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Abstract. The Advanced Encryption Standard (AES) is the most widely
used block cipher. The high level structure of AES can be viewed as a
(10-round) key-alternating cipher, where a t-round key-alternating ci-
pher KAt consists of a small number t of fixed permutations Pi on n
bits, separated by key addition:

KAt(K,m) = kt ⊕ Pt(. . . k2 ⊕ P2(k1 ⊕ P1(k0 ⊕m)) . . . ),

where (k0, . . . , kt) are obtained from the master key K using some key
derivation function.
For t = 1, KA1 collapses to the well-known Even-Mansour cipher, which
is known to be indistinguishable from a (secret) random permutation, if
P1 is modeled as a (public) random permutation. In this work we seek
for stronger security of key-alternating ciphers — indifferentiability from

an ideal cipher — and ask the question under which conditions on the
key derivation function and for how many rounds t is the key-alternating
cipher KAt indifferentiable from the ideal cipher, assuming P1, . . . , Pt are
(public) random permutations?
As our main result, we give an affirmative answer for t = 5, showing that
the 5-round key-alternating cipher KA5 is indifferentiable from an ideal

cipher, assuming P1, . . . , P5 are five independent random permutations,
and the key derivation function sets all rounds keys ki = f(K), where
0 ≤ i ≤ 5 and f is modeled as a random oracle. Moreover, when |K| =
|m|, we show we can set f(K) = P0(K) ⊕ K, giving an n-bit block
cipher with an n-bit key, making only six calls to n-bit permutations
P0, P1, P2, P3, P4, P5.
Keywords. Even-Mansour, ideal cipher, key-alternating cipher, indif-
ferentiability.

1 Introduction

Block Ciphers. A block cipher E : {0, 1}κ × {0, 1}n → {0, 1}n takes a κ-bit
keyK and an n-bit input x and returns an n-bit output y. Moreover, for each key
K the map E(K, ·) must be a permutation, and come with an efficient inversion



procedure E−1(K, ·). Block ciphers are central primitives in cryptography. Most
importantly, they account for the bulk of data encryption and data authentica-
tion occurring in the field today, as well as play a critical role in the design of
“cryptographic hash functions” [13, 36, 42, 50].

Indistinguishability. The standard security notion for block ciphers is that
of (computational) indistinguishability from a random permutation, which states
that no computationally bounded distinguisher D can tell apart having oracle
access to the block cipher E(K, ·) or its inverse E−1(K, ·) for a random key
K from having oracle access to a (single) truly random permutation P and its
inverse P−1. This security notion is relatively well understood in the theory com-
munity, and is known to be implied by the mere existence of one-way functions,
through a relatively non-trivial path: from one-way functions to pseudorandom
generators [38], to pseudorandom functions (PRFs) [32], to pseudorandom per-
mutations (PRPs) [45], where the latter term is also a “theory synonym” for
the “practical notion” of a block cipher. Among these celebrated results, we
explicitly note the seminal work of Luby-Rackoff [45], who proved that four (in-
dependently keyed) rounds of the Feistel network (L′, R′) = (R, f(K,R) ⊕ L),
also known as the “Luby-Rackoff construction”, are enough to obtain a PRP
E((K1,K2,K3,K4), (L0, R0)) on n-bit inputs/outputs from four n/2-to-n/2-
bits PRFs f(K1, R0), . . . , f(K4, R3). In fact, modulo a few exceptions men-
tioned below, the Luby-Rackoff construction and its close relatives were the
only theoretically-analyzed ways to build a block cipher.

Is Indistinguishability Enough? Despite this theoretical success, practical
ciphers — including the current block cipher standard AES — are built using
very different means. One obvious reason is that the theoretical feasibility results
above are generally too inefficient to be of practical use (and, as one may argue,
were not meant to be). However, a more subtle but equally important reason
is that a practitioner — even the one who understands enough theory to know
what a PRP is — would not think of a block cipher as a synonym of a PRP, but
as something much stronger!

For example, the previous U.S. block cipher standard DES had the following
so called “key complementary” property E(K̄, x̄) = E(K,x), where ȳ stands for
the bitwise complement of the string y. Although such an equality by itself does
not contradict the PRP property, though effectively reducing the key space by a
half, it was considered undesirable and typically used as an example of something
that a “good” block cipher design should definitely avoid. Indeed, AES is not
known to have any simple-to-express relations between its inputs/outputs on
related keys. Generally speaking though, related-key attacks under more complex
related-key relations (using nonlinear functions on the master key) for AES were
identified and received a lot of attention in the cryptanalytic community several
years ago [6–8], despite not attacking the standard PRP security. In fact, the
recent biclique cryptanalysis of the full AES cipher [11] in the single-key setting
implicitly uses the similarity of AES computation under related keys.



Indeed, one of the reasons that practical block ciphers are meant to have
stronger-than-PRP properties is that various applications (e.g. [10,23,29,33,36,
39,40,42,49,50,55]) critically rely on such “advanced properties”, which are far
and beyond the basic indistinguishability property. Perhaps the most important
such example comes in the area of building good “hash functions”, as many
cryptographic hash functions, including the most extensively used SHA-1/2 and
MD5 functions, use the famous block-cipher-based Davies-Meyer compression
function f(K,x) = E(K,x) ⊕ x in their design.5 This compression function f
is widely believed to be collision-resistant (CR) if E is a “good-enough” block
cipher (see more below), but this obviously does not follow from the basic PRP
property. For example, modifying any good block cipher E to be the identity
permutation on a single key K ′ clearly does not affect it PRP security much
(since, w.h.p., a random key K 6= K ′), but then f(K ′, x) = x ⊕ x = 0 for
all x, which is obviously not CR. While the example above seems artificial, we
could instead use a natural and quite popular Even-Mansour (EM) [29] cipher
E(K,x) = P (K⊕x)⊕K, where P is some “good-enough” public permutation. As
we mention below, the EM cipher is known to be indistinguishable [29] assuming
P is a public “random permutation”, and, yet, the composed Davies-Meyer hash
function f(K,x) = E(K,x) ⊕ x = P (K ⊕ x) ⊕ (K ⊕ x) is certainly not CR, as
any pair (K,x) 6= (K ′, x′) satisfying K ⊕ x = K ′ ⊕ x′ yields a collision.

Ideal Cipher Model. Motivated by these (and other) considerations, prac-
titioners view a good block cipher as something much closer to an ideal cipher
than a mere PRP, much like they view a good hash function much closer to a
random oracle than a one-way (or collision-resistant) function. In other words,
many important applications of block ciphers (sometimes implicitly) assume that
E “behaves” like a family IC of 2κ completely random and independent permu-
tations P1, . . . , P2κ . More formally, an analysis in the ideal cipher model assumes
that all parties, including the adversary, can make (a bounded number of) both
encryption and decryption queries to the ideal block cipher IC, for any given
key K (not necessarily random!). Indeed, under such an idealistic assumption
one can usually prove the security of most of the above mentioned applications
of block ciphers [23, 29, 33, 36, 39, 40, 42, 49, 50, 55], such as a simple and elegant
proof that the Davies-Meyer compression function f(K,x) = E(K,x)⊕ x is CR
in the ideal cipher model (ICM) [55].

Of course, the ideal cipher model is ultimately a heuristic, and one can con-
struct artificial schemes that are secure in the ICM, but insecure for any concrete
block cipher [9]. Still, a proof in the ideal cipher model seems useful because it
shows that a scheme is secure against generic attacks, that do not exploit specific
weaknesses of the underlying block cipher. Even more important than potential
applications, the ICM gives the block cipher designers a much “higher-than-
PRP” goal that they should strive to achieve in their proposed designs, even
though this goal is, theoretically-speaking, impossible to achieve. This raises
an important question to the theory community if it is possible to offer some

5 Where E is some particular block cipher; e.g., in the case if SHA-1/2, it was called
SHACAL [34,35].



theoretical framework within which one might be able to evaluate the design
of important block ciphers, such as AES, in terms of being “close” to an ideal
cipher or, at least, resisting generic “structure-abusing” attacks.

Indifferentiability. One such framework is the so-called indifferentiability
framework of Maurer et al. [46], popularized by Coron et al. [16] as a clean and
elegant way to formally assess security of various idealized constructions of hash
functions and block ciphers. Informally, given a construction of one (possibly)
idealized primitive B (i.e., block cipher) from another idealized primitive A (i.e.,
random oracle), the indifferentiability framework allows one to formally argue
the security of B in terms of (usually simpler) A. Thus, although one does not
go all the way to building B from scratch, the indifferentiability proof illustrates
the lack of “generic attacks” on B, and shows that any concrete attack must use
something about the internals of any candidate implementation of A. Moreover,
the indifferentiability framework comes with a powerful composition theorem [46]
which means that most natural (see [51]) results shown secure in the “ideal-B”
model can safely use the construction of B using A instead, and become secure
in the “ideal-A” model.

For example, we already mentioned that the design of popular hash func-
tions, such as SHA-1/2 and MD5, could be generically stated in terms of some
underlying block cipher E. Using the indifferentiability framework, one can for-
mally ask if the resulting hash function is indifferentiable from a random oracle
if E is an ideal cipher. Interestingly, Coron et al. [16] showed a negative answer
to this question. Moreover, this was not a quirk of the model, but came from
a well-known (and serious) “extension” attack on the famous Merkle-Damg̊ard
domain extension [21, 47]. Indeed, an attack on indifferentiability usually leads
to a serious real-world attack for some applications, and, conversely, the security
proof usually tells that the high-level design of a given primitive (in this case
hash function) does not have structural weaknesses. Not surprisingly, all candi-
dates for the recently concluded SHA-3 competition were strongly encouraged
to come with a supporting indifferentiability proof in some model (as we will
expand on shortly).

Random Oracle vs. Ideal Cipher. Fortunately, Coron et al. [16] also showed
that several simple tweaks (e.g., truncating the output or doing prefix-free input
encoding) make the resulting hash function construction indifferentiable from
a random oracle. Aside from formally showing that the ICM model “implies”
the random oracle model (ROM) in theory, these (and follow-up [3,14]) positive
results showed that (close relatives of) practically used constructions are “secure”
(in the sense of resisting generic attacks, as explained above).

From the perspective of this work, where we are trying to validate the design
principle behind existing block ciphers, the opposite direction (of building an
ideal cipher from a random oracle) is much more relevant. Quite interestingly, it
happened to be significantly more challenging than building a PRP out of a PRF.
Indeed, the most natural attempt is to use the already mentioned Feistel con-
struction, that uses the given random oracles f to implement the required round



functions.6 However, unlike the standard PRF-PRP case, where four rounds
were already sufficient [45], in the indifferentiability setting even five rounds are
provably insecure [15, 16, 25]. On a high-level, the key issue is that in the lat-
ter framework the distinguisher can have direct access to all the intermediate
round functions, which was provably impossible in the more restricted indis-
tinguishability framework. As a step towards overcoming this difficulty, Dodis
and Puniya [25] considered a variant of the indifferentiability framework called
“honest-but-curious” (HBC) indifferentiability, where the adversary can only
query the global Feistel construction, and get all the intermediate results, but
cannot directly query the round functions. In this model, which turns out to be
incomparable to “standard” indifferentiability [15], they showed that the Feistel
construction with a super-logarithmic number of rounds (with random oracle
round functions) is HBC-indifferentiable from a fixed ideal permutation. The
elegant work of Coron et al. [15] (and later Seurin [54]) conjectured and at-
tempted a “standard” indifferentiability proof for the Feistel construction with
six rounds. Unfortunately, while developing several important techniques, the
proof contained some non-trivial flaws. Fortunately, this result was later fixed
by Holenstein et al. [37], who succeeded in proving that a fourteen-round Feistel
construction can be used to build an ideal cipher from a random oracle.

Key-Alternating Ciphers. Despite this great theoretical success showing the
equivalence between the random oracle and the ideal cipher models, the above
results of [15, 37, 54] only partially address our main motivation of theoretically
studying the soundness of the design of existing block ciphers. In particular,
we notice that (from a high level) there are two major design principles for
block ciphers. The “old school” approach is indeed Feistel-based, with many
prominent ciphers such as DES, Blowfish, Camellia, FEAL, Lucifer, and MARS.
However, it appears that all such ciphers use rather weak (albeit non-trivial)
round functions, and (in large part) get their security by usingmany more rounds
than theoretically predicted. So, while the theoretical soundness of the Feistel
network is important philosophically, it is unclear that random oracle modeling
of the round functions is realistic.

In fact, we already mentioned a somewhat paradoxical fact: while, in theory,
the random oracle model appears much more basic and minimal than the highly
structured ideal cipher model (much like a one-way function is more basic than
a one-way permutation), in practice, the implication appears to be totally re-
versed. In particular, in practice it appears much more accurate to say that hash
functions (or “random oracles”) are built from block ciphers (or “ideal ciphers”)
than the other way around. Indeed, in addition to the widely used SHA-1/2 and

6 The most natural modeling would give a single n-to-n-bit permutation from several
n/2-to-n/2-bit random oracles. However, by prepending the same κ-bit key K to
each such RO, one gets a candidate block cipher. We notice, though, that unlike the
secret-key setting, it is (clearly) not secure to prepend several independent keys to
each round function. We will come back to this important point when discussing the
importance of key derivation in the indifferentiability proofs.



MD5 examples, other prominent block-cipher-based hash functions are recent
SHA-3 finalists BLAKE [2] and Skein [30].

Perhaps most importantly for us, the current block cipher standard AES,
as well as a few other “new school” ciphers (e.g., 3-Way, SHARK, Serpent,
Present, and Square), are not Feistel-based. Instead, such ciphers are called key-
alternating ciphers, and their design goes back to Daemen [18–20]. In general, a
key-alternating cipher KAt consists of a small number t of fixed permutations
Pi on n bits, separated by key addition:

KAt(K,m) = kt ⊕ Pt(. . . k2 ⊕ P2(k1 ⊕ P1(k0 ⊕m)) . . . ),

where the round keys k0, . . . , kt are derived from the master key K using some
key derivation (aka “key schedule”) function. For one round t = 1, the construc-
tion collapses to the well-known Even-Mansour (EM) [29] cipher. Interestingly,
already in the standard “PRP indistinguishability” model, the analysis of the
EM [29] (and more general key-alternating ciphers [12]) seems to require the
modeling of P as a random permutation (but, on the other hand, does not re-
quire another computational assumption such as a PRF). With this idealized
modeling, one can show that the Even-Mansour cipher is indistinguishable [29],
and, in fact, its exact indistinguishablity security increases beyond the “birthday
bound” as the number of round increases to 2 and above [12, 28].

Our Main Question. Motivated by the above discussion, we ask the main
question of our work:

Under which conditions on the key derivation function and for how many
rounds t is the key-alternating cipher KAt indifferentiable from the ideal
cipher, assuming P1, . . . , Pt are random permutations?

As we mentioned, one motivation for this question comes from the actual
design of the AES cipher, whose design principles we are trying to analyze. The
second motivation comes from the importance of having the composition theo-
rem guaranteed by the indifferentiability framework. Indeed, we already saw a
natural example where using the Even-Mansour cipher to instantiate the clas-
sical Davies-Meyer compression function gave a totally insecure construction,
despite the fact that the Davies-Meyer construction was known to be collision-
resistant in the ideal cipher model [55], and the EM cipher indistinguishable in
the random permutation model [29]. The reason for that is the fact that the EM
cipher is easily seen to be not indifferentiable from an ideal cipher. In contrast,
if we were to use a variant of the key alternating cipher which is provably indif-
ferentiable, we would be guaranteed that the composed Davies-Meyer function
remains collision-resistant (now, in the random permutation model).

The third motivation comes from the fact that the direct relationship between
the random permutation (RP) model and the ideal cipher model is interesting
in its own right. Although we know that these primitives are equivalent through
the chain “IC ⇒ RP (trivial) ⇒ RO [24, 26] ⇒ IC [15, 37]”, a direct “RP ⇒
IC” implication seems worthy of study in its own right (and was mentioned as



an open problem in [17]).7 More generally, we believe that the random permu-
tation model (RPM) actually deserves its own place alongside the ROM and
the ICM. The reason is that both the block cipher standard AES and the new
SHA-3 standard Keccak [4] (as well as several other prominent SHA-3 finalists
Grøstl [31] and JH [56]) are most cleanly described using a (constant number of)
permutation(s). The practical reason appears to be that it seems easier to ensure
that the permutation design does not lose any entropy (unlike an ad-hoc hash
function), or would not have some non-trivial relationship among different keys
(unlike an ad-hoc block cipher). Thus, we find the indifferentiability analyses in
the RPM very relevant both in theory and in practice. Not surprisingly, there
has been an increased number of works as of late analyzing various constructions
in the RPM [5,12, 24, 26, 44, 52, 53].

Our Main Result. As our main result, we show the following theorem.

Theorem 1. The 5-round key-alternative cipher KA5 is indifferentiable from
an ideal cipher, assuming P1, . . . , P5 are five independent random permutations,
and the key derivation function sets all rounds keys ki = f(K), where 0 ≤ i ≤ 5
and f is modeled as a κ-to-n-bits random oracle.

A more detailed statement appears in Theorem 3. In particular, our indiffer-
entiability simulator has provable security O(q10/2n), running time O(q3), and
query complexity O(q2) to answer q queries made by the distinguisher. Although
(most likely) far from optimal, our bounds are (unsurprisingly) much better than
the O(q16/2n/2) and O(q8) provable bounds achieved by following the indirect
“random-oracle route” [37].

We also show a simple attack illustrating that a one- or even two-round KAt

construction is never indifferentiable from the ideal cipher (in the full version of
this paper [1]). This should be contrasted with the simpler indistinguishability
setting, where the 1-round Even-Mansour construction is already secure [29].
Indeed, as was the case with Merkle-Damg̊ard based hash function design and
the “extension attack”, the Davies-Meyer composition fiasco of the 1-round EM
cipher demonstrated that this lack of indifferentiability indeed leads to a serious
real-world attack on this cipher.

Finally, we give some justification of why we used 5 rounds, by attacking
several “natural” simulators for the 4-round construction.

Importance of Key Derivation. Recall, in the secret-key indistinguishabil-
ity case, the key derivation function was only there for the sake of minimizing
the key length, and having t+1 independent keys k0, . . . , kt resulted in the best
security analysis. Here, the key K is public and controlled by the attacker. In
particular, it is trivial to see that having t + 1 independent keys is like having
a one-round construction (as then the attacker can simply fix all-but-one-keys
ki), which we know is trivially insecure. Thus, in the indifferentiability setting
it is very important that the keys are somehow correlated (e.g., equal).

7 Indeed, our efficiency and security below are much better than following the indirect
route through random oracle.



Another important property for the key derivation functions, at least if one
wants to optimize the number of rounds, appears to be its invertibility. Very
informally, this means that the only way to compute a valid round ki is to “hon-
estly compute” a key derivation function f on some key K first. In particular, in
our analysis we use a random oracle as such a non-invertible key derivation func-
tion. We give some evidence of the importance of invertibility for understanding
the indifferentiability-security of key-alternating ciphers by (1) critically using
such non-invertibility in our analysis; and (2) showing several somewhat surpris-
ing attacks for the 3-round construction with certain natural “invertible” key
schedules (e.g., all keys ki equal to K for κ = n). We stress that our results do
not preclude the use of invertible key schedules for a sufficiently large number of
rounds (say, 10-12), but only indicate why having non-invertible key schedules
is very helpful in specific analyses (such as ours) and also for avoiding specific
attacks (such as our 3-round attacks). Indeed, subsequent to our work, Lampe
and Seurin [43] showed that the 12-round key alternating cipher will all keys
ki = K (for κ = n) is indeed indifferentiable from an ideal cipher, with security
O(q12/2n) and simulator query complexity O(q4) to answer q queries made by
the distinguisher. Although using substantially more rounds and achieving no-
ticeably looser exact security than this work, their result is closer to the actual
design of the AES cipher, whose key schedule f is indeed easily invertible.

Instantiating the Key Derivation Function. Although we use a random
oracle as a key derivation function (see above), in principle one can easily (and
efficiently!) build the required random oracle from a random permutation [24,26],
making the whole construction entirely permutation-based. For example, the
most optimized “enhanced-CBC” construction from [24] will use only a single
additional random permutation and make 2κ

n + O(1) calls to this permutation
to build a κ-to-n-bit random oracle f .8 Unsurprisingly, this instantiation will
result in a cipher making a lot fewer calls to the random permutation (by a
large constant factor) than following the indirect RP-to-RO-to-IC cycle.

Moreover, we can further optimize the most common case κ = n as follows.
First, [24] showed that f(K) = P (K) ⊕ P−1(K) is O(q2/2n)-indifferentiable
from an n-to-n-bit random oracle, which already results in a very efficient block
cipher construction with 7 permutation calls. Second, by closely examining our
proof, we observe that we do not need the full power of the random oracle f
for key derivation. Instead, our proof only uses the “preimage awareness” [27]
of the random oracle9 and the fact that random oracle avoids certain simple
combinatorial relations among different derived keys. In particular, we observe
that the “unkeyed Davies-Meyer” function [24] f(K) = P (K)⊕K is enough for
our analysis to go through. This gives the following result for building an n-bit
ideal cipher with n-bit key, using only six random permutation calls.

8 The indifferentiability security of this construction to handle q queries is “only”
O(q4/2n), but this is still much smaller than the bound in Theorem 3, and will not
affect the final asymptotic security.

9 Informally, at any point of time the simulator knows the list of all input-output pairs
to f “known” by the distinguisher.



Theorem 2. The following n-bit cipher with n-bit key is indifferentiable from
an ideal cipher:

E(K,m) = k ⊕ P5(k ⊕ P4(k ⊕ P3(k ⊕ P2(k ⊕ P1(k ⊕m))))),

where k = P0(K)⊕K and P0, P1, P2, P3, P4, P5 are random permutations.

Overall, our results give the first theoretical evidence for the design soundness
of key-alternative ciphers — including AES, 3-Way, SHARK, Serpent, Present,
and Square — from the perspective of indifferentiability.10

2 Preliminaries

For a domain {0, 1}m and a range {0, 1}n, a random oracleR : {0, 1}m → {0, 1}n

is a function drawn uniformly at random from the set of all possible functions
that map m to n bits. For two sets {0, 1}κ and {0, 1}n, an ideal cipher IC :
{0, 1}κ × {0, 1}n → {0, 1}n is taken randomly from the set of all block ciphers
with key space {0, 1}κ and message and ciphertext space {0, 1}n. A random
permutation π : {0, 1}n → {0, 1}n is a function drawn randomly from the set of
all n-bit permutations.

Key-Alternating Ciphers. A key-alternating cipher KAt consists of a small
number t of fixed permutations Pi on n bits separated by key addition:

KAt(K,m) = kt ⊕ Pt(. . . k2 ⊕ P2(k1 ⊕ P1(k0 ⊕m)) . . . ),

where the round keys k0, . . . , kt are derived from the master key K using some
key schedule f : (k0, . . . , kt) = f(K). The notion of key-alternating ciphers itself
goes back to Daemen [18–20] and was used in the design of AES. However, it was
Knudsen [41] who proposed to instantiate multiple-round key-alternating ciphers
with randomly drawn, fixed and public permutations (previously, a single-round
key-alternating construction was proposed by Even-Mansour [29]).

Indifferentiability. We use the notion of indifferentiability [16, 46] in our
proofs to show that if a construction CP based on an ideal subcomponent P is
indifferentiable from an ideal primitive R, then CP can replace R in any system.
As noticed in [51] the latter statement must be qualified with some fine print:
since the adversary must eventually incorporate the simulator, the indifferentia-
bility composition theorem only applies in settings where the adversary comes
from a computational class that is able to “swallow” the simulator (e.g., the class
of polynomial-time, polynomial-space algorithms); see [22, 51] for more details
on the limitations of indifferentiability.

Definition 1. A Turing machine C with oracle access to an ideal primitive P
is called (tD, tS , q, ε)-indifferentiable from an ideal primitive R if there exists a

10 We also mention a complementary recent work of [48], who mainly looked at “weaker-
than-indistinguishability” properties which can be proven about AES design.



simulator S with oracle access to R and running in time tS, such that for any
distinguisher D running in time at most tD and making at most q queries, it
holds that:

AdvindifC,R,S(D) =
∣

∣

∣
Pr

[

DC
P ,P = 1

]

− Pr
[

DR,SR

= 1
]∣

∣

∣
< ε.

Distinguisher D can query both its left oracle (either C or R) and its right
oracle (either P or S). We refer to CP ,P as the real world, and to R,SR as the
simulated world.

3 Indifferentiability of KA5

In this section we discuss our main result, namely that KA5 with an RO key
schedule is indifferentiable from an ideal cipher. In the statement below, KA5

stands for a 5-round key-alternating cipher implemented with round functions
P1, . . . , P5 and key scheduling function f , with the round functions, their in-
verses, and the key scheduling function all being available for oracle queries by
the adversary (and thus, also, all being implemented as interfaces by the simu-
lator).

Theorem 3. Let P1, . . . , P5 be independent random n-bit permutations, and f
be a random κ-to-n-bits function. Let D be an arbitrary information-theoretic
distinguisher that makes at most q queries. Then there exists a simulator S such
that

AdvindifKA5,IC,S(D) ≤ 320 · 610
(

q10

2n
+

q4

2n

)

= O

(

q10

2n

)

,

where S makes at most 2q2 queries to the ideal cipher IC and runs in time
O(q3).

Our 5-round simulator S is given by the pseudocode in game G1 (see Figures
1–4), and more precisely by the public functions f, P1, P1−1, P2, P2−1, ..., P5,
P5−1 within G1. Here f emulates the key scheduling random oracle, whereas P1,
P1−1 emulate the random permutation P1 and its inverse P−1

1 , and so on. Since
the pseudocode of game G1 is not easy to assimilate, a high-level description
of our simulator is likely welcome. Furthermore, because the simulator is rather
complex, we also try to argue the necessity of its complex behavior by discussing
why some simpler classes of simulators might not work.

To describe the simulator-distinguisher interaction we use expressions such
as “D makes the query f(K) → k” to mean that the distinguisher D queries f
(which is implemented by the simulator) on input K, and receives answer k as a
result. The set of values k for which the adversary has made a query of the form
f(K) → k for some K ∈ {0, 1}κ is denoted Z (thus Z is a time-dependent set). If
f(K) → k then we also write K as “f−1(k)”; here f and f−1 are internal tables
maintained by the simulator to keep track of scheduled keys and their preimages
(see procedure f(K) in Figure 1 for more details).



Game G1

Random tapes: p1, . . . , p5, {pE [K] : K ∈ {0, 1}κ}, rf

private procedure ReadTape(Table, x, p)
y ← p(x)
if (Table(x) 6= ⊥) then abort

if (Table−1(y) 6= ⊥) then abort

Table(x)← y
Table−1(y)← x
return y

public procedure E(K,x)
if (ETable[K](x) 6= ⊥) return ETable[K](x)
y ← ReadTape(ETable[K], x, pE[K](→, ·))
return y

public procedure E−1(K, y)
if (ETable[K]−1(y) 6= ⊥) return ETable[K]−1(y)
x← ReadTape(ETable[K]−1, y, pE [K](←, ·))
return x

public procedure f(K)
if f(K) 6= ⊥ return f(K)
k ← rf (K)
Z ← Z ∪ k
f(K)← k
f−1(k)← K
KeyQueries← KeyQueries ∪ {(K, k,++qnum)}
if (qnum > 6q2 + q) then abort

return f(K)

public procedure P1(x)
if (P1(x) 6= ⊥) return P1(x)
y ← ReadTape(P1, x, p1(→, ·))
AddQuery(1, x, y,→)
return P1(x)

public procedure P1−1(y)
PrivateP1−1(y)
Cleanup()
return P−1

1 (y)

Game G1 (continued)

private procedure PrivateP1−1(y)
if (P−1

1 (y) 6= ⊥) return P−1

1 (y)
x← ReadTape(P−1

1 , y, p1(←, ·))
AddQuery(1, x, y,←)
FreezeLeftValues(x,⊥)
LeftQueue← LeftQueue ∪ (1+, y)
return P−1

1 (y)

public procedure P2(x)
if (P2(x) 6= ⊥) return P2(x)
y ← ReadTape(P2, x, p2(→, ·))
AddQuery(2, x, y,→)
return P2(x)

public procedure P2−1(y)
if (P−1

2 (y) 6= ⊥) return P−1

2 (y)
x← ReadTape(P−1

2 , y, p2(←, ·))
AddQuery(2, x, y,←)
return P−1

2 (y)

public procedure P3(x)
PrivateP3(x)
Cleanup()
return P3(x)

private procedure PrivateP3(x)
if (P3(x) 6= ⊥) return P3(x)
y ← ForcedP3(3−, x)
if (y 6= ⊥) then

if (y ∈ range(P3)) then abort

P3(x)← y
P−1

3 (y)← x
AddQuery(3, x, y,⊥)
RightQueue← RightQueue ∪ (3+, y)

else

y ← ReadTape(P3, x, p3(→, ·))
AddQuery(3, x, y,→)

end if

LeftQueue← LeftQueue ∪ (3−, x)
return P3(x)

Fig. 1: The simulated world (first of four sets of procedures).

A triple (i, x, y) such that D has made the query Pi(x) → y or Pi−1(y) → x
is called an i-query, i ∈ {1, 2, 3, 4, 5}. Moreover, when the simulator “internally
defines” a query Pi(x) = y, Pi−1(y) = x we also call the associated triple
(i, x, y) an i-query, even though the adversary might not be aware of these values
yet. (While this might seem a little informal, we emphasize that this section
is, indeed, meant mainly as an informal overview.) A pair of queries (i, xi, yi),
(i+1, xi+1, yi+1) such that yi⊕k = xi+1 for some k ∈ Z is called k-adjacent. We
also say that a pair of queries (1, x1, y1), (5, x5, y5) is k-adjacent if k ∈ Z and
E(f−1(k), x1 ⊕ k) = y5 ⊕ k, where E(K,x) is the ideal cipher (and E−1(K, y) its
inverse). (Since Z is time-dependent, a previously non-adjacent pair of queries
might become adjacent later on; of course, this is unlikely.) A sequence of queries

(1, x1, y1), (2, x1, y2), . . . , (5, x5, y5)



Game G1 (continued)

public procedure P3−1(y)
PrivateP3−1(y)
Cleanup()
return P−1

3 (y)

private procedure PrivateP3−1(y)
if (P−1

3 (y) 6= ⊥) return P−1

3 (y)
x← ForcedP3(3+, y)
if (x 6= ⊥) then

if (x ∈ domain(P3)) then abort

P3(x)← y
P−1

3 (y)← x
AddQuery(3, x, y,⊥)
LeftQueue← LeftQueue ∪ (3−, x)

else

ReadTape(P−1

3 , y, p3(←, ·))
AddQuery(3, x, y,←)

end if

RightQueue← RightQueue ∪ (3+, y)
return P−1

3 (y)

public procedure P4(x)
if (P4(x) 6= ⊥) return P4(x)
y ← ReadTape(P4, x, p4(→, ·))
AddQuery(4, x, y,→)
return P4(x)

public procedure P4−1(y)
if (P−1

4 (y) 6= ⊥) return P−1

4 (y)
x← ReadTape(P−1

4 , y, p4(←, ·))
AddQuery(4, x, y,←)
return P−1

4 (y)

public procedure P5(x)
PrivateP5(x)
Cleanup()
return P5(x)

private procedure PrivateP5(x)
if (P5(x) 6= ⊥) return P5(x)
y ← ReadTape(P5, x, p5(→, ·))
AddQuery(5, x, y,→)
FreezeRightValues(y,⊥)
LeftQueue← LeftQueue ∪ (5−, x)
return P5(x)

Game G1 (continued)

public procedure P5−1(y)
if (P−1

5 (y) 6= ⊥) return P−1

5 (y)
x← ReadTape(P−1

5 , y, p5(←, ·))
AddQuery(5, x, y,←)
return P−1

5 (y)

private procedure FreezeLeftValues(x1, k
⋆)

forall k ∈ Z\{k⋆} do
if (x1 ⊕ k ∈ LeftFreezer) then abort

LeftFreezer ← LeftFreezer ∪ {x1 ⊕ k}
end forall

private procedure FreezeRightValues(y5, k
⋆)

... // (symmetric to FreezeLeftValues)

private procedure ForcedP3(i, z)
if (i = 3−) then

x3 ← z
candidate← ∅
forall k ∈ Z do

if (x3 ⊕ k /∈ range(P2)) continue
y1 ← P−1

2 (x3 ⊕ k)⊕ k
if (y1 /∈ range(P1)) continue
x1 ← P−1

1 (y1)
if (x1 ⊕ k ∈ LeftFreezer) continue
if (candidate 6= ∅) then abort

candidate← (k, x1 ⊕ k)
end forall // (k)
if (candidate = ∅) return ⊥
(k, x)← candidate
y5 ← E(f−1(k), x)⊕ k
TallyEQuery(f−1(k), x,→)
if (y5 /∈ range(P5)) return ⊥
y4 ← P−1

5 (y5)⊕ k
return P4−1(y4)⊕ k

end if

if (i = 3+) then
... // (symmetric to case (i = 3−))

end if

return ⊥

Fig. 2: The simulated world (second of four sets of procedures).

for which there exists a k ∈ Z such that each adjacent pair is k-adjacent and such
that the first and last queries are also k-adjacent is called a completed k-path or
completed k-chain.

Consider first the simplest attack that a distinguisher D might carry out:
D chooses a random x ∈ {0, 1}n and a random K ∈ {0, 1}κ (where {0, 1}κ is
the key space), queries E(K,x) → y (to its left oracle), then queries f(K) → k,
P1(x ⊕ k) → y1, P2(y1 ⊕ k) → y2, P3(y2 ⊕ k) → y3, ..., P5(y4 ⊕ k) → y5 to
the simulator, and finally checks that y5 ⊕ k = y. The simulator, having itself
answered the query f(K), can already anticipate the distinguisher’s attack when
the query P2(y1 ⊕ k) is made, since it sees that a k-adjacency is about to be
formed between a 1-query and a 2-query. At this point, a standard strategy



Game G1 (continued)

private procedure ExistsPath(i, z, k)
if (i = 1+) then

y1 ← z
if (y1 /∈ range(P1)) return false

x1 ← P1−1(y1)
(ℓ, x)← ProbeForward(2, 5, y1 ⊕ k, k)
if (ℓ 6= 5 ∨ x /∈ domain(P5)) return false

if (E(f−1(k), x1 ⊕ k) 6= P5(x)⊕ k) then abort

TallyEQuery(f−1(k), x1 ⊕ k,→)
return true

end if

if (i = 3−) then
x3 ← z
(ℓ1, y)← ProbeBackward(2, 1, x3 ⊕ k, k)
(ℓ2, x)← ProbeForward(3, 5, x3, k)
if (ℓ1 6= 1 ∨ y /∈ range(P1)) return false

if (ℓ2 6= 5 ∨ x /∈ domain(P5)) return false

if (E(f−1(k), P−1

1 (y)⊕k) 6= P5(x)⊕k) then abort

TallyEQuery(f−1(k), P−1

1 (y)⊕ k,→)
return true

end if

if (i = 3+) then
... // (symmetric to case (i = 3−))

end if

if (i = 5−) then
... // (symmetric to case (i = 1+))

end if

private procedure ProbeForward(i, j, xi, k)
// (i, j ∈ {1, 2, 3, 4, 5}, i < j)
while i < j do

if (Pi(xi) = ⊥) break
xi ← Pi(xi)⊕ k
i← i+ 1

end

return (i, xi)

private procedure ProbeBackward(i, j, yi, k)
// (i, j ∈ {1, 2, 3, 4, 5}, i > j)
while i > j do

if (P−1

i (yi) = ⊥) break
yi ← P−1

i (yi)⊕ k
i← i− 1

end

return (i, yi)

Game G1 (continued)

private procedure EmptyQueue()
do

while ¬LeftQueue.empty()
(i, z)← LeftQueue.pop()
if (i = 1+) then ProcessNew1Edge(z)
if (i = 3−) then ProcessNew3−Edge(z)

end while

while ¬RightQueue.empty()
(i, z)← RightQueue.pop()
if (i = 3+) then ProcessNew3+Edge(z)
if (i = 5−) then ProcessNew5Edge(z)

end while

while (¬LeftQueue.empty())

private procedure ProcessNew1Edge(y1)
forall k ∈ Z

if (ExistsPath(1+, y1, k)) then continue

if (y1 ⊕ k /∈ domain(P2)) then continue

CompletePath1+(y1, k)
end forall

private procedure ProcessNew3−Edge(x3)
forall k ∈ Z

if (ExistsPath(3−, x3, k)) then continue

if (x3 ⊕ k /∈ range(P2)) then continue

CompletePath3−(x3, k)
end forall

private procedure ProcessNew3+Edge(y3)
... // (symmetric to ProcessNew3−Edge)

private procedure ProcessNew5Edge(x5)
... // (symmetric to ProcessNew1Edge)

private procedure Cleanup()
EmptyQueue()
LeftFreezer ← ∅
RightFreezer ← ∅

private procedure AddQuery(i, x, y, dir)
Queries← Queries ∪ {(i, x, y, dir,++qnum)}
if (qnum > 6q2 + q) then abort

Fig. 3: The simulated world (third of four sets of procedures).

would be for the simulator to pre-emptively11 complete a k-chain by answering
(say) the queries P3(y2⊕k) and P4(y3⊕k) randomly itself, and setting the value
of P5(y4 ⊕ k) to E(f−1(k), x) ⊕ k by querying E.

The distinguisher might vary this attack by building a chain “from the right”
(by choosing a random y and querying P5−1(y ⊕ k) → x5, P4

−1(x5 ⊕ k) → x4,
etc) or by building a chain “from the inside” (e.g., by choosing a random x3

and querying P3(x3) → y3, P2
−1(x3 ⊕ k), P4(y3 ⊕ k) → y4, ...) or even by

building a chain “from the left and right” simultaneously (the two sides meeting

11 Pre-emption is generally desirable in order for the simulator to avoid becoming
“trapped” in an over-constrained situation.



Game G1 (continued)

private procedure CompletePath1+(y1, k)
x1 ← P−1

1 (y1)
x3 ← P2(y1 ⊕ k)⊕ k
x4 ← PrivateP3(x3)⊕ k
x5 ← P4(x4)⊕ k
FinishPath1+3−(x1, x5, k)

private procedure CompletePath3−(x3, k)
x2 ← P−1

2 (x3 ⊕ k)
x1 ← PrivateP1−1(x2 ⊕ k)
x4 ← P3(x3)⊕ k
x5 ← P4(x4)⊕ k
FinishPath1+3−(x1, x5, k)

private procedure FinishPath1+3−(x1, x5, k)
if (x1 ⊕ k ∈ LeftFreezer) then

fresh← true

LeftFreezer ← LeftFreezer\{x1 ⊕ k}
else

fresh← false

end if

y5 ← k ⊕ E(f−1(k), x1 ⊕ k)
TallyEQuery(f−1(k), x1 ⊕ k,→)
if (x5 ∈ domain(P5)) then abort

if (y5 ∈ range(P5)) then abort

P5(x5)← y5
P−1

5 (y5)← x5

AddQuery(5, x5, y5,⊥)
RightQueue← RightQueue ∪ (5−, x5)
if (fresh) then

FreezeRightValues(y5, k)
end if

Game G1 (continued)

private procedure CompletePath3+(y3, k)
... // (symmetric to CompletePath3−)

private procedure CompletePath5−(x5, k)
... // (symmetric to CompletePath1+)

private procedure FinishPath5−3+(y5, y1, k)
... // (symmetric to FinishPath1+3−)

private procedure TallyEQuery(K, z, dir)
if (dir =→) then

if (TallyETable[K](z) = ⊥) then ++Eqnum
TallyETable[K](z)← t← E(K, z)
TallyETable[K]−1(t)← z

end if

if (dir =←) then
... // (symmetric to case dir =→)

end if

if (Eqnum > 2q2) then abort

Fig. 4: The simulated world (fourth of four sets of procedures).

up somewhere in the middle). Given all these combinations, a natural strategy
is to have the simulator complete chains whenever it detects any k-adjacency.
We call this type of simulator näıve. The difficulty with the näıve simulator is
that, as the path-completion strategy is applied recursively to queries created by
the simulator itself, some uncontrollable chain reaction might occur that causes
the simulator to create a superpolynomial number of queries, and, thus, lead
to an unacceptable simulator running time and to an unacceptably watered-
down security bound. Even if such a chain reaction cannot occur, the burden of
showing so is on the prover’s shoulders, which is not necessarily an easy task.
We refer to the general problem of showing that runaway chain reactions do not
occur as the problem of simulator termination.12

To overcome the näıve simulator’s problematic termination, we modify the
näıve simulator to be more restrained and to complete fewer chains. For this we

12 Naturally, since the simulator can only create finitely many different i-queries, the
simulator is, in general, guaranteed to terminate. Thus “simulator termination”
refers, more precisely, to the problem of showing that the simulator only creates
polynomially many queries per adversarial query. We prefer the term “termination”
to “efficiency” because it seems to more picturesquely capture the threat of an out-
of-control chain reaction.



use the “tripwire” concept. Informally, a tripwire is an ordered pair of the form
(i, i+ 1) or (i+ 1, i) or (1, 5) or (5, 1) (for a 5-round cipher). “Installing a trip-
wire (i, j)” means the simulator will complete paths for k-adjacencies detected
between positions i and j and for which the j-query is made after the i-query.
(Thus, tripwires are “directed”.) As long as no tripwires are triggered, the sim-
ulator does nothing; when a tripwire is triggered, the simulator completes the
relevant chain(s), and recurses to complete chains for other potentially triggered
tripwires, etc. The “näıve” simulator then corresponds to a tripwire simulator
with all possible tripwires installed. The tripwire paradigm is essentially due to
Coron et al. [15] even while the terminology is ours.

Restricting ourselves to the (fairly broad) class of tripwire simulators, con-
flicting goals emerge: to install enough tripwires so that the simulator cannot be
attacked, while installing few enough tripwires (or in clever enough positions)
that a termination argument can be made. Before presenting our own 5-round
solution to this dilemma, we briefly justify our choice of five rounds.

Firstly, no tripwire simulator with 3 rounds is secure, since it turns out that
the näıve 3-round simulator (i.e., with all possible tripwires) can already be at-
tacked. Hence, regardless of termination issues, any 3-round tripwire simulator
is insecure. Secondly, we focused on 4-round simulators with four tripwires, as
proving termination for five or more tripwires seemed a daunting task. A par-
ticularly appealing simulator, here, is the 4-tripwire simulator

(1, 4), (4, 1), (2, 3), (3, 2)

whose termination can easily be proved by modifying Holenstein et al. termi-
nation argument [37], itself adapted from an earlier termination argument of
Seurin [54]. Unfortunately it turns out this simulator can be attacked, making it
useless. This attack as well as the above-mentioned attack on the 3-round näıve
simulator can be found in the full version of this paper [1], where some other
attacks on tripwire simulators are also sketched.

Ultimately, the only 4-round, 4-tripwire simulator for which we didn’t find
an attack is the simulator with the (asymmetric) tripwire configuration

(1, 2), (3, 2), (3, 4), (1, 4)

(and its symmetric counterpart). However, since we could not foresee a man-
ageable termination argument for this simulator, we ultimately reverted to five
rounds. Our 5-round simulator has tripwires

(2, 1), (2, 3), (4, 3), (4, 5)

(and no tripwires of the form (1, 5) or (5, 1)), as sketched in Figure 5. This sim-
ulator has the advantage of having a clean (though combinatorially demanding)
termination argument, and, as previously discussed, of having excellent efficiency
and also better security than the state-of-the-art in “indifferentiable blockcipher”
constructions.
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Fig. 5: Tripwire positions for our 5-round simulator. A directed arrow from col-
umn Pi to column Pj indicates a tripwire (i, j). The tripwires are (2, 1), (2, 3),
(4, 3) and (4, 5).

Some more high-level description of the 5-round simulator. We have
already mentioned that our 5-round simulator has tripwires

(2, 1), (2, 3), (4, 3), (4, 5).

To complete the simulator’s description it (mainly) remains to describe how
the simulator completes chains, once a tripwire is triggered, since there is some
degree of freedom as to which i-query is “adapted” to fit E, etc. Quickly and
informally, when a newly created 1-query or 3-query triggers respectively the
(2, 1) or (2, 3) tripwire, the relevant path(s) that are completed have their 5-
query adapted to fit E. (We note the same query may trigger the completion
of several new paths.) Symmetrically, when a newly created 3-query or 5-query
triggers a (4, 3) or (4, 5) tripwire, the completed paths have their 1-query adapted
to fit E. We note that new 2-queries and 4-queries can never trigger a tripwire,
due to the tripwire structure. Moreover, 2- and 4-queries are never adapted, and
always have at least one “random endpoint”. The latter property turns out to
be crucial for various arguments in the proof. It also makes the implementation
of the procedures P2(), P2−1(), P4() and P4−1() particularly simple, since these
do nothing else than lazy sample and return.

The above “quick and informal” summary of the path-completion process is
over-simplified because 3-queries can also, in specific situations, be adapted to
complete a path. To gain some preliminary intuition about 3-queries, consider
a distinguisher D that chooses values x and K and then makes the queries
f(K) → k, P1(x⊕k) → y1, P2(y1⊕k) → y2, E(K,x) → y, P5−1(y⊕k) → x5 and
P4−1(x5 ⊕ k) → x4. So far, no tripwires have been triggered, but the adversary
already knows (e.g., in the real world) that P3(y2 ⊕ k) = x4 ⊕ k, even while the
simulator has not yet defined anything internally about P3. Typically, such a
situation where the adversary “already knows” something the simulator doesn’t
are dangerous for the simulator and can lead to attacks; in this case, it turns
out the distinguisher cannot use this private knowledge to fool the simulator.
It does mean, however, that the simulator needs to be on the lookout for such
“pre-defined” 3-queries whenever it answers queries to P3(), P3−1() or, more
generally, whenever it makes a new 3-query internally.

In fact the code used by the simulator to answer 3-queries is altogether rather
cautious and sophisticated, even slightly more so than the previous discussion



might suggest. To gain further insight into the simulator’s handling of 3-queries,
consider a distinguisher D′ that similarly chooses values x and K and then
makes the queries f(K) → k, P1(x⊕k) → y1, P2(y1⊕k) → y2, E(K,x) → y and
P5−1(y⊕k) → x5. (SoD

′ makes all the same queries as the distinguisherD above
except for the final query P4−1(x5⊕k), which is not made by D′.) At this point,
the value P3(y2 ⊕ k) is not yet pre-defined by E and by the previous queries,
since the query P4−1(x5 ⊕ k) hasn’t been made; if D′ queries P3(y2 ⊕ k) → y3,
the simulator might conceivably sample y3 randomly, and later use the freedom
afforded by the missing P4 query to adapt the chain. If the simulator did this,
however, the simulator would create a “non-random” 4-query (i.e., a 4-query
that doesn’t have at least one non-adapted, “random endpoint”), which would
wreak havoc within the proof. Instead, when faced with the query P3(y2⊕k), the
simulator detects the situation above and starts by making the “missing” query
P4−1(x5 ⊕ k) → x4 internally, thus giving the P4-query its required “random
endpoint” (at x4), and finally adapts P3(y2 ⊕ k) to x4 ⊕ k. It so turns out that,
with high probability, the simulator is never caught trying to adapt P3() to two
different values in this way.

The sets LeftQueue and RightQueue mentioned in the pseudocode are two
queues of queries maintained by the simulator for the purpose of tripwire de-
tection. When a new i-query is created, i ∈ {1, 3}, that the simulator believes
might set off the (2, 1) or (2, 3) tripwire, the simulator puts this i-query into
LeftQueue, to be checked later; similarly for i ∈ {3, 5}, the simulator puts a
newly created i-query into RightQueue if it believes this new query might set off
a (4, 3) or (4, 5) tripwire. (The same 3-query might end up in both LeftQueue and
RightQueue.) As evidenced by the procedure EmptyQueue() in Fig. 3, LeftQueue
and RightQueue are emptied sequentially and separately, which we choose to do
mostly because it offers conceptual advantages within the proof. In the full ver-
sion of this paper [1] we further discuss how the simulator might come to believe
that a newly created i-query will likely not set off a tripwire (and thus not put
this i-query into the relevant queue(s)), as well give a more detailed discussion
of the pseudocode of the simulator.

Due to the space constraints, we similarly leave to the full version [1] a full
formal indifferentiability proof of our construction, as well as all other results
mentioned in the introduction (e.g., our attacks and the proof of Theorem 2).
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Schläffer, M., Thomsen, S.: Grøstl – a SHA-3 candidate (2011), submission to
NIST’s SHA-3 competition

32. Goldreich, O., Goldwasser, S., Micali, S.: How to Construct Random Functions. In:
25th Annual Symposium on Foundations of Computer Science, FOCS. pp. 464–479.
IEEE Computer Society, West Palm Beach, Florida, USA (1984)

33. Granboulan, L.: Short Signatures in the Random Oracle Model. In: ASIACRYPT
2002. LNCS, vol. 2501, pp. 364–378. Springer-Verlag, Berlin (2002)

34. Handschuh, H., Naccache, D.: SHACAL. Submission to the NESSIE project (2000)
35. Handschuh, H., Naccache, D.: SHACAL : A Family of Block Ciphers. Submission

to the NESSIE project (2002)
36. Hirose, S.: Some Plausible Constructions of Double-Block-Length Hash Functions.

In: FSE 2006. LNCS, vol. 4047, pp. 210–225. Springer-Verlag, Berlin (2006)
37. Holenstein, T., Künzler, R., Tessaro, S.: The equivalence of the random oracle

model and the ideal cipher model, revisited. In: ACM Symposium on Theory of
Computing, STOC. pp. 89–98. ACM, San Jose, CA, USA (2011)

38. Impagliazzo, R., Levin, L.A., Luby, M.: Pseudo-random Generation from one-way
functions. In: ACM Symposium on Theory of Computing, STOC. pp. 12–24. ACM,
Seattle, Washington, USA (1989)

39. Jonsson, J.: An OAEP Variant With a Tight Security Proof. Cryptology ePrint
Archive, Report 2002/034 (2002)

40. Kilian, J., Rogaway, P.: How to Protect DES against Exhaustive Key Search (An
Analysis of DESX). Journal of Cryptology 14(1), 17–35 (2001)



41. Knudsen, L.: Block Ciphers - The Basics (May 2011), eCRYPT II Summer School
on Design and Security of Cryptographic Algorithms and Devices, Invited talk

42. Lai, X., Massey, J.: Hash Function Based on Block Ciphers. In: EUROCRYPT ’92.
LNCS, vol. 658, pp. 55–70. Springer-Verlag, Berlin (1992)

43. Lampe, R., Seurin, Y.: How to Construct an Ideal Cipher from a Small Set of
Public Permutations. Cryptology ePrint Archive, Report 2013/255 (2013)

44. Lee, J., Hong, D.: Collision Resistance of the JH Hash Function. IEEE Transactions
on Information Theory 58(3), 1992–1995 (2012)

45. Luby, M., Rackoff, C.: How to construct pseudorandom permutations from pseu-
dorandom functions. SIAM Journal of Computing 17(2), 373–386 (1988)

46. Maurer, U., Renner, R., Holenstein, C.: Indifferentiability, Impossibility Results on
Reductions, and Applications to the Random Oracle Methodology. In: TCC 2004.
LNCS, vol. 2951, pp. 21–39. Springer-Verlag, Berlin (2004)

47. Merkle, R.: One Way Hash Functions and DES. In: CRYPTO ’89. LNCS, vol. 435,
pp. 428–446. Springer-Verlag, Berlin (1990)

48. Miles, E., Viola, E.: Substitution-Permutation Networks, Pseudorandom Func-
tions, and Natural Proofs. In: Safavi-Naini, R., Canetti, R. (eds.) CRYPTO. Lec-
ture Notes in Computer Science, vol. 7417, pp. 68–85. Springer (2012)

49. Phan, D.H., Pointcheval, D.: Chosen-Ciphertext Security without Redundancy. In:
ASIACRYPT 2003. LNCS, vol. 2894, pp. 1–18. Springer-Verlag, Berlin (2003)

50. Preneel, B., Govaerts, R., Vandewalle, J.: Hash Functions Based on Block Ciphers:
A Synthetic Approach. In: CRYPTO ’93. LNCS, vol. 773, pp. 368–378. Springer-
Verlag, Berlin (1993)

51. Ristenpart, T., Shacham, H., Shrimpton, T.: Careful with Composition: Limita-
tions of the Indifferentiability Framework. In: EUROCRYPT 2011. LNCS, vol.
6632, pp. 487–506. Springer-Verlag, Berlin (2011)

52. Rogaway, P., Steinberger, J.P.: Constructing Cryptographic Hash Functions from
Fixed-Key Blockciphers. In: Wagner, D. (ed.) CRYPTO. Lecture Notes in Com-
puter Science, vol. 5157, pp. 433–450. Springer (2008)

53. Rogaway, P., Steinberger, J.P.: Security/Efficiency Tradeoffs for Permutation-
Based Hashing. In: EUROCRYPT. pp. 220–236 (2008)

54. Seurin, Y.: Primitives et protocoles cryptographiques à sécurité prouvée. Ph.D.
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