
Fast Cut-and-Choose Based Protocols for
Malicious and Covert Adversaries?

Yehuda Lindell

Dept. of Computer Science
Bar-Ilan University, Israel

lindell@biu.ac.il

Abstract. In the setting of secure two-party computation, two parties
wish to securely compute a joint function of their private inputs, while
revealing only the output. One of the primary techniques for achieving
efficient secure two-party computation is that of Yao’s garbled circuits
(FOCS 1986). In the semi-honest model, where just one garbled cir-
cuit is constructed and evaluated, Yao’s protocol has proven itself to be
very efficient. However, a malicious adversary who constructs the gar-
bled circuit may construct a garbling of a different circuit computing a
different function, and this cannot be detected (due to the garbling). In
order to solve this problem, many circuits are sent and some of them
are opened to check that they are correct while the others are evaluated.
This methodology, called cut-and-choose, introduces significant overhead,
both in computation and in communication, and is mainly due to the
number of circuits that must be used in order to prevent cheating.
In this paper, we present a cut-and-choose protocol for secure computa-
tion based on garbled circuits, with security in the presence of malicious
adversaries, that vastly improves on all previous protocols of this type.
Concretely, for a cheating probability of at most 2−40, the best previous
works send between 125 and 128 circuits. In contrast, in our protocol 40
circuits alone suffice (with some additional overhead). Asymptotically, we
achieve a cheating probability of 2−s where s is the number of garbled
circuits, in contrast to the previous best of 2−0.32s. We achieve this by
introducing a new cut-and-choose methodology with the property that
in order to cheat, all of the evaluated circuits must be incorrect, and not
just the majority as in previous works.

1 Introduction

Background. Protocols for secure two-party computation enable a pair of
parties P1 and P2 with private inputs x and y, respectively, to compute a
function f of their inputs while preserving a number of security proper-
ties. The most central of these properties are privacy (meaning that the
parties learn the output f(x, y) but nothing else), correctness (meaning
that the output received is indeed f(x, y) and not something else), and

? This work was funded by the European Research Council under the European Union’s
Seventh Framework Programme (FP/2007-2013) / ERC Grant Agreement n. 239868.

independence of inputs (meaning that neither party can choose its input
as a function of the other party’s input). The standard way of formaliz-
ing these security properties is to compare the output of a real protocol
execution to an “ideal execution” in which the parties send their inputs
to an incorruptible trusted party who computes the output for the par-
ties. Informally speaking, a protocol is then secure if no real adversary
attacking the real protocol can do more harm than an ideal adversary (or
simulator) who interacts in the ideal model [12,10,24,2,4,11]. An impor-
tant parameter when considering this problem relates to the power of the
adversary. Three important models are the semi-honest model (where the
adversary follows the protocol specification exactly but tries to learn more
than it should by inspecting the protocol transcript), the malicious model
(where the adversary can follow any arbitrary polynomial-time strategy),
and the covert model (where the adversary may behave maliciously but
is guaranteed to be caught with probability ε if it does [1]).

Efficient secure computation and Yao’s garbled circuits. The problem of
efficient secure computation has recently gained much interest. There are
now a wide variety of protocols, achieving great efficiency in a variety of
settings. These include protocols that require exponentiations for every
gate in the circuit [28,16] (these can be reasonable for small circuits but
not large ones with tens or hundreds of thousands of gates), protocols
that use the “cut and choose” technique on garbled circuits [20,21,29,25],
and more [27,14,15,6,18,3,26,7]. The recent protocols of [26,7] have very
fast online running time. However, for the case of Boolean circuits and
when counting the entire running time (and not just the online time), the
method of cut-and-choose on garbled circuits is still the most efficient way
of achieving security in the presence of covert and malicious adversaries.

Protocols for cut-and-choose on garbled circuits [20,21,29,25] all work
in the following way. Party P1 constructs a large number of garbled cir-
cuits and sends them to party P2. Party P2 then chooses a subset of the
circuits which are opened and checked. If all of these circuits are correct,
then the remaining circuits are evaluated as in Yao’s protocol [30], and
P2 takes the majority output value as the output. The cut-and-choose
approach forces P1 to garble the correct circuit, since otherwise it will be
caught cheating. However, it is important to note that even if all of the
opened circuits are correct, it is not guaranteed that all of the unopened
circuits are correct. This is due to the fact that if there are only a small
number of incorrect circuits, then with reasonable probability these may
not be chosen to be opened. For this reason, it is critical that P2 outputs
the majority output, since the probability that a majority of unopened

circuits are incorrect when all opened circuits are correct is exponentially
small in the number of circuits. We stress that it is not possible for P2 to
abort in case it receives different outputs in different circuits, even though
in such a case it knows that P1 cheated, because this opens the door to the
following attack. A malicious P1 can construct a single incorrect circuit
that computes the following function: if the first bit of P2’s input equals 0
then output random garbage; else compute the correct function. Now, if
this circuit is not opened (which happens with probability 1/2) and if
the first bit of P2’s input equals 0, then P2 will receive a different output
in this circuit and in the others. In contrast, if the first bit of P2’s input
equals 1 then it always receives the same output in all circuits. Thus, if the
protocol instructs P2 to abort if it receives different outputs, then P1 will
learn the first bit of P2’s input (based on whether or not P2 aborts). By
having P2 take the majority value as output, P1 can only cheat if the ma-
jority of the unopened circuits are incorrect, while all the opened ones are
correct. In [21] it was shown that when s circuits are sent and half of them
are opened, the probability that P1 can cheat is at most 2−0.311s. Thus,
concretely, in order to obtain an error probability of 2−40, it is necessary
to set s = 128 and so use 128 circuits, which means that the approxi-
mate cost of achieving security in the presence of malicious adversaries
is 128 times the cost of achieving security in the presence of semi-honest
adversaries. In [29], it was shown that by opening and checking 60% of
the circuits instead of 50%, then the error becomes 2−0.32s which means
that it suffices to send 125 circuits in order to obtain a concrete error of
2−40. It was claimed in [29] that these parameters are “optimal for the
cut-and-choose method” and that they establish “a close characterization
of the limit of the cut-and-choose method”. We show that these protocols
are actually far from the “limit” of this method.

Our results. In this paper, we present a novel twist on the cut-and-choose
strategy used in [20,21,29,25] that enables us to achieve an error of just
2−s with s circuits (and some small additional overhead). Concretely,
this means that just 40 circuits are needed for error 2−40. Our protocol is
therefore much more efficient than previous protocols (there is some small
additional overhead but this is greatly outweighed by the savings in the
garbled circuits themselves unless the circuit being computed is small).
We stress that the bottleneck in protocols of this type is the computation
and communication of the s garbled circuits. This has been demonstrated
in implementations. In [9], the cost of the circuit communication and
computation for secure AES computation is approximately 80% of the
work. Likewise in [17, Table 7] regarding secure AES computation, the

bandwidth due to the circuits was 83% of all bandwidth and the time
was over 50% of the time. On large circuits, as in the edit distance, this
is even more significant with the circuit generation and evaluation taking
99.999% of the time [17, Table 9]. Thus, the reduction of this portion of
the computation to a third of the cost is of great significance.

We present a high-level outline of our new technique in Section 2.
For now, we remark that the cut-and-choose technique on Yao’s garbled
circuits introduces a number of challenges. For example, since the parties
evaluate numerous circuits, it is necessary to enforce that the parties use
the same input in all circuit computations. In addition, a selective input
attack whereby P1 provides correct garbled inputs only for a subset of the
possible inputs of P2 must be prevented (since otherwise P2 will abort if
its input is not in the subset because it cannot compute any circuit in this
case, and thus P1 will learn something about P2’s input based on whether
or not it aborts). There are a number of different solutions to these prob-
lems that have been presented in [20,21,29,25,9]. The full protocol that
we present here is based on the protocol of [21]. However, these solutions
are rather “modular” (although this is meant in an informal sense), and
can also be applied to our new technique; this is discussed at the end of
Section 2. Understanding which technique is best will require implemen-
tation since they introduce tradeoffs that are not easily comparable. We
leave this for future work, and focus on the main point of this work which
is that it is possible to achieve error 2−s with just s circuits. In Section 3.1
we present an exact efficiency count of our protocol.

Covert adversaries. Although not always explicitly proven, the known
protocols for cut-and-choose on garbled circuits achieve covert security
where the deterrent probability ε that the adversary is caught cheating
equals 1 minus the statistical error of the protocol. That is, the protocol
of [21] yields covert security of ε = 1− 2−0.311s (actually, a little better),
and the protocol of [29] yields covert security with ε = 1−2−0.32s. Our pro-
tocol achieves covert security with deterrent ε = 1− 2−s+1 (i.e., the error
is 2−s+1) which is far more efficient than all previous work. Specifically,
in order to obtain ε = 0.99, the number of circuits needed in [21] is 24.
In contrast, with our protocol, it suffices to use 8 circuits. Furthermore,
with just 11 circuits, we achieve ε = 0.999, which is a high deterrent.

2 The New Technique and Protocol Outline

The idea behind our new cut-and-choose strategy is to design a protocol
with the property that the party who constructs the circuits (P1) can

cheat if and only if all of the checked circuits are correct and all of
the evaluated circuits are incorrect. Recall that in previous protocols, if
the circuit evaluator (P2) aborts if the evaluated circuits don’t all give
the same output, then this can reveal information about P2’s input to
P1. This results in an absurd situation: P2 knows that P1 is cheating
but cannot do anything about it. In our protocol, we run an additional
small secure computation after the cut-and-choose phase so that if P2

catches P1 cheating (namely, if P2 receives inconsistent outputs) then in
the second secure computation it learns P1’s full input x. This enables P2

to locally compute the correct output f(x, y) once again. Thus, it is no
longer necessary for P2 to take the majority output. Details follow.

Phase 1 – first cut-and-choose:

– Parties P1 (with input x) and P2 (with input y) essentially run a pro-
tocol based on cut-and-choose of garbled circuits, that is secure for
malicious adversaries (like [21] or [29]). P1 constructs just s circuits
(for error 2−s) and the strategy for choosing check or evaluation cir-
cuits is such that each circuit is independently chosen as a check or
evaluation circuit with probability 1/2 (unlike all previous protocols
where a fixed number of circuits are checked).

– If all of the circuits successfully evaluated by P2 give the same output
z, then P2 locally stores z. Otherwise, P2 stores a “proof” that it
received two inconsistent output values in two different circuits. Such
a proof could be having a garbled value associated with 0 on an output
wire in one circuit, and a garbled value associated with 1 on the same
output wire in a different circuit. (This is a proof since if P2 obtains
a single consistent output then the garbled values it receives on an
output wire in different circuits are all associated with the same bit.)

Phase 2 – secure evaluation of cheating: P1 and P2 run a protocol
that is secure for malicious adversaries with error 2−s (e.g., they use the
protocol of [21,29] with approximately 3s circuits), in order to compute
the following:

– P1 inputs the same input x as in the computation of phase 1 (and
proves this).

– P2 inputs random values if it received a single output z in phase 1,
and inputs the proof of inconsistent output values otherwise.

– If P2’s input is a valid proof of inconsistent output values, then P2

receives P1’s input x; otherwise, it receives nothing.

If this secure computation terminates with abort, then the parties abort.

Phase 3 – output determination: If P2 received a single output z in
phase 1 then it outputs z and halts. Otherwise, if it received inconsistent
outputs then it received x in phase 2. P2 locally computes z = f(x, y)
and outputs it. We stress that P2 does not provide any indication as to
whether z was received from phase 1 or locally computed.

Security. The argument for the security of the protocol is as follows.
Consider first the case that P1 is corrupted and so may not construct
the garbled circuits correctly. If all of the check circuits are correct and
all of the evaluation circuits are incorrect, then P2 may receive the same
incorrect output in phase 1 and will therefore output it. However, this
can only happen if each incorrect circuit is an evaluation circuit and each
correct circuit is a check circuit. Since each circuit is an evaluation or
check circuit with probability exactly 1/2 this happens with probability
exactly 2−s. Next, if all of the evaluation circuits (that yield valid output)
are correct, then the correct output will be obtained by P2. This leaves the
case that there are two different evaluation circuits that give two different
outputs. However, in such a case, P2 will obtain the required “proof of
cheating” and so will learn x in the 2nd phase, thereby enabling it to still
output the correct value. Since P1 cannot determine which case yielded
output for P2, this can be easily simulated.

Next consider the case that P2 is corrupted. In this case, the only
way that P2 can cheat is if it can provide output in the second phase that
enables it to receive x. However, since P1 constructs the circuits correctly,
P2 will not obtain inconsistent outputs and so will not be able to provide
such a “proof”. (We remark that the number of circuits s sent is used for
the case that P1 is corrupted; for the case that P2 is corrupted a single
circuit would actually suffice. Thus, there is no need to justify the use of
fewer circuits than in previous protocols for this corruption case.)

Implementing phase 2. The main challenge in designing the protocol is
phase 2. As we have hinted, we will use the knowledge of two different
garbled values for a single output wire as a “proof” that P2 received
inconsistent outputs. However, it is also necessary to make sure that P1

uses the same input in phase 1 and in phase 2; otherwise it could use x or
x′, respectively, and then learn whether P2 received output via phase 1
or 2. The important observation is that all known protocols already have
a mechanism for ensuring that P1 uses the same input in all computed
circuits, and this mechanism can be used for the circuits in phase 1 and 2,
since it does not depend on the circuits being computed being the same.

Another issue that arises is the efficiency of the computation in phase 2.
In order to make the circuit for phase 2 small, it is necessary to construct

all of the output wires in all the circuits of phase 1 so that they have the
same garbled values on the output wires. This in turn makes it necessary
to open and check the circuits only after phase 2 (since opening a circuit
to check it reveals both garbled values on an output wire which means
that this knowledge can no longer be a proof that P1 cheated). Thus, the
structure of the actual protocol is more complex than previous protocols;
however, this relates only to its description and not efficiency.

We remark that we use the method of [21] in order to prove the
consistency of P1’s input in the different circuits and between phase 1
and phase 2. However, we believe that the methods used in [29,25], for
example, would also work, but have not proven this.

3 The Protocol

Preliminaries – modified batch single-choice cut-and-choose OT. The cut-
and-choose OT primitive was introduced in [21]. Intuitively, a cut-and-
choose OT is a series of 1-out-of-2 oblivious transfers with the special
property that in some of the transfers the receiver obtains a single value
(as in regular oblivious transfer), while in the others the receiver obtains
both values. For cut-and-choose on Yao’s garbled circuits, the functional-
ity is used for the receiver to obtain all garbled input values in the circuits
that it wishes to open and check, and to obtain only the garbled input
values associated with its input on the circuits to be evaluated.

In [21], the functionality defined is such that the receiver obtains both
values in exactly half of the transfers; this is because in [21] exactly half
of the circuits are opened. In this work, we modify the functionality so
that the receiver can choose at its own will in which transfers it receives
just one value and in which it receives both. We do this since we want
P2 to check each circuit with probability exactly 1/2, independently of

all other circuits. This yields an error of 2−s instead of
(
s
s/2

)−1
, which is

smaller (this is especially significant in the setting of covert adversaries).
This modification introduces a problem since at a later stage in the

protocol the receiver needs to prove to the sender for which transfers it
received both values and for which it received only one. If it is known
that the receiver obtains both values in exactly half of the transfers,
or for any other known number, then the receiver can just send both
values in these transfers (assuming that they are otherwise unknown, as
is the case in the Yao circuit use of the functionality), and the sender
knows that the receiver did not obtain both values in all others; this is
what is done in [21]. However, here the receiver can obtain both values

in an unknown number of transfers, as it desires. We therefore need to
introduce a mechanism enabling the receiver to prove to the sender in
which transfers it did not receive both values, in a way that it cannot
cheat. We solve this by having the sender input s random “check” values,
and having the receiver obtain such a value in every transfer for which
it receives a single value only. Thus, at a later time, the receiver can
send the appropriate check values, and this constitutes a proof that it
did not receive both values in these transfers. See Figure 1 for the formal
functionality definition.

FIGURE 1 (Modified Batch Single-Choice Cut-and-Choose OT Fccot)

Inputs:

– S inputs ` vectors of pairs xi of length s, for i = 1, . . . , `. (Every vector
consists of s pairs; i.e., xi = 〈(xi,10 , xi,11), (xi,20 , xi,21), . . . , (xi,s0 , xi,s1)〉. There
are ` such vectors.) In addition, S inputs s “check values” χ1, . . . , χs. All
values are in {0, 1}n.

– R inputs σ1, . . . σ` ∈ {0, 1} and a set of indices J ⊆ [s].

Output: The sender receives no output. The receiver obtains the following:

– For every i = 1, . . . , ` and for every j ∈ J , the receiver R obtains the jth
pair in vector xi. (I.e., for every i = 1, . . . , ` and every j ∈ J , R obtains
(xi,j0 , xi,j1).)

– For every i = 1, . . . , `, the receiver R obtains the σi value in every pair of
the vector xi. (I.e., for every i = 1, . . . , `, R obtains 〈xi,1σi , x

i,2
σi , . . . , x

i,s
σi 〉.)

– For every k /∈ J , the receiver R obtains χk.

A protocol for securely computing the Fccot functionality, that is based
on the protocol in [21], is provided in the full version of this paper [22].
The computational complexity of the protocol is as follows:

Operation Exact Cost Approximate Cost

Regular exponentiations 1.5s`+ 18.5s+ 25 1.5s`
Fixed-base exponentiations 9s`+ `+ 2s+ 1 9s`
Bandwidth (group elements) 5s`+ `+ 11s+ 15 5s`

Encoded translation tables. We modify the output translation tables typ-
ically used in Yao’s garbled circuits as follows. Let k0i , k

1
i be the garbled

values on wire i, which is an output wire, and let H be a collision-resistant
hash function. Then, the encoded output translation table for this wire is
simply

[
H(k0i), H(k1i)

]
. We require that k0i 6= k1i and if this doesn’t hold

(which will be evident since then H(k0i) = H(k1i)), P2 will automatically
abort. Observe that given a garbled value k, it is possible to determine
whether k is the 0 or 1 key (or possibly neither) by just computing H(k)
and seeing if it equals the first or second value in the pair, or neither.

However, given the encoded translation table, it is not feasible to find the
actual garbled values, since this is equivalent to inverting the one-way
function. This is needed in our protocol, as we will see below. We remark
that both k0i , k

1
i are revealed by the end of the protocol, and only need to

remain secret until Step 7 has concluded (see the protocol below). Thus,
they can be relatively short values.

PROTOCOL 2 (Computing f(x, y))

Inputs: P1 has input x ∈ {0, 1}` and P2 has input y ∈ {0, 1}`.
Auxiliary input: a statistical security parameter s, the description of a cir-
cuit C such that C(x, y) = f(x, y), and (G, q, g) where G is a cyclic group with
generator g and prime order q, and q is of length n. In addition, they hold a
hash function H that is a suitable randomness extractor; see [8].
Specified output: Party P2 receives f(x, y) and party P1 receives no output;
denote the length of the output of f(x, y) by m.

The protocol:

1. Input key choice and circuit preparation:
(a) P1 chooses random values a01, a

1
1, . . . , a

0
` , a

1
` ; r1, . . . , rs ∈R Zq and

b01, b
1
1, . . . , b

0
m, b

1
m ∈R {0, 1}n.

(b) Let w1, . . . , w` be the input wires corresponding to P1’s input in C,
and denote by wi,j the instance of wire wi in the jth garbled circuit,
and by kbi,j the key associated with bit b on wire wi,j . P1 sets the keys
for its input wires to:

k0i,j = H(ga
0
i ·rj) and k1i,j = H(ga

1
i ·rj).

(c) Let w′1, . . . , w
′
m be the output wires in C. Then, the keys for wire w′i in

all garbled circuits are b0i and b1i (unlike all other wires in the circuit,
the same values are used for the output wires in all circuits).

(d) P1 constructs s independent copies of a garbled circuit of C, denoted
GC1, . . . , GCs, using random keys except for wires w1, . . . , w` (P1’s
input wires) and w′1, . . . , w

′
m (the output wires) which are as above.

2. Oblivious transfers: P1 and P2 run a modified batch single-choice cut-
and-choose oblivious transfer, with parameters ` (the number of parallel
executions) and s (the number of pairs in each execution):
(a) P1 defines vectors z1, . . .z` so that zi contains the s pairs of random

symmetric keys associated with P2’s ith input bit yi in all garbled
circuits GC1, . . . , GCs. P1 also chooses random values χ1, . . . , χs ∈R
{0, 1}n. P1 inputs these vectors and the χ1, . . . , χs values.

(b) P2 chooses a random subset J ⊂ [s] where every j ∈ J with prob-
ability exactly 1/2, under the constraint that J 6= [s]. P2 inputs the
set J and bits σ1, . . . , σ` ∈ {0, 1}, where σi = yi for every i.

(c) P2 receives all the keys associated with its input wires in all circuits
GCj for j ∈ J , and receives the keys associated with its input y on
its input wires in all other circuits.

(d) P2 receives χj for every j /∈ J .

PROTOCOL 3 (PROTOCOL 2 – continued)

3. Send circuits and commitments: P1 sends P2 the garbled circuits (i.e.,
the garbled gates). In addition, P1 sends P2 the “seed” for the random-
ness extractor H, and the following displayed values (which constitute a
“commitment” to the garbled values associated with P1’s input wires):{

(i, 0, ga
0
i), (i, 1, ga

1
i)
}`
i=1

and
{

(j, grj)
}s
j=1

In addition, P1 sends P2 the encoded output translation tables, as follows:[(
H(b01), H(b11)

)
, . . . ,

(
H(b0m), H(b1m)

)]
.

If H(b0i) = H(b1i) for any 1 ≤ i ≤ m, then P2 aborts.
4. Send cut-and-choose challenge: P2 sends P1 the set J along with

the values χj for every j /∈ J . If the values received by P1 are incorrect,
it outputs ⊥ and aborts. Circuits GCj for j ∈ J are called check-circuits,
and for j /∈ J are called evaluation-circuits.

5. P1 sends its garbled input values in the evaluation-circuits: P1

sends the keys associated with its inputs in the evaluation circuits: For
every j /∈ J and every wire i = 1, . . . , `, party P1 sends the value k′i,j =

ga
xi
i ·rj ; P2 sets ki,j = H(k′i,j).

6. Circuit evaluation: P2 uses the keys associated with P1’s input ob-
tained in Step 5 and the keys associated with its own input obtained in
Step 2c to evaluate the circuits GCj for every j /∈ J . If P2 receives only
one valid output value per output wire (i.e., one of b0i , b

1
i , verified against

the encoded output translation tables) and it does not abort in the next
step, then this will be its output. If P2 receives two valid outputs on one
output wire (i.e., both b0i and b1i for output wire w′i) then it uses these in
the next step. If there exists an output wire for which P2 did not receive
a valid value in any evaluation circuit (neither b0i nor b1i), then P2 aborts.

7. Run secure computation to detect cheating:
(a) P1 defines a circuit with the values b01, b

1
1, . . . , b

0
m, b

1
m hardcoded. The

circuit computes the following function:
i. P1’s input is a string x ∈ {0, 1}`, and it has no output.

ii. P2’s input is a pair of values b0, b1.
iii. If there exists a value i (1 ≤ i ≤ m) such that b0 = b0i and b1 = b1i ,

then P2’s output is x; otherwise it receives no output.
(b) P1 and P2 run the protocol of [21] on this circuit (except for the proof

of P1’s input values), as follows:
i. P1 inputs its input x; If P2 received b0i , b

i
1 for some 1 ≤ i ≤ m,

then it inputs the pair b0i , b
1
i ; otherwise it inputs garbage.

ii. The garbled circuit constructed by P1 uses the same a0i , a
1
i values

as above (i.e., the same triples (i, 0, ga
0
i), (i, 1, ga

1
i)), but indepen-

dent rj values. In addition, regular translation tables are used,
and not encoded translation tables. Finally, the parties use 3s
copies of the circuit (and not s).

iii. P2 takes the majority output from the evaluation circuits, as
in [21]. If any of the checked circuits are invalid, then P2 aborts.
We stress that this check includes the check that the circuit has
the correct b01, b

1
1, . . . , b

0
m, b

1
m values hardcoded; P2 checks this rel-

ative to the encoded translation tables that it received.

PROTOCOL 2 – continued

7. Run secure computation to detect cheating (cont.): If this compu-
tation results in an abort, then both parties halt at this point and output
⊥. (Note that in the protocol of [21] both parties must know the circuit.
However, the oblivious transfers that determine P2’s input are run before
the circuit is sent and checked. Thus, P1 can send the b01, b

1
1, . . . , b

0
m, b

1
m

values to P2 after the oblivious transfers are concluded; P2 can check
these values against the encoded translation tables and can then check
that these are the values that are hardwired into the circuit.)

8. Check circuits for computing f(x, y):
(a) Send all input garbled values in check-circuits: For every

check-circuit GCj , party P1 sends the value rj to P2, and P2 checks
that these are consistent with the pairs {(j, grj)}j∈J received in
Step 3. If not, P2 aborts outputting ⊥.

(b) Correctness of check circuits: For every j ∈ J , P2 uses the

ga
0
i , ga

1
i values it received in Step 3, and the rj values it received

in Step 8a, to compute the values k0i,j = H(ga
0
i ·rj), k1i,j = H(ga

1
i ·rj)

associated with P1’s input in GCj . In addition it sets the garbled
values associated with its own input in GCj to be as obtained in
the cut-and-choose OT. Given all the garbled values for all input
wires in GCj , party P2 decrypts the circuit and verifies that it is
a garbled version of C, using the encoded translation tables for the
output values. If there exists a circuit for which this does not hold,
then P2 aborts and outputs ⊥.

9. Verify consistency of P1’s input: Let Ĵ be the set of check circuits
in the computation in Step 7, and let r̂j be the value used to generate the
keys associated with P1’s input in the jth circuit, just like rj in Step 1a

(i.e., H(ga
0
i ·r̂j) is the 0-key on the ith input wire of P1 in the jth garbled

circuit used in Step 7). Let k̂i,j be the analogous value of k′i,j in Step 5
received by P2 in the computation in Step 7.
For every input wire i = 1, . . . , `, party P1 proves a zero-knowledge proof
of knowledge that there exists a σi ∈ {0, 1} such that for every j /∈ J and

every j′ /∈ J ′, k′i,j = ga
σi
i ·rj AND k̂i,j = ga

σi
i ·r̂j (note that P2 has grj and

gr̂j for every j, and ga
0
i , ga

1
i for every i; thus this is just a Diffie-Hellman

tuple proof). If any of the proofs fail, then P2 aborts and outputs ⊥.
10. Output evaluation: If P2 received no inconsistent outputs from the

evaluation circuits GCi (i /∈ J), then it decodes the outputs it received
using the encoded translation tables, and outputs the string received. If
P2 received inconsistent output, then let x be the output that P2 received
from the second computation in Step 7. Then, P2 computes f(x, y) and
outputs it.

The circuit for step 7. A naive circuit for computing the function in Step 7
can be quite large. Specifically, to compare two n bit strings requires 2n
XORs followed by 2n ORs; if the output is 0 then the strings are equal.
This has to be repeated m times, once for every i, and then the results
have to be ORed. Thus, there are 2mn+m non-XOR gates. Assuming n
is of size 80 (e.g., which suffices for the output values) and m is of size 128,
this requires 20, 480 non-XOR gates, which is very large. An alternative
is therefore to compute the following garbled circuit:

1. For every i = 1, . . . ,m,
(a) Compare b0‖b1 to b0i ‖b1i (where ‘‖’ denotes concatenation) by XOR-

ing bit-by-bit, and take the NOT of each bit. This is done as in a
regular garbled circuit; by combining the NOT together with the
XOR this has the same cost as a single XOR gate.

(b) Compute the 2n-wise AND of the bits from above. Instead of us-
ing 2n−1 Boolean AND gates, this can be achieved by encrypting
the 1-key on the output wire under all n keys (together with re-
dundancy so that the circuit evaluator can know if it received the
correct value). Furthermore, this encryption can be a “one-time
pad” and thus is just the XOR of all of the 1-keys on the input
wires together with the 1-key on the output way. The 0-key for the
output can be given in the clear, since it provides no additional
information, but is not needed so can just not be given (note that
P2 knows exactly which case it is in). Note that the result of this
operation is 1 if and only if b0‖b1 = b0i ‖b1i and so P2 had both keys
on the ith output wire.

2. Compute the OR of the m bits resulting from the above loop. Instead
of using m − 1 Boolean OR gates, this can be achieved by simply
setting the 1-key on all of the output wires from the n-wise ANDs
above to be the 1-key on the output wire of the OR. This ensures
that as soon as the 1-key is received from an n-wise AND, the 1-key is
received from the OR, as required. (This reveals for which i the result
of the n-wise AND was 1. However, this is fine here since P2 knows
exactly where equality should be obtained in any case.)

3. Compute the AND of the output from the previous step with all of
the input bits of P1. This requires ` Boolean AND gates.

4. The output wires include the output of the OR (so that P2 can know if
it received x or nothing), together with the output of all of the ANDs
with the input bits of P1.

The original and optimized circuits are depicted in the full version [22].
The number of non-XOR operations required to securely compute this

circuit is just ` binary AND gates. Assuming ` = 128 (e.g., as in the
secure AES example), we have that there are only 128 non-XOR gates.
When using 128 circuits as in our instantiation of Step 7 via [21], this
comes to 16,384 garbled gates overall, which is significant but not too
large. We stress that the size of this circuit is independent of the size of
the circuit for the function f to be computed. Thus, this becomes less
significant as the circuit becomes larger. On the other hand, for very
small circuits or when the input size is large relative to the overall circuit
size, our approach will not be competitive. To be exact, assume a garbled
circuit approach that requires 3s circuits. If 3s|C| < s|C| + 3s · ` then
our protocol will be slower (since the cost of our protocol is s|C| for the
main computation plus 3s` for the circuit of Step 7, in contrast to 3s|C|
for the other protocol). This implies that our protocol will be faster as
long as |C| > 3`

2 . Concretely, if ` = 128 and s = 40, it follows that our
protocol will be faster as long as |C| > 192. Thus, our protocol is much
faster, except for the case of very small circuits.

Additional optimizations. Observe that although the above circuit is very
small, P2’s input size is 2n and this is quite large. Since the input size has
a significant effect on the cost of the protocol (especially when using cut-
and-choose oblivious transfer), it would be desirable to reduce this. This
can be achieved by first having P2 input b0⊕ b1 instead of b0‖b1, reducing
the input length to n (this is sound since if P2 does not have both keys on
any output wire then it cannot know their XOR). Furthermore, in order
to obtain a cheating probability of 2−40 it suffices for the circuit to check
only the first 40 bits of b0 ⊕ b1. (Note that bi0 and bi1 have to be longer
since H(b0i), H(b1i) are published; nevertheless, only 40 bits need to be
included in the circuit. When using this optimization, the length of bi0, b

i
1

can be 128 bits and not 80, which is preferable.) Finally, by choosing all
of the b0i , b

1
i values so that they have the same fixed XOR (i.e., for some

∆ it holds that for all i, b0i ⊕ b1i = ∆, as in the free XOR technique),
the size of the circuit is further reduced. This significantly reduces the
bandwidth; a diagram of this circuit appears in the full version [22].

Security. In the full version of this paper [22], we prove the following
theorem:

Theorem 4. Assume that the Decisional Diffie-Hellman assumption holds
in (G, g, q), and that H is a collision-resistant hash function. Then, Pro-
tocol 2 securely computes f in the presence of malicious adversaries (with
error 2−s + µ(n) where µ(·) is some negligible function).

3.1 A Detailed Efficiency Count and Comparison

In this section we provide an exact efficiency count of our protocol. This
will enable an exact comparison of our protocol to previous and future
works, as long as they also provide an exact efficiency count. We count
exponentiations, symmetric encryptions and bandwidth. We let n denote
the length of a symmetric encryption, and an arbitrary string of length
of the security parameter (e.g., χj).

Step
Fixed-base
exponent.

Regular
exponent.

Symmetric
Encryptions

Group
elms sent

Symmetric
comm

1 2s` 0 4s|C|
2 9s` 1.5s` 5s`
3 `+ s 0 2`+ s 4ns|C|
4 s

2
· n

5 nm
6 s

2
· |C|

7 9s`+ 5040s 480s 19.5` 21s` 12sn`
8 s/2 + s` s

2
· 4|C| s

2
· n

9 2s`+ 18` 10 2s`n

TOTAL 21s` + 5040s
3.5s` + 18`

+480s

6.5s|C|+
19.5s` 26s` 4ns|C| + 14s`n

The number of symmetric encryptions is counted as follows: each cir-
cuit requires 4|C| symmetric encryptions to construct, 4|C| symmetric
encryption to check, and |C| encryptions to evaluate (we assume a sin-
gle encryption per entry; if standard double-encryption is used then this
should be doubled). Since approximately half of the circuits are check and
half are evaluation, the garbling, checking and evaluation of the main gar-
bled circuit accounts for approximately s ·4|C|+ s

2 ·4|C|+
s
2 · |C| = 6.5s|C|

symmetric encryptions. The garbled circuit used in Step 7 has ` non-XOR
gates and so the same analysis applies on this size. However, the num-
ber of circuits sent in this step is 3s and thus we obtain an additional
3× 6.5 · s · ` = 19.5s`.

The bandwidth count for Step 7 is computed based on the counts
provided in [21], using 3s circuits. The cost of the exponentiations is based
on the fact that in [21], if P1 has input of length `1 and P2 has input of
length `2, and s′ circuits are used, then there are 3.5s′`1 + 10.5s′`2 fixed-
base exponentiations and s′`2 regular exponentiations. However, 0.5s′`1 of
the fixed-base exponentiations are for the proof of consistency and these
are counted in Step 9 instead. Now, in Step 7, P1’s input length is ` (it is
the same x as for the entire protocol) and P2’s input is comprised of two
garbled values for the output wires. Since these must remain secret for

only a short amount of time, it is possible to take 80-bit values only and
so P2’s input length is 160 bits (this is irrespective of P2’s input length to
the function f). Taking s′ = 3s and plugging these lengths this into the
above, we obtain the count appearing in the table.

The proof of consistency of P1’s input is carried out ` times (once
for each bit of P1’s input) and over s + 3s = 4s circuits (since there are
s circuits for the main computation of C, plus another 3s circuits for
the computation in Step 7). By the count in [21], this proof therefore
costs 4s`

2 + 18` exponentiations, and bandwidth of 10 group elements and
another 8s` short strings (this can therefore be counted as 2s`n.

A comparison to [21]. In order to to get a concrete understanding of the
efficiency improvement, we will compare the cost to [21] for the AES cir-
cuit of size 6,800 gates [31], and input and output sizes of 128. Now, as we
have mentioned, the overall cost of the protocol of [21] is 3.5s′`1 +10.5s`2
fixed-base exponentiations, s′`2 regular exponentiations and 6.5s′|C| sym-
metric encryptions. In this case, `1 = `2 = 128, s′ = 125 (s′ = 125 was
shown to suffice for 2−40 security in [17]), and so we have that the cost is
224,000 fixed-base exponentiations, 16,000 regular exponentiations, and
812.5|C| =5,525,000 symmetric encryptions. In contrast, taking ` = 128
and s = 40 we obtain here 309,120 fixed-base exponentiations, 37, 120
regular exponentiations, and 1,874,800 symmetric encryptions. In addi-
tion, the bandwidth of [21] is approximately 112, 000 group elements and
3,400,000 symmetric ciphertexts. At the minimal cost of 220 bits per
group element (e.g., using point compression) and 128 bits per cipher-
text, we have that this would come to approximately 449,640,000 bits, or
close to half a gigabyte (in practice, it would be significantly larger due
to communication overheads). In contrast, the bandwidth of our protocol
for this circuit would be 133,120 group elements and 1,159,680 cipher-
texts. With the same parameters as above, this would be approximately
177,725,440 bits, which is under 40% of the cost of [21]. This is very
significant since bandwidth is turning out to be the bottleneck in many
cases.

Protocol Fixed-base exp. Regular exp. Symmetric encryptions Bandwidth

[21] 224,000 16,000 5,525,000 449,640,000
Here 309,120 37,120 1,874,800 177,725,440

Fig. 1. Comparison of protocols for secure computation of AES

We stress that in larger circuits the difference would be even more
striking.

4 Variants – Universal Composability and Covert
Adversaries

Universal composability [5]. As in [21], by instantiating the cut-and-
choose oblivious transfer and the zero-knowledge proofs with variants
that universally composable, the result is that Protocol 2 is universally
composable.

Covert adversaries [1]. Observe that in the case that P2 is corrupted,
the protocol is fully secure irrespective of the value of s used. In contrast,
when P1 is corrupted, then the cheating probability is 2−s+µ(n). However,
this cheating probability is independent of the input used by the P2 (as
shown in the proof of Theorem 4). Thus, Protocol 2 is suitable for the
model of security in the presence of covert adversaries. Intuitively, since
the adversary can cheat with probability only 2−s and otherwise it is
caught cheating, the protocol achieves covert security with deterrent ε =
1 − 2−s. However, on closer inspection, this is incorrect. Specifically, as
we have discussed above, if P2 catches P1 cheating due to the fact that
two different circuits yield two different outputs, then it is not allowed
to reveal this fact to P1. Thus, P2 cannot declare that P1 is a cheat in
this case, as is required in the model of covert adversaries. However, if P2

detects even a single bad circuit in the check phase, then it can declare
that P1 is cheating, and this happens with probability at least 1/2 (even
if only a single circuit is bad). We can use this to show that for every
s, Protocol 2 securely computes f in the presence of covert adversaries
with deterrent ε = 1 − 2−s+1. In actuality, we need to make a slight
change to Protocol 2, in order to achieve this. See the full version of this
paper for details [22].

As discussed in the introduction, this yields a huge efficiency improve-
ment over previous results, especially for small values of s. For example,
100 circuits are needed to obtain ε = 0.99 in [1], 24 circuits are needed
to obtain ε = 0.99 in [21], and here 8 circuits alone suffice to obtain
ε = 0.99. Observe that when covert security is desired, the number of
circuits sent in Step 7 needs to match the level of covert security. For
example, in order to obtain ε = 0.99, 8 circuits are used in our main
protocol and 24 circuits are used in Step 7.

We remark that our protocol would be a little simpler if P2 always
asked to open exactly half the circuits (especially in the cut-and-choose

oblivious transfer). In this case, the error would be
(
s
s/2

)−1
instead of 2−s.

In order to achieve an error of 2−40 this would require 44 circuits which
is a 10% increase in complexity, and reason enough to use our strategy of
opening each circuit independently with probability 1/2. However, when
considering covert security, the difference is huge. For example, with s = 8

we have that
(

8
4

)−1
= 1/70 whereas 2−8 = 1/256. This is a very big

difference.

Acknowledgements

We thank Benny Pinkas and Ben Riva for helpful discussions.

References

1. Y. Aumann and Y. Lindell. Security Against Covert Adversaries: Efficient Pro-
tocols for Realistic Adversaries. In the Journal of Cryptology, 23(2):281–343,
2010 (extended abstract at TCC 2007).

2. D. Beaver. Foundations of Secure Interactive Computing. In CRYPTO’91,
Springer-Verlag (LNCS 576), pages 377–391, 1991.

3. R. Bendlin, I. Damg̊ard, C. Orlandi and S. Zakarias. Semi-homomorphic En-
cryption and Multiparty Computation. In EUROCRYPT 2011, Springer (LNCS
6632), pages 169–188, 2011.

4. R. Canetti. Security and Composition of Multiparty Cryptographic Protocols.
Journal of Cryptology, 13(1):143–202, 2000.

5. R. Canetti. Universally Composable Security: A New Paradigm for Crypto-
graphic Protocols. In 42nd FOCS, pages 136–145, 2001. Full version available
at http://eprint.iacr.org/2000/067.

6. I. Damg̊ard and C. Orlandi. Multiparty Computation for Dishonest Majority:
From Passive to Active Security at Low Cost. In CRYPTO 2010, Springer
(LNCS 6223), pages 558–576, 2010.

7. I. Damg̊ard, V. Pastro, N.P. Smart and S. Zakarias. Multiparty Computation
from Somewhat Homomorphic Encryption. In CRYPTO 2012, Springer (LNCS
7417), pages 643–662, 2012.

8. Y. Dodis, R. Gennaro, J. Hastad, H. Krawczyk and T. Rabin. Randomness
Extraction and Key Derivation Using the CBC, Cascade and HMAC Modes. In
CRYPTO 2004, Springer (LNCS 3152), pages 494–510, 2004.

9. T.K. Frederiksen and J.B. Nielsen. Fast and Maliciously Secure Two-Party Com-
putation Using the GPU. Cryptology ePrint Archive: Report 2013/046, 2013.

10. S. Goldwasser and L. Levin. Fair Computation of General Functions in Presence
of Immoral Majority. In CRYPTO’90, Springer-Verlag (LNCS 537), pages 77–
93, 1990.

11. O. Goldreich. Foundations of Cryptography: Volume 2 – Basic Applications.
Cambridge University Press, 2004.

12. O. Goldreich, S. Micali and A. Wigderson. How to Play any Mental Game –
A Completeness Theorem for Protocols with Honest Majority. In 19th STOC,
pages 218–229, 1987.

13. C. Hazay and Y. Lindell. Efficient Secure Two-Party Protocols: Techniques and
Constructions. Springer, November 2010.

14. Y. Ishai, M. Prabhakaran and A. Sahai. Founding Cryptography on Oblivious
Transfer – Efficiently. In CRYPTO 2008, Springer (LNCS 5157), pages 572–591,
2008.

15. Y. Ishai, M. Prabhakaran and A. Sahai. Secure Arithmetic Computation with
No Honest Majority. In TCC 2009, Springer (LNCS 5444), pages 294–314, 2009.

16. S. Jarecki and V. Shmatikov. Efficient Two-Party Secure Computation on Com-
mitted Inputs. In EUROCRYPT 2007, Springer (LNCS 4515), pages 97–114,
2007.

17. B. Kreuter, A.Shelat, and C. Shen. Billion-Gate Secure Computation with Ma-
licious Adversaries. In the 21st USENIX Security Symposium, 2012.

18. Y. Lindell, E. Oxman and B. Pinkas. The IPS Compiler: Optimizations, Variants
and Concrete Efficiency. In CRYPTO 2011, Springer (LNCS 6841), pages 259–
276, 2011.

19. Y. Lindell and B. Pinkas. A Proof of Yao’s Protocol for Secure Two-Party
Computation. In the Journal of Cryptology, 22(2):161–188, 2009.

20. Y. Lindell and B. Pinkas. An Efficient Protocol for Secure Two-Party Computa-
tion in the Presence of Malicious Adversaries. In EUROCRYPT 2007, Springer
(LNCS 4515), pages 52–78, 2007.

21. Y. Lindell and B. Pinkas. Secure Two-Party Computation via Cut-and-Choose
Oblivious Transfer. In TCC 2011, Springer (LNCS 6597), pages 329–346, 2011.

22. Y. Lindell. Fast Cut-and-Choose Based Protocols for Malicious and Covert Ad-
versaries. Cryptology ePrint Archive: Report 2013/079, 2013.

23. A.J. Menezes, P.C. van Oorschot and S.A. Vanstone. Handbook of Applied Cryp-
tography, CRC Press, 2001.

24. S. Micali and P. Rogaway. Secure Computation. Unpublished manuscript, 1992.
Preliminary version in CRYPTO’91, Springer-Verlag (LNCS 576), pages 392–
404, 1991.

25. P. Mohassel and B. Riva. Garbled Circuits Checking Garbled Circuits: More Ef-
ficient and Secure Two-Party Computation. Cryptology ePrint Archive, Report
2013/051, 2013.

26. J.B. Nielsen, P.S. Nordholt, C. Orlandi and S.Sheshank Burra. A New Ap-
proach to Practical Active-Secure Two-Party Computation. In CRYPTO 2012,
Springer (LNCS 7417), pages 681–700, 2012.

27. J.B. Nielsen and C. Orlandi. LEGO for Two-Party Secure Computation. In TCC
2009, Springer (LNCS 5444), pages 368–386, 2009.

28. B. Schoenmakers and P. Tuyls. Practical Two-Party Computation Based on the
Conditional Gate. In ASIACRYPT 2004, Springer (LNCS 3329), pages 119–136,
2004.

29. A. Shelat, C.H. Shen. Two-Output Secure Computation with Malicious Adver-
saries. In EUROCRYPT 2011, Springer (LNCS 6632), pages 386–405, 2011.

30. A. Yao. How to Generate and Exchange Secrets. In 27th FOCS, pages 162–167,
1986. See [19] for details.

31. Bristol Cryptography Group. Circuits of Basic Functions Suitable For MPC and
FHE. http://www.cs.bris.ac.uk/Research/CryptographySecurity/MPC/.

	Fast Cut-and-Choose Based Protocols for Malicious and Covert Adversaries

