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Abstract. Applying cut-and-choose techniques to Yao’s garbled circuit
protocol has been a promising approach for designing efficient Two-Party
Computation (2PC) with malicious and covert security, as is evident from
various optimizations and software implementations in the recent years.
We revisit the security and efficiency properties of this popular approach
and propose alternative constructions and a new definition that are more
suitable for use in practice.

— We design an efficient fully-secure 2PC protocol for two-output func-
tions that only requires O(¢|C|) symmetric-key operations (with small
constant factors, and ignoring factors that are independent of the cir-
cuit in use) in the Random Oracle Model, where |C| is the circuit
size and t is a statistical security parameter. This is essentially the
optimal complexity for protocols based on cut-and-choose, resolving
a main question left open by the previous work on the subject.

Our protocol utilizes novel techniques for enforcing garbler’s input
consistency and handling two-output functions that are more effi-
cient than all prior solutions.

— Motivated by the goal of eliminating the all-or-nothing nature of
2PC with covert security (that privacy and correctness are fully com-
promised if the adversary is not caught in the challenge phase), we
propose a new security definition for 2PC that strengthens the guar-
antees provided by the standard covert model, and offers a smoother
security vs. efficiency tradeoff to protocol designers in choosing the
right deterrence factor. In our new notion, correctness is always guar-
anteed, privacy is fully guaranteed with probability (1 —¢€), and with
probability e (i.e. the event of undetected cheating), privacy is only
“partially compromised” with at most a single bit of information
leaked, in case of an abort.

We present two efficient 2PC constructions achieving our new no-
tion. Both protocols are competitive with the previous covert 2PC
protocols based on cut-and-choose.
A distinct feature of the techniques we use in all our constructions is
to check consistency of inputs and outputs using new gadgets that are
themselves garbled circuits, and to verify validity of these gadgets using
multi-stage cut-and-choose openings.

* Research supported by the Check Point Institute for Information Security and an
ISF grant.



1 Introduction

Informally, a secure two-party protocol for a known function f(-,-) is a protocol
between Alice and Bob with private inputs z and y that satisfies the following
two requirements: (1) Correctness: If at least one of the players is honest then
the result should be the correct output of f(z,y); (2) Privacy: No player learns
any information about the other player’s input, except for the function output.

Security is defined with respect to an adversary, who is semi-honest if the
corrupted players always follow the protocol, is malicious if the players can
arbitrarily deviate, and is covert in case a cheating player has an incentive not
to be caught (or more specifically, any deviation can be detected with a constant
probability).

A classical solution for the case of semi-honest players (i.e., players who do not
deviate from the protocol) is to use a garbled circuit and oblivious transfer [21,
12]: The resulting protocol is fairly efficient since computing each gate requires a
constant number of symmetric-key encryptions. Furthermore, recent results show
how to improve both the computation and communication cost of the garbling
process (e.g., getting XOR gates for free [9], reducing communication [4, 18], and
designing tailored circuits [5]).

The case of malicious players is more complicated and less efficient. A classical
solution is to use zero-knowledge proofs to verify that the players follow the
protocol. However, the proofs in this case are rather inefficient. [8,16] show
how to garble a circuit in such a way that these proofs can be instantiated more
efficiently. Still, these constructions require a constant number of exponentiations
per gate, making them inefficient for large circuits.

The Cut-and-Choose Approach. A slightly more explored direction is based on
using the cut-and-choose method for checking the garbled circuit. (E.g., see im-
plementations by [18,19,10].) Instead of sending only one (and possibly not
properly constructed) garbled circuit, Alice sends ¢ garbled circuits. Then, Bob
asks her to open a constant fraction of them. For those circuits, Alice sends all
the randomness she used in the garbling process. Bob can check that the opened
circuits were indeed correctly garbled. If that is not the case, Bob knows that
Alice has cheated and aborts. Otherwise, Bob evaluates the remaining garbled
circuits and computes the majority output. It is shown in [13,19] that with
high probability the majority of the evaluated garbled circuits are properly con-
structed.

However, the above cut-and-choose of the circuits is not sufficient to obtain
a fully-secure 2PC. There are three well-known issues to resolve: (1) Garbler’s
input consistency: Since Bob evaluates many circuits, he needs assurance that
Alice uses the same input in all of them. (2) Evaluator’s input consistency: Alice
can use different input labels in the oblivious transfers and in creation of the
garbled circuits, in such a way that reveals Bob’s input. (E.g., she can use invalid
labels for the input bit 0 in the oblivious transfer, but valid ones for 1, causing
Bob to abort if his input bit is 0.) (3) Two-output functions: There are cases in
which the players want to securely compute two different functions f;, fo where



each party only learns his own output and is assured he has obtained the correct
result.

When addressing these issues, the deciding efficiency factors are both the
number and the type of additional cryptographic operations required. By ez-
pensive operations, we refer to cryptographic primitives that require exponen-
tiations (e.g. oblivious transfer, or public-key encryption), and by inexpensive
operations we mean the use of primitives that do not require exponentiations
(e.g. symmetric-key encryption, commitments, or hashing). To simplify the ex-
position, from now on we omit small constants and complexities that are inde-
pendent of the computation size or input length, unless said otherwise.

To address the first issue, i.e. how to make sure Alice is using the same input
in all circuits, [14, 11] present two methods that require O(t? - n;) inexpensive
cryptographic operations (commitments), where n; is the length of Alice’s input,
and ¢ is the number of circuits we use in the cut-and-choose. ([20] shows how
to reduce this asymptotic overhead, but with large constants even for small
security parameters.) [14,13,19] show alternative methods that require O(t-n;)
expensive cryptographic operations (i.e. exponentiations). These consistency-
checking mechanisms can lead to significant overhead. Recall that garbling of
a single gate requires a constant number of symmetric encryptions, where the
constant is 4 in most implementations. Thus, e.g. for ¢ = 130, the price of
checking consistency for a single input bit is roughly equivalent to the price of
garbling several tens of additional gates in each circuit in the first method, and
even more in the second. Moreover, the first method has a large communication
overhead (e.g., for input size n; = 500 and ¢ = 130, it requires several millions of
commitments, with a total communication overhead of hundreds of megabytes).

To address the second issue, i.e. making sure Alice is using the same labels
in her OT answers and the garbled circuits, [11] presents a method that requires
O(t - max(4ns,8t)) expensive cryptographic operations (specifically, oblivious
transfers), where ng is the length of Bob’s input. [13,19] introduce alternative
methods that require O(t - ng) expensive cryptographic operations.

To address the last issue, of verifying the computation output, [11] proposes
to apply a one time MAC to the output and XOR the result with a random input
to hide the outcome (both are done as part of the circuit). However, this solution
increases Alice’s input with additional ¢; +2¢ input bits and increases the circuit
size by O(t - 1) gates, where ¢; is Alice’s output length (i.e. overall overhead of
O(t? - q1) inexpensive operations). [19] suggests a solution that requires the use
of digital signatures and a witness-indistinguishable proof, resulting in a total
overhead of O(t - q1) expensive operations.

In the covert setting [1] the techniques are similar, although the issue of the
garbler’s input consistency is not always relevant [4, 1].

All-or-Nothing Security vs. Security with Input-Dependent Abort. All the cut-
and-choose protocols discussed above provide an all-or-nothing guarantee, which
means that both correctness and privacy are preserved with the same probabil-
ity (the probability of getting caught in case of cheating), and are completely
compromised if cheating is not detected. For example, in case of a protocol with



covert security and deterrence factor of 1/2, there is a 50% chance that the pro-
tocol reveals the honest party’s input and provides him with an incorrect output.
This can become an obstacle to using covert security, in some practical scenarios.
For example, the participants of an MPC protocol may not be able to afford the
lack of correctness or privacy (even if only with a constant probability), due to
the high financial/legal cost, or the loss of reputation.

[14] suggests an alternative to the all-or-nothing approach and designs a
secure two-party protocol that always guarantees correctness but may leak one
bit of information to a malicious party. While this security guarantee is weaker
than the standard definition of security against covert/malicious adversaries, it
ensures correctness and ”partial privacy” even in case of successful cheating,
making it a reasonable relaxation in some scenarios.

The idea behind the protocols of [14] is as follows: Alice garbles a circuit gc;
and sends it to Bob, along with the labels of Alice’s input-wires. They execute
a fully-secure oblivious transfer protocol in which Bob learns the labels for his
input-wires. Then, they run the same steps in the other direction, where Bob
garbles gco and Alice is the receiver. Next, each player evaluates the garbled
circuit he or she received, resulting in output-wire label out; (we require that
the output-wire labels are the actual outputs concatenated with random labels).
Last, each player computes the supposed to be concatenation out; o outs. (Alice
gets outy from her evaluation, and can determine the value of outy by herself.
Bob does the same.) Now they run a protocol for securely testing whether their
values outy o outs are the same. If they are indeed the same, they output b.
Otherwise, they abort.

The resulting protocol is highly efficient, requiring only two garbled circuits
and the associated oblivious transfers. (See [6] for an optimized variant of the
protocol and its performance.) Since one of the players is honest, the result from
his garbled circuit will be correct. Thus, if the honest party does not abort, the
output is indeed correct. On the other hand, if one of the players is malicious, he
can always learn one bit of information by observing whether the honest party

aborts or not in the final equality test. We call this scenario Input-Dependent
Abort (IDA) (following [7]).

1.1 Owur Contributions

Given the discussion above, we put forth and answer the following two ques-
tions: (1) Can we improve on the efficiency of the existing solutions for checking
input-consistency and handling two-output functions, to the extent that they are
no longer considered a major computation/communication overhead? (2) Can
we design cut-and-choose protocols that do not suffer from the all-or-nothing
limitation of standard constructions but that provide better security guarantees
than those of 2PC with input-dependent abort?

In the process of answering these questions, we introduce a set of new tech-
niques to enforce consistency of inputs and outputs in garbled circuits. Inter-
estingly, these techniques themselves employ specially-designed garbled circuits



(gadgets) correctness of which is checked as part of a modified cut-and-choose
process containing multiple opening stages.

Fully-Secure 2PC Based on Cut-and-Choose with Small Overheads.
Towards answering the first question, we propose new and efficient solutions
for the three problems of (1) Garbler’s input consistency (2) Evaluator’s input
consistency and (3) Handling two-output functions, that asymptotically and
concretely improve on all previous solutions.

First, we show how to use garbled XOR-gates to efficiently enforce the gar-
bler’s input consistency, while requiring only O(t - nq) inexpensive operations.
This approach asymptotically improves the solutions in [14,11], and only re-
quires inexpensive operations in contrast to the solution of [19]. Second, we
observe that the solution of [11] to the evaluator’s input consistency issue can
be improved by combining it with the OT extension of [15] and the Free-XOR
technique of [9]. The resulting protocol requires only O(¢-max(4ns, 8t)) inexpen-
sive operations. Third, we show how to use garbled identity-gates to efficiently
solve the two-output function problem, while requiring only O(t-¢;) inexpensive
operations, where ¢ is the garbler’s output length, improving on the recent con-
struction of [19] which requires the same number of expensive operations. The
resulting 2PC protocol is constant round and asymptotically better than all pre-
vious constructions based on the cut-and-choose method [14,11,13,19] (except
for [20], which is impractical due to large constants). In Table 1, we compare the
protocol’s complexity with previous constructions. We stress that the efficiency
of our protocol relies on the efficient OT extension of [15], which allows one to
efficiently extend a small number of OTs to n OTs with the price of only O(n)
invocations of a hash function. The protocol of [15] is in the Random Oracle
Model (ROM) and our construction inherits the same weakness. (Besides using
ROM for the OT-extension of [15], in some of our techniques we show two alter-
natives: A more efficient instantiation in the ROM, and one without the ROM
requirement, which still is more efficient than current techniques.)

P1’s input P>’s input Two-output Overhead
[11] inexpensive(t*n;) expensive(max(dny, 81)) + inexpensive(t2q;)
inexpensive(t - max(4nz, 8t))
[13,19] expensive(tni) expensive(tns) expensive(tq1)
Our protocol inexpensive(tn;) inexpensive(t - max(4nz, 8t)) inexpensive(tq:)

Table 1. Comparison of different fully secure 2PC protocols. n; is the length of P;’s
input, ¢1 is the length of Pi’s output, and t is a statistical security parameter (where
t garbled circuits are used in the cut-and-choose). The number of base OTs in the OT
extension is omitted as it is independent of the circuit and input sizes.

We remark that our proposed solutions can be modified to work with any of
the existing garbled-circuit optimization techniques of [9, 4, 18, 5, 10].



Furthermore, in the full version of this paper we describe how to use our
techniques to construct a fully-secure 2PC protocol for the case where y is not
private, using only a single garbled circuit. This scenario which we call authen-
ticated computation with private inputs naturally arises in applications such as
anonymous credentials or targeted advertising.

Our main contributions are the new techniques we use for solving the Gar-
bler’s input consistency issue and handling two-output functions. Next, to give
a flavor of our techniques, we present the ideas behind our solutions.

Multi-stage cut-and-choose and handling two-output functions. From now on we
denote by P; the garbler (Alice), and by P, the evaluator (Bob). Note that the
main difficulty here is to convince the garbler, P;, that the output he receives
is correct. (Privacy of the output is easily achieved by xoring the output with a
random string.)

A common method for authenticating the output of a garbled circuit is to
send the random labels resulted from the evaluation of the garbled circuit. How-
ever, when we use the cut-and-choose method, many circuits are being evaluated,
and sending the labels for all the garbled circuits can leak secret information (e.g.,
Py can create a single bad circuit that simply outputs P»’s input, and not get
caught with high probability). We can fix this issue by using the same output-
wire labels in all the garbled circuits, but then we would lose our authenticity
guarantee since P, learns all the output-wire labels from the opened circuits and
can use that information to tamper with the output of the evaluated circuits.

We propose a workaround that allows us to simultaneously use the same
output-wire labels in all circuits, and preserve the authenticity guarantee, in
cut-and-choose 2PC. We separate the “cut” step from the “opening” step (this
is a recurring idea in all our constructions). After P, sends the ¢ garbled circuits,
P, picks a random subset S which he wants to check and sends it to P;. Then,
instead of opening the garbled circuits in S, they proceed to the evaluation of
the rest of the garbled circuits. I.e., P; sends the labels of his input-wires for the
garbled circuits not in S; P, evaluates all of them and takes the majority; he then
commits to the output along with the corresponding output-wire labels. (Note
that since the opening step is not performed yet, P, cannot guess the unknown
output-wire labels and commit to the wrong output). Now, they complete the
cut-and-choose and do the opening step: P; sends the randomness he used for all
the garbled circuits in S, and P, verifies that everything was done correctly. If
so, P, decommits the output and reveals to P; the actual output and its output-
wire labels. To summarize, since P, learns the output only after P, has verified
the garbled circuits, he cannot cheat in this new cut-and-choose strategy, any
differently than he could in regular cut-and-choose. On the other hand, since
P, is committed to his output before the opening, he cannot change the output
after he sees the opened circuits.?

3 We note that the above solution is not enough. First, the commitment in use must
be non-malleable with respect to the garbled circuits being opened. E.g., consider a
garbling scheme that outputs also commitments of the possible output-wire labels; P



The above solution can be applied to most previous 2PC protocols based
on cut-and-choose to obtain their two-output variants. But, since the circuit
checking is done after the circuit evaluation, the above solution falls short when
combined with circuit streaming or parallelized garbling techniques [5,10]. In
the full version of this paper we describe a second variant of this protocol that
is compatible with those techniques. The cost of this variant is only additional
t - 1 commitments.

XOR-gadgets and Garbler’s input consistency. Here, our goal is to make sure P;
uses the same input in all (or at least most of) the evaluated garbled circuits.
Observe that we do not have the same issue with P»’s input since for each
specific input bit, P, learns the ¢ corresponding input-wire labels using a single
OT. But, since P; does not use OT to learn the labels for his input-wires, the
same approach does not work here.

First, we augment the circuit C' being computed with a small circuit we call
an XOR-gadget. Say we want to compute the circuit C(x,y) where x is P;’s
input, and y is P»’s. Instead of working with C', the players work with a circuit
that computes Ci(z,y,r) = (C(z,y),z ® r), where r is a random input string
of length |z| generated by P;. Note that z is kept private from P, if r is chosen
randomly. Denote P;’s inputs to the ¢ garbled circuits of C; by a1, 23, ... x}
and r},rl, ... ri. If P; is honest, the r}—s are chosen independently at random
while all the x}-s are equal to z.

Let Cy(x,7) = 2@, where x and r are P;’s inputs of the same length. (Note
that y is not an input here.) In addition to P;’s garbled circuits, P, also generates
t XOR-gadgets, which are garbled circuits of Cy. These garbled XOR-~gadgets
will be evaluated by P; and on his own inputs. (For simplicity, we assume for
now that P is semi-honest.) Denote P;’s inputs to these ¢ garbled circuits by
22,23, ..., 22 and ri,r3 ... r?. If P is honest, then r} = r2 for all 4, and all
the z2-s are equal to P;’s actual input z.

We enforce that z}-s are the same in the majority of the evaluated circuits,
using a combination of three different checks: (1) Check that P; uses the same
value 2’ for all zZ-s. We can easily enforce this since P; learns the input-wire
label for each bit using a single OT. (E.g., if the first bit of 2’ is zero, Py will
learn ¢ concatenated labels that correspond to the bit zero in the ¢ XOR~gadgets
P, prepared.) (2) Check that (zZ +r?) = (2! 4+ r}) in all the evaluated circuits.
We enforce this by evaluating the two XOR-gadgets corresponding to the i-th
garbled circuit (one created by P; and one created by Ps), and checking the
equality of their outputs (see Section 3 for subtleties that need to be addressed
when doing so). (3) Check that r} = r2 in the majority of the evaluated circuits.

could use one of those commitments as his commitment and later use the information
he learned from the opening to decommit successfully. Second, the commitment
has to be equivocal to allow us to later simulate P»’s message. Both requirements
can be solved in the plain model by using trapdoor commitments [3] and efficient
Zero-Knowledge Proof of Knowledge (ZKPoK), or in the Random Oracle Model,
by committing using a hash function. The first solution requires O(q1) expensive
operations while the second requires only one call to the hash function.



We enforce this as part of the cut-and-choose: When P; sends his garbled circuits,
he also sends the labels that correspond to all r}-s. After P; learns the labels
for 72-s (from the OTs), they do the opening phase and P; opens the subset
of garbled circuits. In addition, for each opened circuit, P, reveals the labels of
the r%—s he learned, and P, verifies that ril = 7“22 . (Note that once P; sends the
labels of r} and the garbled circuit, he cannot change r}. On the other hand, Py
cannot fake a valid label for r? that is different from the one he learned in the
OTs.) As a result, P, knows that with high probability (in terms of ¢) r} = r?
in the majority of the evaluated circuits.

It is easy to see that the above three checks imply (with high probability)
that x}-s are the same in the majority of the evaluated circuits. Since P, outputs
the majority result, this is sufficient for our needs.

Figure 1 shows an example of the above technique for the circuit that com-
putes AND and t = 2. We stress that the above is only part of our techniques,
and in particular, does not guarantee protection against a malicious Ps.

Xy Ny r,0x I
out out 9 out 9
X1} r;

Fig. 1. Example of garbling the simple AND circuit on the left that computes the
AND between P;’s bit  and P»’s bit y. P; garbles the upper circuits and P» the lower
ones. Specifically, P; garbles two AND circuits (i.e., t = 2) and two XOR-~gates, and P,
garbles two XOR-gates. P»’s input is the same for all garbled circuits because of the
OT (the top dashed line). Recall that the first input P; learns in all of P»’s XOR~gates
is the same since P; learns the corresponding input-wire labels from the OT (the lower
dashed line). Also, that the equality of r} and 77, i = 1,2, is checked in the cut-and-
choose (e.g., by P revealing the labels of r1 and r{ if P, picked to check the first set)
and hence holds with high probability. Combining these two observations with the fact
that P, compares the outputs of the XOR-gates, P, gets the assurance that z] = 3.

Security with Input-Dependent Abort in Presence of Covert Adver-
saries. We propose a new security notion that naturally combines security with
input-dependent abort of [7] (alternatively, security with limited leakage of [14,
6]), with security against covert adversaries [1]. The resulting security guaran-
tee, denoted by e-CovIDA, is a strict strengthening of covert security: In covert
security, with probability € both correctness and privacy are gone! Our definition
always guarantees correctness, and with probability e, privacy is only “slightly
compromised”, i.e. only a single bit of information may be leaked in case of an
abort.



We stress that simply combining the protocols of [14,6] with the cut-and-
choose method is not secure under our definition. Say that instead of garbling
a single circuit, each player P; garbles t circuits gci, ..., gct and sends them to
the other player. Players pick a random value e € [t], open all the circuits gcj-#
(i.e., reveal the randomness used to generate them), and verify that they were
constructed properly. This assures that with probability 1 — 1/¢, the remaining
two circuits (one circuit from each player) is properly constructed. Parties then
engage in the dual-execution protocol discussed above using these two garbled
circuits. Although this protocol guarantees correctness similar to [14, 6], it does
not satisfy our security definition. One problem is that a malicious player can use
different inputs for the two evaluated circuits, and learn whether their outputs
are the same or not based on the final outcome. This attack is successful even if
all the circuits are constructed correctly.

We show two constructions that do achieve our definition. Both constructions
require a constant number of rounds. In our first construction, each player garbles
only % circuits and %Qq additional XOR gates, where n is the length of the input
and ¢ is the length of the output. We emphasize that compared to the protocols of
[14, 6], where the adversary can always learn one bit of information, our protocol
leaks one bit only with probability e.

The first construction is sufficient for large values of € but fails to scale for
the smaller ones. For example, if one aims for a probability of leakage of less than
2710 the first protocol would require the exchange of a thousand garbled circuits.
A more desirable goal is a protocol with a cost that grows only logarithmically
in % We achieve this in our second protocol.

The costs of both constructions are roughly the costs of running their covert
counterparts in both directions. E.g. the second protocol requires O(2log(2)(|C|+
n + q)) inexpensive operations and O(log(%)(n + ¢)) expensive ones, while the
covert protocol of [13] requires O(log(1)|C|) inexpensive operations and O(log(2)n)
expensive ones.

2 Preliminaries

Throughout this work we denote by ¢ a statistical security parameter and by
s a computational security parameter. For a fixed circuit in use, we denote
by INP; the set of indexes of P;’s input-wires to the circuit, by INP the set
INP; UINP,, by OUT; the set of indexes of P;’s output-wires, and by OUT the
set OUT; UOUTs;. For shortening, we sometimes refer to |INP;| by n;, to |OUT,|
by ¢;, and set n =n1 +ny and ¢ = ¢1 + ¢o.

Denote by Enc(sk, m) the encryption of message m under secret key sk, by
PRG(s,1) the I-bit string generated by a pseudo-random generator with seed
s, and by Com(m,r) the commitment on message m using randomness r. The
decommitment of Com(m, ) is m and r. (In some cases we use the abbreviations
PRG(s) and Com(m).)

We also use the following notation for the next cryptographic primitives and
functionalities.



Yao’s garbling. For the sake of simplicity and generality, we do not go into the
details of the garbling mechanism and only introduce the notations we need to
describe our protocols. We refer the reader to [12,2] for different approaches to
creating the garbled circuits.

Given a garbled circuit gc, we denote by label(gc, j,b) the label of wire j
corresponding to bit value b. Also, we denote by Garb(C, ) the (deterministic)
garbling of circuit C using randomness r. (In practice, » would be a short seed
for a pseudo-random function). For simplicity, we assume that the labels of the
circuit’s output-wires include also the actual output bits (thus, allowing the
evaluator to learn the output).

We require the garbling scheme to be private and authenticated, meaning that
given a garbled circuit and input labels of a specific input, nothing is revealed
except for the output of the circuit, and, that the output-wire labels authenticate
the actual output (thus, the actual output cannot be forged). Also, we require
that given a garbled circuit and an input label, one can verify whether the input
label is a valid input label.

Batch Committing Oblivious Transfer (BCOT). Here, sender S has n sets, each
of m pairs of inputs, {(z2*,27%)}j=1..n,2=1...m, and receiver R has a vector of
input bits b = (b1,--- ,by,). The receiver R learns the outputs according to his
input bits, beZ for all j and z. In addition, R learns commitments on all the
sender’s inputs.

[19] shows an implementation of BCOT with a cost of O(mn) expensive op-
erations. Combining their protocol with the OT-extension of [15] in the Random
Oracle Model results in an alternative protocol that requires only O(s) expensive
operations and O(nm) inexpensive ones. However, in the latter construction, the
commitments on the sender’s inputs cannot be opened separately and one needs
to decommit all the inputs at once (we use both instantiations in our protocols).
See the full version for more details.We denote the first protocol by BCOT1 and
the second by BCOT2.

Two-Stage Equality Testing. In this protocol, player P, has input x; and player
P, has input x5. They want to test whether x; = x5. The functionality is split
into two stages in order to emulate a commitment on the inputs before revealing
the result (we will use this property in one of our constructions). Le., in the first
stage players submit their inputs and learn nothing, and in the second stage,
only if they both ask for the output, they receive the result. This functionality
can be realized using ElGamal encryption and ZKPoKs.

3 An Efficient 2PC for Two-output Functions with Full
Security

In this section, we review the main ideas behind our efficient 2PC protocol with
full security against malicious adversaries, considering the case where only P,
needs to learn the output. In the full version we show how to extend the ideas



in order to handle two-output functions. A detailed description of the protocol
and the proof of security appear in full version as well.

Consistency of the evaluator’s input is taken care of by combining the tech-
nique of [11] with the OT-extension of [15] and the Free-XOR technique [9)].
In a nutshell, Py’s input is encoded using max(4nsg, 8t) bits in a way that any
leakage of less than ¢ of the bits does not reveal meaningful information about
Py’s input. During the cut-and-choose, P» asks P; to reveal all his inputs to
the OTs. If some of the inputs are not consistent with the one P, has learned
from the OTs, P, aborts. This abort leaks information only in case P; guessed
successfully more than ¢ bits in P»’s encoded input. However, this can happen
with only a negligible probability by the way the encoding is done.

As we discussed in Section 1.1, consistency of the garbler’s input is addressed
using the XOR-gadgets. In the following we describe the main steps of that part.

Garbling stage and the XOR-gadgets. Say the players want to compute
C(z,y), where z is Pi’s input and y is P»’s input. Based on C, we define the
following two circuits: (1) Cy(z,y,r), which computes (C(z,y),z & r) where r is
a random input string of length |z| selected by Py; (2) C2(x,r), which computes
x @®r, where x and r are P;’s inputs and are of the same length. In both circuits
we assume the indexes of the input-wires are the same as in C' and we define the
function a(k) to be the function that given k € INP; returns the index of the
input-wire of the random bit that is xored with input-wire k. (For simplicity, we
assume the same function is applicable for both C; and Cs.)

Py picks a random string z; and generates a garbled circuit g¢; = Garb(C1, 2;),

for i = 1...t. In addition, P, picks a random string z] and generates a garbled
circuit xg; = Garb(Cy, z}), for ¢ = 1...t. Both players send the garbled circuits
they created to each other. Next, P; picks r; at random for j € [¢] and sends to
P, the labels that correspond to r; in gc;.
OTs for input labels. Parties execute OTs and BCOTs in order for each
to learn the input-wire labels for his inputs in the circuits/gadgets created by
his counterpart. More specifically, first they run any simulatable OT protocol
with the OT-extension of [15], where P; acts as the sender and P, acts as the
receiver. They use the technique of [11] for protecting against inconsistent inputs
as described earlier. P;’s inputs are the labels of P>’s input-wires in all g¢; (i.e.,
the inputs are label(gc;, k,0) and label(ge;, k,1) for k € INPy and j € [t]). Pa’s
input is his actual input. (We ignore here the details of encoding P»’s input.)
Second, they execute BCOT2 twice where P, acts as the sender and P; acts as
the receiver: (1) Py’s inputs are the labels of the input-wires in his XOR~gadgets
xg;, and P;’s inputs are his random input and actual input to the gadget (i.e.,
P, inputs are label(zg;, k,0) and label(xg;, k, 1) while P,’s inputs are his actual
input bits, and (2) P»’s inputs are label(zg;, a(k),0) and label(zg;, a(k), 1) while
Py’s inputs are the bits of r;. Note that in the first BCOT2, P, inputs a single
bit for each input bit and receives t input-wire labels. That restricts him to use
the same input in all the XOR-gadgets.).

(In the detailed protocol, the players execute the OTs before sending the
garbled circuits. Still, the intuition is similar.)



We stress that P; is yet to send the labels for his input wires in the circuits
he garbled himself, i.e. gc¢;-s.

Cut-and-Choose (first stage). After the OTs/BCOTs, P; opens a constant
fraction of his garbled circuits/gadgets. In particular, P; opens the garbled cir-
cuit gc; for all j ¢ E, where E is chosen randomly using a joint coin-tossing
protocol. (A joint coin-tossing protocol is needed for the simulation to work.)
Moreover, P; reveals the random strings r;-s he used in the opened circuits (by
showing the labels he learned from BCOT2), and all his inputs to the OTs for
the opened circuits. P, checks the correctness of the opened circuits and verifies
that the same r; was used in both ge¢; and zg; for all j ¢ E. (He also verifies
that the values he has received in the OTs for his inputs are consistent with
what P; revealed, following the technique of [11].)

Cut-and-Choose (second stage). P; evaluates all the XOR-gadgets he re-
ceived from P,, and sends a commitment on all the output-wire labels he ob-
tained to P». P, answers with opening all the XOR-gadgets zg; for j € E, and by
decommitting all his inputs to BCOT2. P; checks that all the XOR-gadgets he
received were properly constructed, and that the labels are consistent with the
decommitments. If so, P; decommits the output-wire labels of the XOR-gadgets
to PQ.

In general, the last step is not sound for all commitments since P; can send
a commitment for which he does not know the corresponding message and later
be able to decommit once P2 opens the XOR~gadgets (see Footnote 3). There
are several ways to overcome this issue. One option is to require P; to prove that
he knows how to construct this commitment, or more formally, P; commits on
the output labels with Com(labels, r) and proves using a ZKPoK that he knows
labels and r. This step can be implemented efficiently for Pedersen’s commitment
[17], requiring only a small constant number of exponentiations. (When labels is
longer than the commitment input length, P; picks a random seed seed, sends
Com(seed, r), PRG(seed) @labels and ZKPoK that he knows seed and r.) A more
efficient option is to implement Com(labels, ) in the Random Oracle model using
H(key o labels o r), where the commitment key key is chosen at random by the
receiver (i.e., P, in our case). The complexity in this case is only a single call to
the random oracle.
Circuit Evaluation. P; sends to P the labels of his inputs for the remaining
garbled circuits and XOR-gadgets. P, uses them to evaluate all his remaining
circuits and gadgets. He checks that the output-wires of the XOR-gadgets are
the same as the values P; sent him. If so, he takes the majority of the outputs
to be his output.

Summary. Note that now, with high probability, not only do we know that
the majority of the circuits being evaluated are correct, but also that P; used
the same 7;-s in the XOR-gadget pairs (Check 3 from introduction). Also, recall
that in the BCOT for XOR-gadgets created by P», P; can learn the labels for
exactly one possible value of z. Thus, his z is the same for all the t XOR~gadgets
P, generated (Check 1). Combined with the fact that Ps checks equality of the
output of the XOR~gadget pairs (Check 2), he is ensured that the same input



bits are being used in majority of the gc;-s. See Figure 1 for a diagram explaining
the above intuition.

4 Security with Input-Dependent Abort in the Presence
of Covert Adversaries

4.1 The Model

Following [11, 1, 6], we use the ideal/real paradigm for our security definition.
Real-model execution. The real-model execution of protocol IT takes place
between players (Py, P2), at most one of whom is corrupted by a probabilistic
polynomial-time machine adversary A. At the beginning of the execution, each
party P; receives its input x;. The adversary A receives an auxiliary information
auxr and an index that indicates which party it corrupts. For that party, A
receives its input and sends messages on its behalf. Honest parties follow the
protocol.

Let REAL7 A(quz)(T1,2) be the output vector of the honest party and the

adversary A from the real execution of IT, where qux is an auxiliary information
and z; is player P;’s input.
Ideal-model execution. Let f: ({0,1}*)?> — {0,1}* be a two-party function-
ality. In the ideal-model execution, all the parties interact with a trusted party
that evaluates f. As in the real-model execution, the ideal execution begins with
each party P; receiving its input x;, and A receives the auxiliary information
auz. The ideal execution proceeds as follows:

Send inputs to trusted party: Each party P, P> sends ) to the trusted
party, where z; = wx; if P; is honest and x} is an arbitrary value if P; is
controlled by A.

Abort option: If any z; = abort, then the trusted party returns abort to all
parties and halts.

Attempted cheat option: If P; sends cheat;(¢’), then:

— If ¢ > ¢, the trusted party sends corrupted; to all parties and the adver-
sary A, and halts.

— Else, with probability 1 — €’ the trusted party sends corrupted; to all
parties and the adversary .4 and halts.

— With probability ¢,

e The trusted party sends undetected and f(z}, %) to the adversary
A.

e A responds with an arbitrary boolean function g.

e The trusted party computes g(z],z5). If the result is 0 then the
trusted party sends abort to all parties and the adversary A and
halts. (i.e. A can learn g(x},z5) by observing whether the trusted
party aborts or not.)

Otherwise, the trusted party sends f(z},xz}) to the adversary.

Second abort option: The adversary sends either abort or continue. In the

first case, the trusted party sends abort to all parties. Else, it sends f(z], x5).



Outputs: The honest parties output whatever they are sent by the trusted
party. A outputs an arbitrary function of its view.

Let IDEAL?A(GHI)(xl,xg) be the output vector of the honest party and the
adversary A from the execution in the ideal model.

Definition 1. A two-party protocol II is secure with input-dependent abort in
the presence of covert adversaries with e-deterrent (e-CovIDA) if for any proba-
bilistic polynomial-time adversary A in the real model, there exists a probabilistic
polynomial time adversary S in the ideal model such that

C

{REALH,A(auz) (1, Iz)} ~ {IDEAL;S(CLW) (w1, 502)}

z1,x2,aurc{0,1}* z1,x2,aurc{0,1}*

for all |z1| = |z2| and auzx.

Comparison with Covert Security. When we let ¢ = 1/t for any constant ¢,
the above definition is strictly stronger than the standard definition of secu-
rity against covert adversaries. In covert security, in case of undetected cheating
which happens with probability e, the adversary learns all the honest parties’
private inputs and is able to change the outcome of computation to whatever
value it wishes (i.e. no privacy or correctness guarantee). In our definition, how-
ever, the adversary can learn at most a single bit of information (from the abort),
and under no condition is able to change the output (full correctness).

In the above definition, in contrast to the standard covert security, the adver-
sary can choose the exact probability he gets caught (i.e. 1 — €¢') as long as this
probability is larger than 1 — e (where € is the deterrence factor). Note that this
is not a relaxation in security since the adversary can only increase the probabil-
ity of itself getting caught. We believe that this variant of the definition where
the adversary can choose ¢ > ¢ with which it can get caught is of independent
interest. Specifically, it yields an alternative definition for covert security that is
more convenient to use in simulation-based proofs. (To obtain this alternative
definition for covert security, replace the steps that are done with probability
€’ with the following: (1) The trusted party sends z}, 2/ to A; (2) A sends the
value y to the trusted party, and the trusted party sends it to all parties as their
output.)

A Remark on Adaptiveness of Leakage Function. In the above definition, the
leakage function g can be chosen adaptively after seeing f(x},x%). Somewhat
surprisingly, this does not give any extra power to the adversary compared to
the non-adaptive case since even in the non-adaptive case, g can be chosen to
be a function that computes f(z},z}), emulates the adversary’s computation
given that value and evaluates the leakage function he would have chosen in the
adaptive case.



4.2 An Efficient Protocol with % Circuits

In this section, we review the main steps of our e-CovIDA protocol and highlight
the new techniques. A detailed description of the protocol and how to reduce the
number of circuits (from linear in % to logarithmic) appear in the full version.

As discussed in the introduction, in the dual-execution protocol of [14, 6]

parties engage in two different executions of the semi-honest Yao’s garbled circuit
protocol, and then run an equality testing protocol to confirm that the outputs
of the two executions are the same before revealing the actual output values. We
show how to extend this protocol to work in the presence of covert adversaries
using the ideas presented in Section 3. For simplicity of the description, from
now on we work with ¢ = % (a statistical security parameter) instead of € since
t would be the number of circuits each party garbles.
Dual-execution & cut-and-choose. Our first step is to combine the dual-
execution protocol with a standard cut-and-choose protocol for covert players.
Each player P; garbles t circuits gci, ..., gct and sends them to the other player.
Parties pick a random value e € [t], open all the circuits gc;i?ée and verify that
they were constructed properly. This assures that with probability 1 — 1/t, the
remaining circuit-pair (gc}, gc?) is properly constructed. As before, they send the
garbler’s input-wire labels for the e-th circuit, execute OTs for the respective
evaluators to learn their input-wire labels, evaluate the circuits, call the Equality
Testing functionality and output accordingly.

The above protocol would guarantee correctness similar to the dual-execution
protocol, and it would ensure that the evaluated circuits are correct with prob-
ability 1 — 1/t. However, the protocol does not satisfy our security definition.
One issue is that a malicious player learns the output of the computation even
if the other player catches him cheating (as a result of the equality test). We
show how this can be avoided by masking the output of the computation with
random strings, chosen by the two players, and revealing them at the end of the
computation in order to unmask the actual output.

A more subtle attack to address is that a malicious player can learn one bit
of information about an honest party’s input with probability greater than 1/t
(in fact with probability 1): a malicious player can use different inputs in each of
the two evaluated circuits, and learn whether their outputs are the same or not
based on the final outcome. This attack is successful even if all the circuits are
constructed correctly. We prevent this attack using the XOR-gadget techniques
discussed earlier, along with some enhancements. We discuss the details next:
XOR-gadgets. Define C'(xz o m1,y o msz) to be the circuit that receives inputs
x,y and two masks my, mg and computes f(z,y)®mi Hmso. Based on C, let P’s
input ' be z omy and P,’s input 3’ be y o my, where m; is a random string of
length ¢ (f’s output length) selected by P;. We define the following four circuits:

(1) Ci(2',y',r) = (C(2',y'), 2" ® r1), where r; is a random input string
of length |2/| selected by Pi; (2) Co(z',y/,1m2) = (C(2',y'),y @ ra2) where ro
is a random input string of length |y'| selected by Ps; (3) Ci(y',7m2) = ¢ @ 7o
evaluated by P, on his own inputs; (4) C4(z',71) = o’ @ry evaluated by P; on his
own inputs; In all circuits we assume the indexes of the input-wires are the same



as in C' and we define the function a(k) to be the function that given k € INP
returns the index of the input-wire of the random bit input-wire that is xored
with input-wire k. (For simplicity, we assume the same function is applicable for
all Cj-s and Cl-s.)

Instead of garbling C, each player P; generates and sends ¢ garbled circuits
for C;: gci, ..., gct and t garbled circuits of Cl: xgt, ..., xgi. After sending the
sets of garbled circuits, for each j € [t], player P; picks at random a string r;
and sends the input-wire labels that correspond to r; in gc;.

OTs for input labels. Then, they execute BCOTSs in order to learn the input-
wire labels for both their actual inputs and the 7“;- -s in their counterpart’s circuits.
More specifically, first they use BCOT1 where P; acts as the sender and P» acts
as the receiver. P;’s inputs are the input-wire labels of P5’s input-wire k£ in all
gc}—s and xg]l.—s (i.e., the input pairs are (Iabel(gc}, k,0), Iabel(gc}, k, 1))je[t] and
label(zg1, k,0) o ---olabel(zg}, k,0), label(zgi, k, 1) o - - - o label(zg}, k, 1) for k €
INP3). Py’s input is his actual input. Second, they use BCOT2 with the labels
for the rest of the input-wires of zgj (i.e., label(zg}, a(k),0),label(zg;, a(k), 1)
for k € INP, and j € [t], where P»’s inputs are the bits of 7"12) The players run
the same protocols in the opposite direction (switching roles). At the end, each
player learns the labels for his input-wires of gc?_i and of a:g;»’_i. But we note
that P; is yet to send the labels for his input wires in the circuits he garbled
himself, i.e. gc§ and xg;

Cut-and-Choose Phase (first opening). Next, as before, parties agree on
a random e € [t] (using a joint coin-tossing protocol), and open the rest of the
garbled circuits. In particular, they open the garbled circuit-pairs (gc}7 gc?) and
the XOR-gadgets (xgj,zg7) for all j # e. Moreover, for j # e, they reveal to
each other the random strings r}—s they used in the opened circuits (by showing
the labels they learned in BCOT2), and then they decommit all the inputs
they used as senders in BCOT1 for the opened circuits. The players check the

correctness of the circuits and verify that the same r?—s were used in both gcg and

zg?_i. (Note that at the end of the opening phase, the players know that with
1—1/t probability the remaining circuit-pair (gel, gc?) and the XOR gadget-pair
(zgl, 2g?) are properly constructed, and, that the inputs 7 used by the players
in both gc!, and xg2~* are the same.)

Evaluation. Each party sends to his counterpart the input-wire labels for his in-
puts in the unopened circuit-pair. Parties then evaluate the circuit-pair (gel, gc?)
and the XOR-gadgets (zgl,xg?). (i.e., P; evaluates gc2~¢, and xg>~*.) P; sends
a commitment (along with a ZKPoK, as in Section 3) on the concatenation of
the output labels he obtained after evaluating xg2~* to P5_;.
Cut-and-Choose Phase (second opening). P;_; now opens the remaining
XOR-gadget £g2~*, and decommits all his inputs as a sender to the BCOTs of
the XOR-gates (i.e., label(xgi ™ k,0) o --- o label(zg} ", k, 0), label(xg? ™", k, 1) o
-+ -olabel(zg; ™" k,1) in BCOT1, and label(zg3~%, a(k),0), label(zg3~*, a(k), 1) in
BCOT2, both for k € INP;). (We stress that only the XOR~gates of wires INP;
are opened, and that those were generated using random labels independently
of the garbled circuits. The XOR-gadgets of wires INP3_; are checked as part of



the previous phase.) P; verifies that these XOR~gates were generated properly
and that the BCOTs inputs were consistent with the XOR-gates. If everything
is correct he decommits his commitment, otherwise he outputs | and aborts.
(Note that P; reveals his output only after he verified that all the XOR-gates
Ps_; generated were properly constructed. Since the only secrets in these gates
are P;’s inputs, revealing them does not help P; learn any new information.) P;_;
verifies that the decommitted values are valid output-wire labels, and compares
the actual output with their output he obtains from evaluation of xg’. If either
check fails, P;_; outputs L.

Equality-test. If there is no abort, players call the Equality Testing functional-
ity as before. Note that now, with probability 1 —1/¢, not only we know that the
circuits being evaluated are correct, but also that the players use the same ri-s
in the final XOR gadget-pair. Combined with the fact that the players check
equality of the output of the final XOR gadget-pair, they are ensured (with
probability 1 — 1/¢) that the same input strings are being used in gcl and gc?
or else, x @ 7! would be different.

Output Unmasking. If the Equality Testing functionality returns False, the
players abort. Otherwise, they unmask the output. (Recall that at this stage,
each player knows the value of C(a',y") = f(z,y) ® m1 ® ms.) Player P; sends
the value of m; along with labels that correspond to m; in gc3~%. These labels
prove that m; is indeed the value that P; have used in the protocol.

Putting things together, correctness is always guaranteed due to the dual
execution; full-privacy is guaranteed with probability 1—1/¢ due to the discussion
above; and privacy with 1-bit leakage is guaranteed in the case that a cheating
adversary is not caught, which only happens with probability 1/t.
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