · · ·x(1−c)n+εn] ≤ 2−Ω(εn)

where the probability is over the coin tosses of the decoding algorithm, assuming
{xi} are uniformly, independently distributed.

We now prove Theorem 5.3 and then construct the protocols guaranteed by
Theorem 5.2

Proof. Consider an adversary that, starting at time (1 − c)n, corrupts all the
transmissions. It is easy to verify that the corruption rate is c. Clearly, from time
(1− c)n and on, the effective capacity of the channel is 0. This means that the
decoder has no use of transmissions of times ≥ (1−c)n and he decodes only using
transmissions received up to time (1− c)n. However, due to the streaming nature
of the model, transmissions at times < (1− c)n depend only on x1, . . . , x(1−c)n
(the suffix of the stream is yet unknown to the sender). The receiver has no
information about any bit xi with i > (1− c)n and his best strategy is to guess
them. The probability to correctly guess the last εn bits is at most 2−bεnc. ut

In order to construct a streaming authentication scheme, we use two concate-
nated layers of online codes. The inner code is a Blueberry B : [S+1]∗ → [L+1]∗

code with constant S,L, and the outer code A is an online code that allows a
prefix decoding in the presence of errors and erasures. The entire process can be
described by

(x1, . . .)
A−→ (y1, . . .)

B−→ (z1, . . .)
channel−→ (z̃1, . . .)

B−1

−→ (ỹ1, . . .)
A−1

−→ (x̃1, . . .)



We begin with a simple and elegant construction which, although not efficient,
demonstrates the power of the Blueberry code.

Proposition 5.4. Let c, ε be constants 0 ≤ c < 1, 0 < ε ≤ (1 − c) and let
A = TCenc() be an encoding using a binary tree code and B a Blueberry code
with constant parameters determined by c, ε. The concatenation of A and B is a
(cn, (1− c)n− εn, 2−Ω(n))-streaming authentication scheme.

Proof. Assume that in order to encode the bitstream x1, x2, . . ., we use a bi-
nary tree code over alphabet [S + 1] with distance α to be determined later,
concatenated with a Blueberry-code B : [S + 1]∗ → [L + 1]∗. We show that if
at time n we decode a string x̃1 · · · x̃n whose prefix x̃1 · · · x̃(1−c−ε)n differs from
x1 · · ·x(1−c−ε)n, then the corruption rate was larger than c.

For a specific time n, consider a string x̃ ∈ {0, 1}n, such that anc(x, x̃) ≥
(c + ε)n. Due to the tree distance property, the Hamming distance between
TCenc(x̃) and TCenc(x) is at least α(c + ε)n. Assume Eve causes d erasures
and e errors, a maximal-likelihood decoding will prefer x over x̃ as long as
bα(c+ ε)nc > 2e+ d.

If Eve’s corruption rate is limited to c, Lemma 3.4 implies that with over-
whelming probability at most 2cnS/L of these corruptions become errors and
the rest are marked as erasures. Setting α > c

c+ε (1 + 2S
L ) we guarantee that

α(c+ ε)n > 2 · 2cnS/L+ cn(1− 2S/L),7 thus Bob decodes with overwhelming
probability a string x̃ such that anc(x, x̃) < (c+ ε)n, as claimed.

Note that the actual fraction of adversarial corruptions can be estimated
out of the number of erasures marked by the Blueberry code. We abort the
decoding if at a specific time n the number of erasures exceeds cn. Lemma 3.4
guarantees that if the adversary corrupts more than a c/(1 − 2S

L )-fraction of
the transmissions, she will cause at least cn erasures, except with negligible
probability. Choosing L such that (1 − 2S

L ) ≥ c
cth

completes the proof for the
non-efficient case of Theorem 5.2. ut

We note that although in the above proof we require ε to be constant, for
the case of c = 0 (i.e., when the channel is not inherently noisy) we can let
ε be smaller. For instance, if we let ε = κ/n for a security parameter κ, the
scheme is comparable to a (non-streaming) authentication scheme with the same
security parameter: in order to change even a single bit in a prefix of length n,
after n+ κ symbols were transmitted, the adversary must change at least ακ/2
transmissions, and will be caught except with probability 2−Ω(κ). Since the above
holds for any time n, we get a perpetual authentication of the stream.

The case where c > 0 has a meaning of communicating over a noisy channel
(regardless of the adversary). The users do not abort the authentication scheme
although they know the message was changed by the channel. Instead, the scheme

7 It is required to have α < 1, thus the choice of (the constant) L should depend
on ε and c, specifically, L > 2S c

ε
. Also note that S depends on α, however L is

independent of both. For a fixed value of α (and S = dO(1/(1−α))) there is always a
way to choose a constant L that satisfies the conditions.



features both error-correction and authentication abilities and the parties succeed
to recover (a prefix of) the original message with high probability.

5.1 Efficient Streaming Authentication

We now complete the proof of Theorem 5.2 by defining an efficient randomized
code Aeff for prefix-decoding in the presence of errors and erasures. The protocol
partitions the stream into words of logarithmic size and encodes each using a
tree code. At any time n, one of the O(n/ log n) words is chosen at random and
its next encoded symbol is transmitted. The value n increases as the protocol
progresses which means that the length of each encoded word increases as well.
This however causes no problem: each word is encoded by a tree code (rather than,
say, a block code), which is performed in an online manner without assuming
knowledge of the word’s length. Decoding can be performed efficiently by an
exhaustive search since each word is of logarithmic length in the current time n.
We note that the parties hold the entire stream in their memory throughout the
protocol, which is different from the common practice of streaming algorithms in
which there is only a single party (rather than two) which aim to compute some
statistics of the stream using poly-logarithmic memory.

Proposition 5.5. For any constants 0 ≤ c < 1, 0 < ε ≤ (1−c)/2 and a constant
c1 > 0, there exist efficient constant-rate encoding and decoding scheme such that,
for any set of infinite strings {x1,x2, . . .} the following holds for any sufficiently
large time n except with polynomially small probability in n. If the corruption
rate at time n is at most c then the scheme correctly decodes a prefix of length

c1 log n of each one of the strings xk with k ∈ {d εn/4
log εn/4e, . . . , d

(1−c−ε)n
log(1−c−ε)ne}.

Moreover, up to time n the encoding scheme assumes knowledge of only strings xk

with k ≤ n/ log n.

In the full version of this paper [8] we show that a protocol that satisfy
Proposition 5.5 can be obtained by concatenating Protocol 1 (see below) with
a Blueberry code B : [S + 1]∗ → [L+ 1]∗. We show that with high probability,
Θ(log n) symbols of TCenc(xk) are transmitted by time n for every k in the range

Kn , {d εn/4
log εn/4e, . . . , d

(1−c−ε)n
log(1−c−ε)ne}. Moreover, at least a constant fraction of

these transmissions were not corrupted by the adversary. Therefore, we can use
Proposition 5.4 to decode a prefix of length O(log n) of each of the codewords
indexed by Kn, with high probability.

Finally, in Appendix A we show how to split the stream x1, x2, . . . into
words {x1,x2, . . .}, so that the prefix x1, . . . , x(1−c−ε)n completely appears in the

O(log n)-prefix of strings {xk} with k ∈ Kn. This gives an efficient (cn, (1−c)n−
εn, 2−Ω(logn))-authentication scheme and completes the proof of Theorem 5.2.

5.2 Extensions for Streaming Authentication

There are several possible extensions to the above results, which we briefly discuss
here. See [8] for full details and proofs.



Let 0 ≤ c < 1 and 0 < ε < (1 − c)/2 be fixed parameters of the protocol. Let
c0, c1 be some constants which depend on c and ε. Let T be a tree code over
alphabet [S + 1] with distance α to be set later.

Aeff Encoding: For every k > 0 set countk = 0.
At any time n > 1, repeat the following process for j = 1, 2, . . . , c0:

(a) randomly choose k ∈ {1, . . . , bn/ lognc}.
(b) set countk = countk + 1.
(c) transmit yn,j ∈ [S + 1], the next symbol of the encoding of xk using T , that

is, the last symbol of

TCenc(xk1 · · ·xkcountk ) = TCenc(xk1 · · ·xkcountk−1) ◦ yn,j .

Aeff Decoding: For every (i, j) ∈ N× [c0] we denote by ID(i, j) the identifier k of
the string xk used at iteration (i, j). For each time n, mark all the transmissions yi,j
with i < εn/4 as erasures, and decode xk for d εn/4

log εn/4
e ≤ k ≤ d (1−c−ε)n

log(1−c−ε)ne:
let Yk = {(i, j) | ID(i, j) = k}. Decode the received string indexed by Yk. That is,
set

x̂k = TCdec(y|Yk ),

where y|Yk is the string given by concatenating all yi,j with (i, j) ∈ Yk, where yi,j

comes before yi′,j′ if i < i′ or (i = i′)∧ (j < j′). Consider a prefix of length c1 logn
of x̂k and ignore the rest.

Protocol 1: An efficient protocol for communicating a logarithmic prefix of {x1,x2, . . . , }.

Efficient streaming authentication scheme with exponentially small
error. It is possible to improve the efficient scheme of Theorem 5.2 so that it
aborts with polynomially small probability, however, given that it did not abort,
the probability that the decoded prefix is incorrect is exponentially small. More
accurately, the ‘trust’ Bob has in the decoded string increases with the amount
of received transmissions. Thus, except for the last fraction of the stream, the
decoded stream is equal to the one sent by Alice with overwhelming probability.

Theorem 5.6. For any 0 ≤ c < 1, 0 < ε ≤ 1
2 (1 − c) there exists an efficient

(cn, (1−c)n−εn, 2−Ω(logn))-streaming authentication protocol that, for any time n
in which the decoding procedure did not abort, for any 1 ≤ ` ≤ (1 − c − ε)n it
holds that

Pr[x′` 6= x`] < 2−Ω(n).

Decoding a prefix longer than (1 − c)n. Although our scheme decodes a
prefix of length at most (1− c)n in the worst case, the successfully decoded prefix
can be in fact longer. The worst case, as demonstrated by Theorem 5.3, happens
when the adversary blocks the suffix of the transmitted stream. On the other
hand, if the adversary blocks the prefix of the transmissions, then the scheme of



Proposition 5.4 correctly decodes the entire stream! In fact, the protocol succeeds
to decode the entire prefix for any time n that satisfies the following γ-suffix
condition, if the tree distance satisfies α > γ.

Definition 5.7. For any constant 0 ≤ γ < 1, we say that time n satisfies the γ-
suffix condition if any suffix xt . . . xn has at most γ(n−t) corrupted transmissions.

Definition 5.8. Let c < 1 and γ ∈ (c, 1) be given. For any time n let Nγ(n) be
the latest index that satisfies the γ-suffix condition. When n is clear from the
context, we denote Nγ(n) simply as Nγ .

The following Lemma guarantees that, for any γ ∈ (c, 1) it holds that (1−c/γ)n ≤
Nγ(n) ≤ n.

Lemma 5.9. For every corruption rate c and constant 1 < ξ < 1/c there exist a
time t > (1− 1

ξ )n that satisfies the cξ-suffix condition.

For a corruption rate c and any ε > 0, and for any time n, if the decoding
algorithm did not decode up to time n, then that time n did not satisfy the
suffix condition for γ = c/(c+ ε), but then, by Lemma 5.9, there must exist a
time Nγ > (1 − c − ε)n that satisfies the γ-suffix condition, and at that time
the protocol correctly decoded the entire stream (up to time Nγ). Bob does not
know the value of Nγ but he can estimate it by checking the number of erasures
marked by the Blueberry code.

Proposition 5.10. Bob can efficiently compute a (lower-bound) estimation N ′γ
for Nγ , such that N ′γ > (1− c− ε)n and

Pr[N ′γ > Nγ ] < 2−Ω(N ′γ−Nγ).

Reducing the amount of shared randomness. Our schemes rely on the
fact that the parties share a secret random string whose length increases with
the size of the information to be communicated. This assumption is sometimes
not satisfied in practical applications, especially when considering a multiparty
setting in which any two parties run a separate instance of the scheme.

We can mitigate the need for a long shared randomness if the adversary
is assumed to be polynomial, assuming standard cryptographic assumptions
(specifically, hardness of DDH). To this end, each user generates a pair (sk, pk)
of a secret and a public key, broadcasts the public key pk and keeps sk secret.
When two users initiate an authentication scheme instance, they first perform a
Diffie-Hellman [6] key exchange and obtain an authentication key. They both use
the authentication key as a seed to a pseudo-random-generator that generates a
long random string for the authentication scheme. Under the DDH assumption,
a polynomially-bounded adversary has only negligible information about the
authentication key nor the generated randomness, and the authentication scheme
remains secure.



6 Interactive Communication

In this section we extend our discussion to the 2-way communication model of
interactive communication. We show that for adversarial corruption rate of 1/2 or
higher, no constant-rate protocol can compute functions that require interaction
between the parties, while with the usage of the Blueberry code we show how
to construct a protocol for any function assuming adversarial corruption rate
below 1/2.

Assume that Alice and Bob wish to compute some function f : X × Y → Z,
where Alice holds x ∈ X and Bob holds y ∈ Y in the shared-randomness
model. The computation is performed interactively: at each round, both parties
communicate a message which depends on their input and previous transmissions.
At the end of the computation Alice outputs zA ∈ Z and Bob outputs zB ∈ Z,
and we say that f was correctly computed if zA = zB = f(x, y).

In the full version [8] we prove the following separation theorems,

Theorem 6.1. For any function f which depends on both x and y, the following
holds. If the adversarial corruption rate is 1

2 or higher then no constant-rate
interactive protocol correctly computes f with probability higher than the probability
of guessing f(x, y) given only the input x (or only the input y).

Theorem 6.2. For any constants ε > 0 and for any function f and inputs
x, y, there exists an interactive protocol with constant overhead such that if the
adversarial corruption rate is at most c = 1

2 − ε, the protocol outputs f(x, y) with
overwhelming probability over the shared random string R.
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APPENDIX

A Construction of {x1, x2, . . .}

For every k, define xk to be the string that contains the stream prefix xt(k) downto x1
concatenated with as many zeros as needed, xk = xt(k)xt(k)−1 · · ·x2x1000 · · · ,
where t(k) is defined to be the minimal time such that t(k)/ log t(k) > k. We
say xk is declared at time t(k), meaning that only from this time and on the
algorithm may choose to send symbols of the encoding of xk. It is easy to verify
that the string xk is well defined at the time it is declared (the corresponding
xi’s are known).

If some string xk is declared at time t(k) then xk+1 will be declared at time
t(k + 1) ≈ t(k) + log t(k) +O(log log t(k)). By setting c1 = 2 we are guaranteed
that, for every εn/4 ≤ ` ≤ (1 − c − ε)n, x` appears in a correctly decoded
c1 log n-prefix of some xk with k ∈ Kn.

Lemma A.1. If xk is the latest string declared at time i > 8, then xk+1 is
declared at time sooner than i+ 2 log i.

Proof. Let f(i) = i+2 log i
log(i+2 log i) −

i
log i . f is monotonically increasing, and f(8) > 1.

Corollary A.2. For any time n > 8, and any `, the bit x` is within the first
2 log n symbols of xd`/ log `e. Hence, every x` with εn/4 ≤ ` ≤ (1 − c − ε)n,
appears in a 2 log n-prefix of (at least) one of the strings {xk}k∈Kn .

Unfortunately, with the above choice of xks, only part of the stream, namely
xεn/4, . . . , x(1−c−ε)n, is decoded by the protocol. In order to communicate the
prefix x1, . . . , xεn/4 we run another instance of the scheme guaranteed by Propo-
sition 5.5 for the following set of infinite strings {v1,v2, . . .}. (We explain how
to combine these two instances below). Define vk in the following way

vki =


x1 k = 1, ∀i
x1+(` mod dt(k)/2e+1) k > 1, i = 1 and vk−12 log t(k−1) = x`

x1+(` mod dt(k)/2e+1) k > 1, i > 1 and vki−1 = x`

It is easy to verify that at time n, the string vbn/ lognc is well defined and known
to the encoder.

Lemma A.3. For every time n > 256/(1− c− ε), any bit x` with 1 ≤ ` ≤ εn/4
appears in a 2 log n-prefix of (at least) one of the strings {vk}k∈Kn .



Proof. Note that the concatenation of O(log n)-prefix of the vks gives a string of
the form V , x1x2 . . . xdt(k1)/2ex1x2 . . . xdt(k2)/2ex1x2 . . ., and V is decoded by
Protocol 1 with high probability.8 By taking c1 = 2 and recalling that ε < (1−c)/2,
(and thus, (1−c−ε)n/4 > εn/4) the length of V is lower bounded by the amount
of indices in prefixes of size 2 log 1

4 (1− c− ε)n of {v(1−c−ε)n/4, . . . ,v(1−c−ε)n},

2 log
1

4
(1− c− ε)n

(
(1− c− ε)n

log(1− c− ε)n
−

1
4 (1− c− ε)n

log 1
4 (1− c− ε)n

)
≥ 3

2
(1− c− ε)n− 4

(1− c− ε)n
log(1− c− ε)n

≥ (1− c− ε)n

where the last inequality holds for n > 256
1−c−ε . Consider the latest place in V

where x1 appears. If that place is at least (1 − c − ε)/4 indices from the end
of V , it is clear that x1 . . . x(1−c−ε)/4 appears in the (1− c− ε)/4-suffix of the
decoded V . For the other case, let the bit that precedes this x1 be x`. By the
way we defined vk it follows that 3

8 (1− c− ε) ≤ ` ≤ 1
2 (1− c− ε) which means

that x1 . . . x(1−c−ε)/4 must appear in a prefix of size 3/4 · (1− c− ε)n of V . Since
(1− c− ε)n/4 > εn/4, the claim holds. ut

One cannot run Protocol 1 twice, once for {x} and once for {v}. Indeed, Eve
can block all the transmissions of one of the instances, thus prevent the correct
decoding of the stream with probability one, while her corruption rate does
not exceed c = 1/2. One possible solution is to set c1 = 4 and interleave the
transmitted data, that is, define the set {z1, z2, . . .} where zk = xk1vk1xk2vk2 . . .,
etc.

Corollary A.4. Let c, ε be constants 0 ≤ c < 1, 0 < ε ≤ (1 − c)/2, and let
B be a Blueberry code with constant parameters determined by c, ε. For the
strings {z1, z2, . . .} defined above, the concatenation of Aeff with B is an efficient
(cn, (1− c)n− εn, 2−Ω(logn))-streaming authentication scheme.

8 To be more accurate, V is a substring of the string decoded by the scheme.
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