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Abstract. Beginning with the work of Lindell and Pinkas, researchers
have proposed several protocols for secure two-party computation based
on the cut-and-choose paradigm. In current instantiations of this ap-
proach, one party generates κ garbled circuits; some fraction of those are
“checked” by the other party, and the remaining fraction are evaluated.

We introduce here the idea of symmetric cut-and-choose protocols, in
which both parties generate κ circuits to be checked by the other party.
The main advantage of our technique is that κ can be reduced by a factor
of 3 while attaining the same statistical security level as in prior work.
Since the number of garbled circuits dominates the costs of the protocol,
especially as larger circuits are evaluated, our protocol is expected to
run up to 3 times faster than existing schemes. Preliminary experiments
validate this claim.

1 Introduction

Secure two-party computation was shown to be feasible in the late 1980s [35,
8]. But it is only in the past 10 years that the research community has devoted
significant efforts toward making such protocols practical. Work in this direc-
tion was spurred by the Fairplay paper [25], which implemented Yao’s protocol
for two-party computation with security in the semi-honest setting. More re-
cent work [10, 12, 11] has shown that Yao’s protocol (in combination with other
techniques) can be surprisingly efficient when semi-honest security is sufficient.

More desirable, of course, is to achieve security against malicious adversaries.
While this is known to be feasible, in principle, using generic zero knowledge [8],
a generic approach of this sort does not currently seem likely to result in efficient
protocols even if specialized zero-knowledge proofs (as suggested in [15]) are used.
The first technique to be explored for making efficient two-party computation
protocols secure against malicious adversaries was the cut-and-choose paradigm.
In that approach, roughly speaking, one party generates κ garbled circuits (where
κ is a statistical security parameter); some fraction of those are “checked” by
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the other party—who aborts if any misbehavior is detected—and the remaining
fraction are evaluated with the results being used to derive the final output
(we return to the exact mechanism for doing so in the next section). Cut-and-
choose was used in a relatively naive way in [25] to give inverse-polynomial
security. (In fact, the approach taken was later shown to be flawed [26, 16].) A
rigorous analysis of the cut-and-choose paradigm was first given by Lindell and
Pinkas [21], and their work was followed by numerous others exploring variations
of this technique and their application to (ever more) efficient secure two-party
computation [34, 24, 30, 32, 23, 33, 18].

In parallel with the above, other efficient approaches to achieving “full” ma-
licious security in the two-party setting have also been explored. Approaches
based on the IPS compiler [14] appear to have good asymptotic complexity [20],
but seem challenging to implement (indeed, we are not aware of any imple-
mentations); other approaches [29, 5, 4] have round complexity proportional to
the depth of the circuit being evaluated. Another direction is to explore weaker
security guarantees [1, 26, 13], still against arbitrary malicious behavior. In the
remainder of this paper we restrict our attention to protocols achieving the
strongest notion of malicious security.

The critical question regarding the cut-and-choose approach is: how many
garbled-circuit copies (namely, κ) are needed to ensure some desired security
level? The value of κ has the greatest impact on the efficiency of cut-and-
choose protocols, especially as larger circuits C are evaluated. The computa-
tional/communication complexity of such protocols is O(κ ·k · |C|)+poly(n, k, s),
where k is a cryptographic security parameter and n is the input length. Since
|C| ≫ k, n (typical values are k ≈ 128 and n < 1000, while |C| ≈ 109 in [18]),
the importance of minimizing κ is clear.

1.1 Prior Work

In previous applications of the cut-and-choose paradigm, one party (say, P1) acts
as the garbled-circuit generator and the other (P2) acts as the garbled-circuit
evaluator; assume for simplicity that only P2 gets output. If the oblivious-transfer
(OT) protocol used is secure against malicious adversaries, the main issue is to
ensure correctness of P2’s output. (Note, however, that correctness is closely
connected with privacy, since P1 can potentially carry out a selective failure
attack in which the output of P2 is correlated with P2’s input, in a way which
would not be possible in an ideal evaluation of the function.) Toward that end, P2

checks some number c of the κ circuits generated by P1 to make sure they were
constructed correctly. Assuming they were, the remaining κ− c garbled circuits
are evaluated by P2, who then outputs the majority value of those circuits’
results on each output wire. (This informal description omits various details,
since we wish to focus on the cut-and-choose aspect of the protocols.)

From the above we see that a malicious P1 can successfully cheat if they
generate b “bad” garbled circuits and (1) none of those bad garbled circuits is
among the c garbled circuits checked by P1, and (2) of the remaining κ − c
garbled circuits being evaluated, half or more are bad. Doing the analysis, prior



Efficient Secure Two-Party Computation Using Symmetric Cut-and-Choose 3

work [21, 23] culminating in the work of Shelat and Shen [33] shows that using
κ garbled circuits yields security level 2−0.32κ. Moreover, this bound was shown
to be the best possible for a certain class of cut-and-choose approaches [33].

1.2 Our Contribution

We recast the cut-and-choose approach in a symmetric setting, where each party
generates κ garbled circuits to be checked by the other party. In doing so, we
are motivated by work of Mohassel and Franklin [26] (see also [13]) who show
how symmetric creation/evaluation of garbled circuits (but without any cut-and-
choose) can be used to achieve security with only one bit of “disallowed” leakage
against malicious adversaries. Here we show how to extend their approach to
achieve the standard (i.e., “full”) notion of malicious security.

After checking each other’s garbled circuits, each party in our protocol eval-
uates the remaining garbled circuits of the other party, and then the results of
both parties’ evaluations are securely “combined” to yield the final output. In-
formally, a party outputs a value v for some output wire of the circuit if and only
if at least one of their own garbled circuits, and at least one of the garbled circuits
generated by the other party, evaluate to v on that wire. Since an honest party al-
ways generates correct garbled circuits, our analysis shows that correctness holds
as long as at least one of the evaluated circuits provided by the other party is
correct. (This is in contrast to one-sided cut-and-choose, where a majority of
the evaluated circuits must be correct.) Thus, a malicious party can successfully
cheat only if they generate exactly κ−c “bad” garbled circuits, and none of those
is checked by the other party. Setting c = κ/2 (which minimizes the cheating

probability), the probability of successful cheating is
(

κ
κ/2

)−1
= 2−κ+O(log κ). We

can therefore achieve the same security level as previous work while reducing3 κ
by roughly a factor of 3.

As an added advantage, our protocol naturally supports having both parties
receive output (an explicit concern of [33]), with no performance penalty if only
one party should learn the output.

In concurrent work, Lindell [19] shows a different approach that achieves 2−κ

security using κ circuits generated by only one of the parties.

1.3 Outline of the Paper

In Section 2 we review the cryptographic building blocks used in our protocol.
We provide an overview of the protocol in Section 3 along with some intuition
for why it is secure. In Section 4 we provide a formal description of our protocol,
and we prove security in Section 5. In Appendix A we give some preliminary
experimental results showing that we outperform the recent work of [18].

3 To be clear: in our protocol each party generates κ garbled circuits and so the total
number of garbled circuits is 2κ. However, since this work is done in parallel by the
two parties—in addition to whatever parallel processing is available on each user’s
own machine—and since the communication is symmetric, the “wall-clock time” of
our protocol is expected to improve on previous protocols by up to a factor of 3.
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2 Notation and Building Blocks

For simplicity, we describe our protocol using concrete (rather than asymptotic)
notation. Nevertheless, it should be clear that our protocol can be cast in an
asymptotic setting without difficulty.

Let G be a group of prime order q with generator g. We assume the com-
putational Diffie-Hellman (CDH) problem is hard in G. We let H be a hash
function that will be treated in the analysis as a random oracle. We let Com be
a commitment scheme.

We use the standard definitions of secure two-party computation [7].

2.1 Naor-Pinkas Oblivious Transfer

In our protocol we do not use oblivious transfer as a “black box,” but instead
rely on specific details of the OT protocol used. Although several candidate OT
protocols could be used, for concreteness and efficiency we use an OT protocol
due to Naor and Pinkas [27] which we now describe.

Say we have a sender holding inputs x0, x1 ∈ {0, 1}∗, and a receiver holding
input b ∈ {0, 1}. In the first round, the sender chooses random C ← G and sends
C to the other party. The receiver picks k ← Zq, defines h

0 = gk and h1 = C/gk,
and sends h = hb to the sender. In turn, the sender chooses r ← Zq and sends
gr,H(hr) ⊕ x0,H((C/h)r) ⊕ x1 to the other party. The receiver recovers xb

by computing (gr)k and using the appropriate component of the sender’s final
message. Note that several independent OTs can share the same first message C.

This OT protocol is simulatable for a malicious receiver under the CDH
assumption in the random oracle model. It achieves privacy (but is not known to
be simulatable) against a malicious sender, and this suffices for our purposes. A
variant of this protocol requires the receiver to give a (standard) perfect witness-
indistinguishable proof of knowledge of logg h or logg(C/h) after sending h. We
use this variant in our analysis since it simplifies the proof.

2.2 Garbled Circuits

We use a modification of standard garbled circuits [35]. Fix a function f :
{0, 1}n × {0, 1}n → {0, 1}n. We abstract the construction/evaluation of a gar-
bled circuit for f via algorithms GenGC,EvalGC with the following properties.
GenGC is a randomized algorithm that takes as input 2n input-wire labels
v01 , v

1
1 , . . . , v

0
n, v

1
n ∈ G (corresponding to the first input of f), 2n input-wire la-

bels v0n+1, v
1
n+1, . . . , v

0
2n, v

1
2n ∈ {0, 1}n (corresponding to the second input of f),

and 2n output-wire labels w0
1, w

1
1, . . . , w

0
n, w

1
n ∈ Zq. It outputs a garbled cir-

cuit GC. Deterministic algorithm EvalGC takes as input GC and 2n input-wire
labels v1, . . . , v2n; it outputs n values b1∥w1, . . . , bn∥wn, with b1, . . . , bn ∈ {0, 1}.
Note that EvalGC explicitly outputs wire labels in addition to bits.

Correctness requires that for any set of input/output-wire labels, any garbled
circuit GC output by GenGC

(
{v0i , v1i }2ni=1, {w0

i , w
1
i }ni=1

)
, and any x, y ∈ {0, 1}n
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with z = f(x, y), we have

EvalGC
(
GC, {vxi

i }
n
i=1, {v

yi

i }
2n
i=n+1

)
= z1∥wz1

1 , . . . , zn∥wzn
n .

Security requires a simulator SimGC such that for all x, y with z = f(x, y),
any vx1

1 , . . . , vxn
n ∈ G, vy1

n+1, . . . , v
yn

2n ∈ {0, 1}n, and w0
1, w

1
1, . . . , w

0
n, w

1
n ∈ Zq, the

distribution
v1−x1
1 , . . . , v1−xn

n ← G;

v1−y1

n+1 , . . . , v1−yn

2n ← {0, 1}n;
GC← GenGC

(
{v0i , v1i }2ni=1, {w0

i , w
1
i }ni=1

) :
(
GC, {vxi

i }
n
i=1, {v

yi

n+i}
n
i=1

)
is computationally indistinguishable from{
GC← SimGC

(
x, z, {vxi

i }
n
i=1, {v

yi

n+i}
n
i=1, {w

zi
i }

n
i=1

)
:
(
GC, {vxi

i }
n
i=1, {v

yi

n+i}
n
i=1

)}
.

In particular, this means (informally) that (1) given GC, {vxi
i }ni=1, and {v

yn+i

i }ni=1,
no information is leaked about {w1−zi

i }ni=1 where z = f(x, y), and (2) this holds
regardless of how the {vxi

i }ni=1, {v
yi

n+i}ni=1 are chosen (as long as the other input-
wire labels are random). These properties are not standard, but are easily seen
to hold by modifying the construction/proof from [22].

Note: We always let input wires 1, . . . , n denote the inputs of the party generat-
ing the circuit. Thus, technically, P1 generates garbled circuits for the function f ,

and P2 generates garbled circuits for the function f ′(y, x)
def
= f(x, y).

2.3 Verifiable Secret Sharing

We use a notion of (non-interactive) verifiable secret sharing (VSS) that is weaker
than the usual one in the literature. For our purposes, a t-out-of-κ VSS scheme
comprises three algorithms Share,Vrfy,Rec with the following functionality:

– Share takes input s ∈ Zq and outputs κ shares w1, . . . , wκ ∈ Zq and addi-
tional information pub.

– Vrfy takes as input the information pub, an index i, and a candidate share wi ∈
Zq. It outputs a bit, with 1 denoting validity.

– Rec takes as input pub and t indices/shares {(ij , wij )}tj=1. It outputs a
value s ∈ Zq.

We require that for any s ∈ Zq, any w1, . . . , wκ, pub output by Share(s), and any
i1, . . . , it ⊂ [κ], we have Vrfy(pub, i, wi) = 1 and Rec(pub, {(ij , wij )}tj=1) = s.

We define a secrecy requirement for an honest dealer, and a verifiability re-
quirement for honest receivers. Secrecy requires hardness of recovering a random
secret s given pub and at most t − 1 shares. Formally, the following should be
small for all efficient algorithms A and any i1, . . . , it−1:

Pr[s← Zq; (pub, w1, . . . , wκ)← Share(s) : A(pub, wi1 , . . . , wit−1) = s].
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Verifiability requires that the dealer cannot generate pub and two different sets
of valid shares that reconstruct to different secrets. Formally, the following is
small for all efficient algorithms A:

Pr

(
pub, {(ij , wj)}tj=1, {(i′j , w′

j)}tj=1

)
← A

:
∀j : Vrfy(pub, ij , wj) = 1∧
∀j : Vrfy(pub, i′j , w′

j) = 1∧
Rec(pub, {(ij , wj)}tj=1) ̸= Rec(pub, {(i′j , w′

j)}tj=1)

 .

Feldman VSS [6] satisfies the above properties under the discrete-logarithm
assumption.

3 High-Level Description of the Protocol

At a high level, the protocol proceeds in the following stages:

1. Generate garbled circuits: Each party generates κ garbled circuits along
with their corresponding input-wire labels.

2. Oblivious transfer: Each party uses the Naor-Pinkas OT protocol (cf. Sec-
tion 2.1) to obtain its input-wire labels for the garbled circuits constructed
by the other party. This is done in such a way that a party must use the
same effective input across all circuits.

3. “Cut-and-choose”: Each party sends the garbled circuits they constructed
to the other party. Using coin tossing, parties choose half of each of their
circuits for checking. Then:
(a) For each of its check circuits, each party (1) sends all the input-wire

labels for that circuit (to prove that the check circuit was constructed
correctly) and (2) reveals all the values it used as the OT sender in step 2
(to prove that it used the correct input-wire labels in the OT execution
corresponding to the check circuit).

(b) For each of its remaining circuits (the evaluation circuits), each party
sends the input-wire labels corresponding to its own input.

4. Output determination: Each party evaluates the garbled circuits they
received from the other party, using the input-wire labels obtained in steps 2
and 3(b). For each output wire i of the circuit, each party decides on output
zi ∈ {0, 1} iff at least one of the circuits they evaluated (that the other party
constructed) gave output zi and at least one of the circuits the other party
evaluated (that they constructed) gave output zi.

We defer the details of step 4, and for now just assume it can be done. We
also assume that if a party successfully passes the cut-and-choose step, then
for at least one of that party’s evaluation circuits (1) the evaluation circuit is
constructed correctly and (2) the correct input-wire labels were used in the cor-

responding OT; this assumption holds except with probability at most
(

κ
κ/2

)−1
.
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The main issue to address is to ensure that a malicious party uses the same
(effective) input in step 2 (when it obtains input-wire labels for its own input
from the other party using OT) and for all the input-wire labels it sends in
step 3(b) (for the garbled circuits that it generated). We achieve this by noting
that when an honest receiver obtains the input-wire labels for its ith input wire
during the OT step, it sends a message hi for which (1) it knows logg hi when
its effective input (on the ith wire) is 0, and (2) it knows logg(C/hi) when its
effective input (on the ith wire) is 1. We require the parties to use this same
“template” for the input-wire labels corresponding to their own input in the
garbled circuits they prepare. That is, for each garbled circuit and each input
wire i corresponding to an input of the circuit generator, the input-wire label v0i
corresponding to 0 is chosen such that logg v

0
i is known, and the input-wire

label v1i corresponding to 1 is chosen such that logg(C/v1i ) is known. Moreover,
this property is verified to hold (for the check circuits) during the cut-and-choose
step. When sending its ith input-wire label vi in step 3(b), each party must then
also prove4 that it knows logg(vi/hi). This is reminiscent of a similar technique
used by Shelat and Shen [33] to enforce input consistency among input-wire
labels sent by the circuit generator; here, we extend it to enforce consistency
also to the input-wire labels received as a circuit evaluator.

Given this—and still assuming step 4 can be carried out—one can informally
verify that the protocol is secure. Assume for concreteness that P2 is honest.
Privacy of P2’s input is easy to see. As for correctness, P2 constructed all its
garbled circuits correctly and sent input-wire labels for its own input y in all its
evaluation circuits. In step 2, P1 obtained input-wire labels for its own (effective)
input x in all of P2’s evaluation circuits. So all of P2’s garbled circuits that

were evaluated by P1 yield output z
def
= f(x, y). In the other direction, with

high probability at least one of P1’s evaluation circuits GC∗ was constructed
correctly, and moreover the correct input-wire labels (for P2’s input) were used
in the corresponding OT; thus, P2 obtained the correct input-wire labels for its
input y in GC∗. Furthermore, from the previous paragraph we know that the
input-wire labels for P1’s input in GC∗ correspond to the same input x it used
before. Thus, evaluation of GC∗ by P2 also yields z = f(x, y), and thus z will be
the final output of P2 in the protocol.

The missing piece is to show how to implement step 4, and this is the most
involved part of our protocol. The basic idea is for each party to choose a secret
value sbi for each output wire i of the circuit and each possible value b ∈ {0, 1}
that wire can take. Each secret is then split into κ shares wb

1,i, . . . , w
b
κ,i using

a (κ/2 + 1)-out-of-κ secret-sharing scheme. Share wb
j,i is then used as the label

corresponding to b on the ith output wire of the jth garbled circuit. The net
result is that for each output wire i and bit b, the other party can reconstruct sbi
if and only if it learns κ/2 + 1 of the shares corresponding to that wire and bit.

Note that κ/2 shares of every wire and bit will be revealed as part of the cut-
and-choose phase. Assuming again that P2 is honest, we thus have the following:

4 Actually, as in [33], the party can simply reveal logg(vi/hi).
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– As noted earlier, all of the garbled circuits that P2 constructed will evaluate
to the same value z = f(x, y). This means that P1 only learns shares corre-
sponding to the secrets sz11 , . . . , sznn , and learns nothing about the remaining
secrets s1−z1

1 , . . . , s1−zn
n . This gives P2 a way to “test” whether the circuits

it constructed (that were evaluated by P1) resulted in output z by checking
which of each pair of secrets P1 knows (e.g., using a secure equality test).

– In the opposite direction, as long as one of the garbled circuits constructed
by P1 (and evaluated by P2) yields z, this will give P2 one additional share
of each of s̃z11 , . . . , s̃znn (where we use s̃ here to denote that these secrets are
chosen by P1) and hence P2 will be able to reconstruct each of those secrets.
Note that it does not matter which garbled circuit evaluates to z, as any
correctly constructed circuit that evaluates to z reveals the requisite share.

One point omitted from the above discussion is that now it must be possible
to check during the cut-and-choose phase that correct shares were used when
constructing the garbled circuits. For this reason, we use verifiable secret sharing
(see Section 2.3). We defer to the next section additional technical details of the
protocol needed for the proof of security.

4 Formal Specification of the Protocol

Fix a function f : {0, 1}n × {0, 1}n → {0, 1}n that parties P1 and P2 wish to
compute over their respective inputs x, y ∈ {0, 1}n. We assume both parties
learn the output, but it is easy to modify the protocol so that only one party
learns the output. The protocol proceeds as follows.

1. P1 chooses C ← G and sends it to P2. Symmetrically, P2 chooses C̃ ← G
and sends it to P1.

2. P1 generates 4n input-wire labels for each of κ garbled circuits in the follow-
ing way. For j = 1, . . . , κ, it chooses a0j,1, a

1
j,1, . . . , a

0
j,n, a

1
j,n ← Zq and sets

the first 2n input-wire labels of circuit j to be of the form {v0j,i = ga
0
j,i}ni=1

and {v1j,i = C̃/ga
1
j,i}ni=1. It chooses the next 2n input-wire labels of circuit j

uniformly as v0j,n+1, v
1
j,n+1, . . . , v

0
j,2n, v

1
j,2n ← {0, 1}n.

Symmetrically,5 P2 generates 4n input-wire labels ṽ0j,1, ṽ
1
j,1, . . . , ṽ

0
j,2n, ṽ

1
j,2n

for j = 1, . . . , κ.
Each party then uses Naor-Pinkas OT to obtain the input-wire labels corre-
sponding to its own input in the circuits generated by the other party. I.e.,
for i = 1, . . . , n party P1 chooses ki ← Zq, generates (h

0
i , h

1
i ) = (gki , C̃/gki),

and sends hi
def
= hxi

i to P2. Then P2 generates κ independent responses as
in the Naor-Pinkas protocol, using inputs (ṽ0j,n+i, ṽ

1
j,n+i) in the jth such in-

stance where, recall, ṽbj,n+i denotes the label corresponding to bit b on the
(n+ i)th input wire in the jth garbled circuit. P1 recovers ṽxi

1,n+i, . . . , ṽ
xi
κ,n+i.

P2 acts symmetrically to obtain vyi

1,n+i, . . . , v
yi

κ,n+i for i = 1, . . . , n.

5 Recall that the first n input wires always denote the inputs of the party generating
the circuit.
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3. For i ∈ {1, . . . , n} and b ∈ {0, 1}, party P1 chooses sbi ← Zq and generates

a (κ/2+ 1)-out-of-κ secret sharing (pubbi , w
b
1,i, . . . , w

b
κ,i)← Share(sbi ). It uses

wb
j,i as the label for bit b on the ith output wire in the jth circuit, i.e., for

j = 1, . . . , κ it computes the garbled circuit

GCj = GenGC
(
{v0j,i, v1j,i}2ni=1, {w0

j,i, w
1
j,i}ni=1

)
.

It sends {GCj}κj=1 and {pub0i , pub
1
i }ni=1 to P2.

P2 acts symmetrically to obtain s̃bi and (p̃ub
b

i , w̃
b
1,i, . . . , w̃

b
κ,i) and to generate

G̃Cj ; it sends {G̃Cj}κj=1 and {p̃ub
0

i , p̃ub
1

i }ni=1 to P1.
4. For j = 1, . . . , κ and i = 1, . . . , n, party P1 commits to the input-wire labels

v0j,i and v1j,i corresponding to its own input, in random permuted order. Let
ComSetj,i denote the resulting pair of commitments. P2 acts symmetrically.

5. The parties run secure coin-tossing protocols to generate strings J , J̃ ∈
{0, 1}κ that are each uniform among strings containing exactly κ/2 ones.6

These are interpreted in the natural way as subsets of {1, . . . , κ} of size κ/2.
J̃ is used to check the garbled circuits constructed by P1. Specifically, for
j = 1, . . . , κ:

(a) If j ∈ J̃ the jth circuit is a check circuit. Then P1 sends {a0j,i, a1j,i}ni=1,

{v0j,i, v1j,i}2ni=n+1, {w0
j,i, w

1
j,i}ni=1, and the randomness it used to gener-

ate GCj . It also reveals the sender-randomness it used in all the OTs cor-
responding to the jth circuit, and opens both commitments in ComSetj,i
for i = 1, . . . , n.

P2 sets v0j,i = ga
0
j,i and v1j,i = C̃/ga

1
j,i for i = 1, . . . , n. It re-generates

the jth garbled circuit and verifies that it matches GCj . It verifies that
{v0j,i, v1j,i}2ni=n+1 were used in the OTs for the jth circuit, and that the

commitments in ComSetj,i open to {v0j,i, v1j,i} in some order. Finally, it

checks that Vrfy(pubbi , j, w
b
j,i) = 1 for i = 1, . . . , n and b ∈ {0, 1}. It

aborts if any of these fail.
(b) If j ̸∈ J̃ the jth circuit is an evaluation circuit. In this case, P1 sends

(vj,1, . . . , vj,n)
def
= (vx1

j,1, . . . , v
xn
j,n) (i.e., the wire labels corresponding to

P1’s input in the jth circuit) to P2. It also opens the commitment in
ComSetj,i that corresponds to vj,i. Finally, it sends logg(vj,1/h1), . . . ,
logg(vj,n/hn). (Recall that h1, . . . , hn are the values used by P1 when
acting as receiver in the Naor-Pinkas OT protocol.)
P2 checks that one of the commitments in ComSetj,i opens to vj,i, and
verifies the discrete logarithms sent by P1. It aborts if any inconsistencies
are found.

Symmetrically, the parties use J to check the garbled circuits constructed
by P2.

6 This can be implemented easily by using a standard coin-tossing protocol to generate
polynomially many uniform bits, and then using those bits as the random coins for
applying a Knuth shuffle to the string 0κ/21κ/2.
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6. For each evaluation circuit j of P2, party P1 evaluates G̃Cj using the input-
wire labels it obtained in steps 2 and 5. By doing so, it learns n values
b̃j,1∥w̃j,1, . . . , b̃j,n∥w̃j,n.
For i = 1, . . . , n and b ∈ {0, 1}, party P1 tries to recover7 s̃bi . To do so, it finds

an evaluation circuit j for which b̃j,i = b and w̃j,i is a valid share of s̃bi (i.e.,

Vrfy(p̃ub
b̃j,i

i , j, w̃j,i) = 1). If no such j exists, it chooses tbi ← Zq. Otherwise,

it computes tbi by running Rec using p̃ub
b̃j,i

i , the κ/2 shares {(k, w̃b̃j,i
k,i )}k∈J

it learned in step 5, and the additional share (j, w̃j,i).
P2 acts symmetrically to compute t̃0i , t̃

1
i for i = 1, . . . , n.

7. For i = 1, . . . , n, the parties do the following: Run a secure equality test,
with P1 using input s0i ∥t0i and P2 using input t̃0i ∥s̃0i . If the result is 1, each
party sets zi = 0 and goes to the next i. Otherwise, the parties run a second
equality test with P1 using input s1i ∥t1i and P2 using input t̃1i ∥s̃1i . If the result
is 1, each party sets zi = 1 and goes to the next i. If neither equality test
succeeds for some i then cheating is detected and the parties abort.
Assuming no abort has occurred, each party then outputs z = z1 · · · zn.

4.1 Optimizations

For simplicity in our proof of security in the following section, we analyze the
protocol as presented above. However, we observe that the following optimiza-
tions can be applied to the protocol (and the reader can verify that the proof
can be suitably modified for each of these).

Naor-Pinkas OT. We assume a variant of Naor-Pinkas OT is used in which
the receiver gives a witness-indistinguishable (WI) proof of knowledge that its
message was computed correctly (see Section 2.1). This is used in our proof to
extract the receiver’s input. In fact, as shown in [27], such WI proofs are not
necessary and extraction can be done using the random-oracle queries of the
receiver. The same is true in our setting, though it complicates the presentation
of the proof.

Secure coin tossing. In the (programmable) random-oracle model, very ef-
ficient coin tossing is possible since it is trivial to construct an equivocal and
extractable commitment scheme.

Secure equality testing. In our proof, we assume a hybrid world in which
the parties have access to an ideal functionality for equality testing; equivalently
(relying on standard composition theorems [3]), we assume that the equality test
is done using a fully secure protocols for this task.

In fact, using a fully secure equality test is overkill for our purposes. Instead,
we can use a different approach that is very efficient in the random-oracle model.
First, assume the VSS scheme has the stronger property of indistinguishability,
i.e., given pub and t − 1 shares of a uniform secret s ∈ {0, 1}n, it is hard to

7 In an honest execution, only one of s̃0i or s̃1i will be recovered.
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distinguish s from an independent uniform value s′ ∈ {0, 1}n. (Any VSS scheme
satisfying the unpredictability requirement from Section 2.3 can be modified to
achieve this stronger notion in the random-oracle model by simply hashing the
secret.) Then, rather than performing an equality test using values s0i ∥t0i and
t̃0i ∥s̃0i (resp., s1i ∥t1i and t̃1i ∥s̃1i ) as before, the parties now carry out an equality
test on values s0i ⊕ t0i and t̃0i ⊕ s̃0i (resp., s1i ⊕ t1i and t̃1i ⊕ s̃1i ). At this point,
we observe that a full-fledged equality test is not needed since (1) the honest
party’s input to the equality test is either known to the malicious party or is
(indistinguishable from) uniform, and (2) in either case, it is ok if the honest
party’s input to the equality test is leaked to the other party after equality is
checked. Thus, it suffices to use a “cheap” equality test in which P1 (resp., P2)
commits to, e.g., s0i ⊕ t0i (resp., to t̃0i ⊕ s̃0i ) using an extractable and equivocal
commitment scheme (which is easily constructed in the random-oracle model),
and then each party decommits and checks equality of the decommitted results
in the clear.

Saving bandwidth. Following an observation in [9], we can modify the way we
do cut-and-choose as follows: Parties construct their jth garbled circuit by choos-
ing a random seed seedj and using that seed to generate certain (pseudo)random
choices they need for constructing that circuit. (In our case, this would mean us-
ing seedj to generate {a0j,i, a1j,i}ni=1, {v0j,i, v1j,i}2ni=n+1, and the randomness used to
generate GCj .) Then, in step 3, the parties send the hash hGCj = H(GCj) in place
of GCj . If j is a check circuit then seedj is sent; the other party re-generates GCj

and verifies that H(GCj) = hGCj . If j is an evaluation circuit then GCj is sent
and the other party checks that H(GCj) = hGCj . Since |seedj |+ |hGCj | ≪ |GCj |,
this has the effect of reducing the bandwidth in steps 3 and 5 (which dominate
the bandwidth of the entire protocol) by roughly half.

Batch verification. We can use batch verification [2] when simultaneously
verifying validity of shares in step 5(a) (assuming Feldman VSS is used) and the
discrete logarithms in step 5(b).

Efficient garbled circuits. Our protocol is fully compatible with existing op-
timizations for garbled circuits such as garbled-row reduction [28] and the free-
XOR technique [17].8

5 Proof of Security

Theorem 1. Under the assumptions outlined in Section 2, and modeling H as
a random oracle, the protocol in the previous section securely computes f in the
presence of malicious adversaries.

Since we are not in an asymptotic setting, technically speaking “secure” is
not well-defined. In the proof below, all steps introduce a computational security

8 We cannot apply the free-XOR optimization at first-level gates because of the way
the circuit generator chooses the input-wire labels. However, the free-XOR method
can be used at all lower levels of the circuit.
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factor (which can be set as small as desired by setting the cryptographic secu-
rity parameter large enough) except for one step which introduces a statistical

security factor of
(

κ
κ/2

)−1
= 2−κ+O(log κ).

All our assumptions are standard, and can be based on the CDH assumption
in G. We remark that the only place the random oracle is used is for the Naor-
Pinkas OT. It would be possible to remove the random oracle by switching, e.g.,
to the OT protocol of [31] (and modifying the rest of the protocol accordingly).
Although this would impact the efficiency, the effect would be proportional to
the input length and not the size of the circuit being computed.

Proof. We analyze the protocol in a hybrid world in which the parties have
access to ideal functionalities for coin tossing and equality testing. Using stan-
dard composition theorems [3], this implies security when those sub-routines are
instantiated using secure protocols for those tasks.

Since the protocol is symmetric, we assume without loss of generality that P1

is malicious. Let y denote the input of P2. We define a sequence of experiments,
beginning with the real execution of the protocol between P1 and P2 (in the
hybrid world discussed above) and ending with an ideal execution involving a
simulator S playing the role of the first party and interacting with a trusted
party computing f . We show that each experiment is indistinguishable from the
one before it, taking into account both the view/output of the malicious party
and the output of P2.

Experiment 0. This is the real execution of the protocol (in the hybrid world
discussed above) between P1 and the honest P2 holding input y.

Experiment 1. Here we change the way P2 behaves when acting as OT sender
in step 2 and when sending commitments in step 4. First of all, we now pick J
at the outset of the experiment. This defines the check circuits and evaluation
circuits for P2. Next, in each instance i in which P1 acts as OT receiver in step 2
and sends message hi, we extract (using the WI proof of knowledge) either logg hi

or logg(C̃/hi). In the former case we set xi = 0 and in the latter case we set
xi = 1. Then, when computing the κ responses for the ith OT, in each response
that corresponds to an evaluation circuit j of P2 we continue to use ṽxi

j,n+i but we

replace ṽ1−xi
j,n+i with the all-0 string. (Responses that correspond to check circuits

of P2 are treated exactly as before.)

In addition, for each evaluation circuit j of P2 and i = 1, . . . , n, we now set
ComSetj,i = {Com(ṽyi

j,i),Com(g)}, in random permuted order.

Indistinguishability of Experiments 0 and 1 follows easily from the security
of Naor-Pinkas OT (based on the CDH assumption in the random-oracle model)
and computational hiding of Com.

Experiment 2. Now we generate all the evaluation circuits of P2 using the
garbled-circuit simulator SimGC. In more detail: after extracting P1’s effective
input x as in the previous experiment, we compute z = f(x, y). In step 3, once
the {w̃b

j,i} have been determined we compute for every evaluation circuit j the
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simulated garbled circuit9 G̃Cj ← SimGC
(
x, z, {ṽyi

j,i}ni=1, {ṽ
xi
j,n+i}ni=1, {w̃

zi
j,i}ni=1

)
.

The remainder of the experiment is exactly as in Experiment 1.
Indistinguishability of Experiments 1 and 2 follows from security of the

garbled-circuit simulation algorithm as defined in Section 2.2.
Note that in Experiment 2, we no longer use {ṽ1−yi

j,i }ni=1, {ṽ
1−xi
j,n+i}ni=1, or

{w̃1−zi
j,i }ni=1 for any evaluation circuit j of P2.

Experiment 3. This is the same as the previous experiment, except that now
when performing the ith pair of equality tests we proceed as follows: if zi = 1,
we return 0 to both parties in the first equality test; if zi = 0, we return 0 to
both parties in the second equality test (if run).

Indistinguishability of this experiment from Experiment 2 follows from se-

crecy of VSS. Specifically, for i = 1, . . . , n only p̃ub
1−zi

i and κ/2 shares of the
secret s̃1−zi

i are used throughout the entire experiment before the equality tests.
Thus, the probability (in Experiment 2) that P1 can make any of the equality
tests corresponding to 1− zi return 1 is negligible.

Experiment 4. If P1 successfully responds to the “challenge” J̃ chosen during
the cut-and-choose step, we repeatedly rewind P1 in an attempt to find a J̃ ′ ̸=
J̃ for which P1 also responds correctly.10 If no such J̃ ′ is found, output fail.
Otherwise, re-send the original challenge J̃ and continue as in the previous
experiment.

The only difference between this experiment and the previous one occurs in
case P1 responds correctly to only a single challenge J̃ and that challenge hap-
pens to be the one chosen during the experiment. This can occur with probability
at most 1/

(
κ

κ/2

)
.

Experiment 5. We now change how we compute t̃zii for all i. (Recall that t̃zii
represents P2’s guess for P1’s secret szii .) Assuming P1 answers two different

challenges J̃ , J̃ ′ correctly, there is some j∗ ∈ {1, . . . , κ} such that j∗ is an

evaluation circuit with respect to J̃ but a check circuit with respect to J̃ ′. For
any such j∗, we reconstruct szii using the share wzi

j∗,i sent by P1 when answering

challenge J̃ ′, along with the κ/2 other shares of szii that were sent by P1 when

answering challenge J̃ . We then set t̃zii = szii and use that value in the relevant
equality test later.

We claim that this experiment is indistinguishable from the previous one;
this is the crux of the proof. To prove this, we show that the shares {wzi

j∗,i}ni=1

computed in Experiment 5 are, except with negligible probability, the same
shares that P2 obtains by evaluating circuit GCj∗ in Experiment 4. Verifiability
of the secret-sharing scheme then implies that, except with negligible probability,

9 Recall that the first n input wires always denote the inputs of the party generating
the circuit, so in this case correspond to input y.

10 We use standard techniques in order to ensure that the experiment runs in expected
polynomial time. Specifically, in parallel with rewinding P1 and sending a random
challenge J̃ ′ ̸= J̃ we also enumerate over all possible J̃ ′; we output fail if we find
that J̃ is the only challenge to which P1 responds correctly.



14 Yan Huang et al.

the same values {t̃zii }ni=1 are computed in both experiments (namely, even if in
Experiment 4 a valid share from an evaluation circuit other than j∗ is used by
P2 to reconstruct some szii ).

Fix i. To see that the same share wzi
j∗,i is computed in each experiment,

observe that in Experiment 4 the share wzi
j∗,i is computed by evaluating garbled

circuit GCj∗ using input-wire labels for P2’s input that P2 obtains from the
OTs corresponding to circuit j∗, and input-wire labels for P1’s input that were
sent by P1 in step 5. Because P1 responds correctly to challenge J̃ ′, in which
j∗ is a check circuit, we know that: (1) GCj∗ is correctly constructed; (2) the
input-wire labels that P2 obtained from the OTs are correct labels for GCj∗

that correspond to P2’s input y; (3) the input-wire labels for its own input
that P1 sends must be correct labels for GCj∗ (this follows from binding of the
commitments in {ComSetj∗,i}ni=1) and moreover must correspond to the same
effective input x defined by P1’s execution as OT receiver (otherwise we obtain a

discrete logarithm of the random group element C̃). Since GCj∗ , when evaluated
on input-wire labels corresponding to x and y, yields the share wzi

j∗,i on the ith
output wire, we are done.

In Experiment 5 none of P1’s evaluation circuits need to be evaluated by P2.
Moreover, P2 no longer needs to compute its output in any of the OTs in which
it acts as receiver.

Experiment 6. In the previous experiment, when P2 acts as OT receiver it
sends h̃i with either logg h̃i or logg(C/h̃i) known (depending on yi). The input-
wire labels {ṽyi

j,i}ni=1 (when j is an evaluation circuit) are chosen in a similar way.

In this experiment, for i = 1, . . . , n we choose h̃i uniform with logg h̃i known so
that we are simply running the OT execution honestly using input 0. Similarly,
choose ṽyi

j,i uniform with logg ṽ
yi

j,i known for every evaluation circuit j. (Note that

this allows P2 to reveal logg(ṽj,i/h̃i) in step 5 for every evaluation circuit j.)
This experiment is distributed identically to the previous experiment, since

gk and C/gk (where k is uniform in each case) have the same distribution. (P2

also gives a WI proof of knowledge of either logg h̃i or logg(C/h̃i), but we assume
a perfect WI proof is used.)

To conclude, we observe that Experiment 6 can equivalently be described
in terms of an ideal-world execution in which the honest P2 and a simulator S
(playing the role of the first party, and running P1 as a subroutine) interact with
a trusted party computing f . Namely, S works as follows:

1. Choose J in advance; this defines the check circuits and the evaluation
circuits for the simulated P2. Choose C̃ ← G and send it to P1. Receive in
return C ∈ G.

2. For each check circuit j, generate input-wire labels as in the real protocol.
For each evaluation circuit j, choose ãj,1, . . . , ãj,n ← Zq and set ṽj,i = gãj,i

for i = 1, . . . , n. Also choose ṽj,n+i ← {0, 1}n for i = 1, . . . , n.
When P2 acts as OT receiver, run the OT protocol honestly using input 0.
In each instance i in which P2 acts as OT sender, extract from P1 (by

rewinding the WI proof of knowledge) either logg hi or logg(C̃/hi). In the
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former case set xi = 0 and in the latter case set xi = 1. Then, for check
circuits send the final OT message exactly as in the real protocol, and for
any evaluation circuit j send the final OT message using ṽj,n+i as the xi-
input, and the 0-string as the (1− xi)-input.

3. Send x to the trusted party, and receive in return an output z.

Generate {p̃ub
b

i , w̃
b
j,i} as in the real protocol. Then for each evaluation cir-

cuit j, compute G̃Cj ← SimGC
(
x, z, {ṽj,i}2ni=1, {w̃

zi
j,i}ni=1

)
; for each check cir-

cuit j, compute G̃Cj as in the real protocol. Send {G̃Cj}κj=1 and {p̃ub
0

i , p̃ub
1

i }ni=1

to P1.

Receive in return {GCj}κj=1 and {pub0i , pub
1
i }ni=1 from P1.

4. For each check circuit j, compute {C̃omSetj,i}ni=1 as in the real protocol. For

each evaluation circuit j, set C̃omSetj,i = {Com(ṽj,i),Com(g)} in random
permuted order. Send all these pairs of commitments to P1, and receive in
return all the pairs of commitments from P1.

5. Give P1 the value J as the output of the appropriate coin-tossing proto-
col. Respond for all check circuits as in the real protocol. For each eval-
uation circuit j, send {ṽj,i}ni=1, open the appropriate commitment from

{C̃omSetj,i}ni=1, and send {logg(ṽj,i/h̃i)}ni=1, where h̃i is the message sent
by P2 in the ith OT when P2 is receiver.

Choose J̃ at random as in the real protocol, and give it to P1. If P1 responds
correctly, then repeatedly rewind to find J̃ ′ ̸= J̃ for which P1 responds
correctly. (If none is found, S aborts with output fail.) Rewind again and

continue the interaction using J̃ .
6. Let j∗ be a circuit which is an evaluation circuit in J̃ , but a check circuit

in J̃ ′. For i = 1, . . . , n, use the κ/2 shares of szii from P1’s check circuits
(with respect to J ) plus the additional share of szii from circuit j∗ (that was

a check circuit with respect to J̃ ′) to reconstruct szii . Set t̃zii = szii .

7. For i = 1, . . . , n, do the following.

– If zi = 0, obtain P1’s input s0i ∥t0i to the first equality test. If s0i ∥t0i =
t̃0i ∥s̃0i , return 1; else return 0. Return 0 to the second equality test (if
run).

– If zi = 1, return 0 to the first equality test. Then obtain P1’s input s
1
i ∥t1i

to the second equality test. If s1i ∥t1i = t̃1i ∥s̃1i , return 1; else return 0.

If for some i both equality tests return 0, abort. If an abort occurred, send
abort to the trusted party; otherwise, send continue.

This completes the proof.
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A Experimental Results

We describe some preliminary experimentals indicating that our protocol signif-
icantly outperforms the recent work of [18].

We implemented our protocol in Java using all the optimizations of Sec-
tion 4.1. We evaluated the protocol at the 80-bit security level, which means
in particular that (1) each party generates 84 garbled circuits, 42 of which are
checked; (2) the length of all wire labels is 80 bits; and (3) we use an order-q
subgroup of Z∗

p where |p| = 1024, |q| = 160. We ran experiments over a LAN
using two laptops with Intel Core i7 2.4GHz processors. Note that 80-bit security
was also used in the experiments of [18].

In typical settings where the number of gates in the underlying circuit is
much larger than the number of inputs/outputs, the dominant overall cost of
the protocol is the generation, sending, and checking of the garbled circuits.
When each side uses only a single core, our protocol evaluates circuits at the
rate of 1.4 ms/gate. By comparison, the implementation of Kreuter et al. [18]
evaluates circuits at the rate of about 8 ms/gate when a single thread is used.

When each side utilizes two cores, our protocol evaluates circuits at the rate
of 0.8 ms/gate; by comparison, the two-threaded execution in [18] achieved a rate
of roughly 4 ms/gate. We do not gain a factor of 2 in performance by leveraging a
second core in part because the parties are sometimes idle, and in part because
of inter-thread interference (e.g., due to cache contention and dependence on
shared hardware and I/O).

Our measured performance gains relative to [18] exceed the expected factor
of 3. This may be due to differences in hardware or implementation, or the
complexity of managing multiple threads in the implementation of [18] regardless
of how many cores are being used.

The number of public-key operations used in our protocol scales linearly with
the lengths of the inputs and outputs, though we stress again that in typical
scenarios the number of gates is much larger than the number of inputs/outputs
and so the overall performance impact of these public-key operations is small.
Nevertheless, we measured performance of this aspect of our protocol as well.
When each side uses a single core, our protocol processes inputs at the rate
of 0.7 s/bit (our experiments assume the lengths of the parties’ inputs are the
same). Output is computed at the rate of 0.1 s/bit.


