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Abstract. In this paper we show that a large class of diverse prob-
lems have a bicomposite structure which makes it possible to solve them
with a new type of algorithm called dissection, which has much better
time/memory tradeoffs than previously known algorithms. A typical ex-
ample is the problem of finding the key of multiple encryption schemes
with r independent n-bit keys. All the previous error-free attacks re-
quired time T and memory M satisfying TM = 2rn, and even if “false
negatives” are allowed, no attack could achieve TM < 23rn/4. Our new
technique yields the first algorithm which never errs and finds all the
possible keys with a smaller product of TM , such as T = 24n time and
M = 2n memory for breaking the sequential execution of r = 7 block
ciphers. The improvement ratio we obtain increases in an unbounded
way as r increases, and if we allow algorithms which can sometimes miss
solutions, we can get even better tradeoffs by combining our dissection
technique with parallel collision search. To demonstrate the generality
of the new dissection technique, we show how to use it in a generic way
in order to attack hash functions with a rebound attack, to solve hard
knapsack problems, and to find the shortest solution to a generalized
version of Rubik’s cube with better time complexities (for small memory
complexities) than the best previously known algorithms.

Keywords: Cryptanalysis, TM-tradeoff, multi-encryption, knapsacks, bicom-
posite, dissection, rebound

1 Introduction

A composite problem is a problem that can be split into several simpler subprob-
lems which can be solved independently of each other. To prevent attacks based
on such decompositions, designers of cryptographic schemes usually try to en-
tangle the various parts of the scheme by using a complex key schedule in block
ciphers, or a strong message expansion in hash functions. While we can formally
split such a structure into a top part that processes the input and a bottom part



that produces the output, we cannot solve these subproblems independently of
each other due to their strong interactions.

However, when we deal with higher level constructions which combine multi-
ple primitives as black boxes, we often encounter unrelated keys or independently
computed outputs which can provide exploitable decompositions. One of the best
examples of such a situation was the surprising discovery by Joux [9] in 2004 that
finding collisions in hash functions defined by the parallel execution of several
independent iterated hash functions is much easier than previously believed. In
this paper we show the dual result that finding the key of a multiple-encryption
scheme defined by the sequential execution of several independent cryptosystems
is also easier than previously believed.

Since we can usually reduce the time complexity of cryptanalytic attacks by
increasing their memory complexity, we will be interested in the full tradeoff
curve between these two complexities rather than in a single point on it. We
will be primarily interested in algorithms which use an exponential combination
of M = 2mn memory and T = 2tn time for a small constant m and a larger
constant t, when the key size n grows to infinity. While this setup may sound su-
perficially similar to Hellman’s time/memory tradeoff algorithms, it is important
to notice that Hellman’s preprocessing phase requires time which is equivalent
to exhaustive search and memory which is at least the square root of the number
of keys, and that in Hellman’s online phase the product of time and memory is
larger than the number of keys. In our model we do not allow free preprocessing,
we can use smaller amounts of memory, and the product of time and memory is
strictly smaller than the number of keys.

The type of problems we can solve with our new techniques is characterized by
the existence of two orthogonal ways in which we can decompose a given problem
into (almost) independent parts. We call such problems bicomposite, and demon-
strate this notion by considering the problem of cryptanalyzing the sequential
execution of r block ciphers which use independent n-bit keys to process n-bit
plaintexts. In order to make the full rn-bit key of this scheme unique with a rea-
sonable probability, the cryptanalyst needs r known plaintext/ciphertext pairs.
The full encryption process can thus be described by an r × r matrix whose
columns corresponds to the processing of the various plaintexts and whose rows
correspond to the application of the various block ciphers. The attacker is given
the r plaintexts at the top and the r ciphertexts at the bottom, and his goal is
to find all the keys with a generic algorithm which does not assume the exis-
tence of any weaknesses in the underlying block ciphers. The reason we say that
this problem is bicomposite is that the keys are independently chosen and the
plaintexts are independently processed, and thus we can partition the execution
matrix both horizontally and vertically into independent parts. In particular,
if we know certain subsets of keys and certain subsets of intermediate values,
we can independently verify their consistency with the given plaintexts or ci-
phertexts without knowing all the other values in the execution matrix. This
should be contrasted with the standard constructions of iterated block ciphers,
in which a partial guess of the key and a partial guess of some state bits in the



middle of the encryption process cannot be independently verified by an efficient
computation.

The security of multiple-encryption schemes had been analyzed for more than
30 years, but most of the published papers had dealt with either double or triple
encryption (which is widely used as a DES-extension in the banking industry).
While the exact security of double and triple encryption are well understood
and we can not push their analysis any further, our new techniques show that
surprisingly efficient attacks can be applied already when we make the next step
and consider quadruple encryption, and that additional improvements can be
made when we consider even longer combinations.

Standard meet-in-the-middle (MITM) attacks, which account for the best
known results against double and triple encryption, try to split such an execution
matrix into a top part and a bottom part with a single horizontal partition line
which crosses the whole matrix from left to right. Our new techniques use a more
complicated way to split the matrix into independent parts by exploiting its
two dimensional structure. Consider, for example, the sequential execution of 7
independent block ciphers. We can find the full 7n-bit key in just 24n time and 2n

memory by guessing two of the seven internal states after the application of the
third block cipher and one of the seven internal states after the application of the
fifth block cipher. We call such an irregular way to partition the execution matrix
with partial guesses a dissection, since it mimics the way a surgeon operates on
a patient by using multiple cuts of various lengths at various locations.

Our new techniques make almost no assumptions about the internal struc-
ture of the primitive operations, and in particular they can be extended with
just a slight loss of efficiency to primitive operations which are one-way func-
tions rather than easily invertible permutations. This makes it possible to find
improved attacks on message authentication codes (MACs) which are defined
by the sequential execution of several keyed hash functions. Note that standard
MITM attacks cannot be applied in this case, since we have to encrypt the in-
puts and decrypt the outputs in order to compare the results in the middle of
the computation.

To demonstrate the generality of our techniques, we show in this paper how
to apply them to several types of combinatorial search problems (some of which
have nothing to do with cryptography), such as the knapsack problem: Given
n generators a1, a2, . . . , an which are n-bit numbers, find a subset that sums
modulo 2n to S. The best known special purpose algorithm for this problem was
published at Eurocrypt 2011 by Becker et al. [1], but our generic dissection tech-
nique provides better time complexities for small memory complexities. To show
the connection between knapsack problems and multiple-encryption, describe
the solution of the given knapsack problem as a two dimensional r× r execution
matrix, in which we partition the generators into r groups of n/r generators,
and partition each number into r blocks of n/r consecutive bits. Each row in the
matrix is defined by adding the appropriate subset of generators from the next
group to the accumulated sum computed in the previous row. We start with
an initial value of zero, and our problem is to find some execution that leads



to a desired value S after the last row. This representation is bicomposite since
the choices made in the various rows of this matrix are completely independent,
and the computations made in the various columns of this matrix are almost
independent since the only way they interact with each other is via the addition
carries which do not tend to propagate very far into the next block. This makes it
possible to guess and operate on partial states, and thus we can apply almost the
same dissection technique we used for multiple-encryption schemes. Note that
unlike the case of multiple-encryption in which the value of r was specified as part
of the given problem, here we can choose any desired value of r independently of
the given value of n in order to optimize the time complexity for any available
amount of memory. In particular, by choosing r = 7 we can reduce the best
known time complexity for hard knapsacks when we use M = 2n/7 = 20.1428n

memory from 2(3/4−1/7)n = 20.6071n in [1] to 24n/7 = 20.5714n with our new
algorithm.

The algorithm of Becker et al. [1] crucially depends on the fact that addition
is an associative and commutative operation on numbers, and that sets can be
partitioned into the union of two subsets in an exponential number of ways. Our
algorithms make no such assumptions, and thus they can be applied under a
much broader set of circumstances. For example, consider a non-commutative
variant of the knapsack problem in which the generators ai are permutations
over {1, 2, . . . , k}, and we have to find a product of length ` of these generators
which is equal to some given permutation S (a special case of this variant is the
problem of finding the fastest way to solve a given state of Rubik’s cube [11] by a
sequence of face rotations, which was analyzed extensively in the literature). To
show that this problem is bicomposite, we have to represent it by an execution
matrix with independent rows and columns. Consider an `× k matrix in which
the i-th row represents the action of the i-th permutation in the product, and the
j-th column represents the current location of element j from the set. Our goal
is to start from the identity permutation at the top, and end with the desired
permutation S at the bottom. We can reduce this matrix to size r × r for any
desired r by bunching together several permutations in the product and several
elements from the set. The independence of the rows in this matrix follows from
the fact that we can freely choose the next generators to apply to the current
state, and the independence of the columns follows from the fact that we can
know the new location of each element j if we know its previous location and
which permutation was applied to the state, even when we know nothing about
the locations of the other elements in the previous state. This makes it possible to
guess partial states at intermediate stages, and thus to apply the same dissection
algorithms as in the knapsack problem with the same improved complexities.

We note that generic ideas similar to the basic dissection attacks were used
before, in the context of several specific bicomposite problems. These include
the algorithms of Schroeppel and Shamir [17] and of Becker et al. [1] which
analyzed the knapsack problem, the algorithm of van Oorschot and Wiener [18]
which attacked double and triple encryption, and the results of Dinur et al. [3]
in the specific case of the block cipher GOST. A common feature of all these



algorithms is that none of them could beat the tradeoff curve TM = N3/4, where
N is the total number of keys. The algorithms of [3, 17, 18] matched this curve
only for a single point, and the recent algorithm of Becker et al. [1] managed
to match it for a significant portion of the tradeoff curve. Our new dissection
algorithms not only allow to beat this curve, but actually allow to obtain the
relation TM < N3/4 for any amount of memory in the range M ≤ N1/4.

The paper is organized as follows: In Section 3 we introduce the dissection
technique and present our best error-free attacks on multiple encryption. In Sec-
tion 4 we consider the model when “false negatives” are allowed, and show that
the dissection algorithms can be combined with the parallel collision algorithm
of van Oorschot and Wiener [18] to get an improved time-memory tradeoff curve.
Finally, in Section 5 we apply our results to various problems, including knap-
sacks, rebound attacks on hash functions and search problems in databases.

2 Notations and Conventions

In this paper we denote the basic block cipher by E and assume that it uses
n-bit blocks and n-bit keys (we can easily deal with other sizes, but it makes
the notation cumbersome). We denote by Ei the encryption process with key
ki, and denote by E[1...r] the multiple-encryption scheme which uses r inde-
pendent keys to encrypt the plaintext P and produce the ciphertext C via
C = Ekr

(Ekr−1
(· · ·Ek2

(Ek1
(P )) · · · )). The intermediate value produced by the

encryption of P under E[1...i] is denoted by Xi, and the decryption process of
E[1...r] is denoted by D[1...r] (which applies the keys in the reverse order). To
attack E[1...r], we are usually given r plaintext/ciphertext pairs, which are ex-
pected to make the key unique (at intermediate stages, we may be given fewer
than j− i+ 1 plaintext/ciphertext pairs for E[i...j], and then we are expected to
produce all the compatible keys). In all our exponential complexity estimates,
we consider expected rather than maximal possible values (under standard ran-
domness assumptions, they differ by no more than a logarithmic factor), and
ignore multiplicative polynomial factors in n and r.

3 Dissecting the Multiple-Encryption Problem

In this section we develop our basic dissection algorithms that allow to solve
efficiently the problem of multiple encryption. Given r-encryption with r in-
dependent keys, r n-bit plaintext/ciphertext pairs and 2mn memory cells, the
algorithms find all possible values of the keys which comply with the plain-
text/ciphertext pairs, or prove that there are no such keys. The algorithms are
deterministic, in the sense that they do not need random bits and they always
succeed since they implicitly scan all possible solutions.

Here, we treat the case of general r and m = 1. The generalization of the
algorithms to other integer values of m is given in the extended version of this
paper [4]. The algorithms can be extended also to fractional values of m and to



compositions of one-way functions, which appear in the context of layered Mes-
sage Authentication Codes, such as NMAC [2].1 The first non-integer extension
is presented in the full version of the paper, whereas the extension to one-way
functions is presented in the extended version of this paper [4].

3.1 Previous Work — The Meet in the Middle Attack

The trivial algorithm for recovering the key of r-encryption is exhaustive search
over the 2rn possible key values, whose time complexity is 2rn, and whose mem-
ory requirement is negligible. In general, with no additional assumptions on the
algorithm and on the subkeys, this is the best possible algorithm.

In [14] Merkle and Hellman observed that if the keys used in the encryption
are independent, an adversary can trade time and memory complexities, using
a meet in the middle approach. In this attack, the adversary chooses a value u,
1 ≤ u ≤ br/2c, and for each possible combination of the first u keys (k1, k2, . . . ku)
she computes the vector (Xu

1 , X
u
2 , . . . , X

u
r ) = E[1...u](P1, P2, . . . , Pr) and stores

it in a table (along with the respective key candidate). Then, for each value of the
last r−u keys, the adversary computes the vector D[u+1...r](C1, C2, . . . , Cr) and
checks whether the value appears in the table (each such collision suggests a key
candidate (k1, . . . , kr)). The right key is necessarily suggested by this approach,
and in cases when other keys are suggested, additional plaintext/ciphertext pairs
can be used to sieve the wrong key candidates.

The time complexity of this algorithm is T = 2(r−u)n, whereas its memory
complexity is M = 2un. Hence, the algorithm allows to achieve the tradeoff curve
TM = 2rn for any values T,M such that M ≤ 2br/2cn.2 Note that the algorithm
can be applied also if the number of available plaintext/ciphertext pairs is r′ < r.
In such case, it outputs all the possible key candidates, whose expected number
is 2(r−r

′)n (since the plaintext/ciphertext pairs yield an r′n-bit condition on the
2rn possible keys).

The meet in the middle attack, designed for breaking double-encryption, is
still the best known generic attack on double encryption schemes. It is also the
best known attack for triple encryption upto logarithmic factors,3 which was
studied very extensively due to its relevance to the former de-facto encryption
standard Triple-DES.

1 Given a keyed hash-function F , and a key k = (k1, k2), the MAC function NMAC(x)
which works on inputs x of arbitrary length, is defined as NMACk(x) = Fk1(Fk2(x)).

2 We note that the algorithm, as described above, works only for u ∈ N. However,
it can be easily adapted to non-integer values of u ≤ br/2c, preserving the tradeoff
curve TM = 2rn.

3 We note that a logarithmic time complexity improvement can be achieved in these
settings as suggested by Lucks [12]. The improvement relies on the variance in the
number of keys encrypting a given plaintext to a given ciphertext. This logarithmic
gain in time complexity comes hand in hand with an exponential increase in the
data complexity (a factor 8 gain in the time complexity when attacking triple-DES
increases the data from 3 plaintext-ciphertext pairs to 245 such pairs).



3.2 The Basic Dissection Algorithm: Attacking 4-Encryption

In the followings we show that for r ≥ 4, the basic meet in the middle algorithm
can be outperformed significantly, using a dissection technique. For the basic
case r = 4, considered in this section, our algorithm runs in time T = 22n with
memory 2n, thus allowing to reach TM = 23n, which is significantly better than
the TM = 24n curve suggested by the meet-in-the-middle attack.

The main idea behind the algorithm is to dissect the 4-encryption into two
2-encryption schemes, and to apply the meet in the middle attack to each of
them separately. The partition is achieved by enumerating parts of the internal
state at the dissection point. The basic algorithm, which we call Dissect2(4, 1)
for reasons which will become apparent later, is as follows:

1. Given four known plaintexts (P1, P2, P3, P4) and their corresponding cipher-
texts (C1, C2, C3, C4), for each candidate value of X2

1 = Ek2
(Ek1

(P1)):
2. (a) Run the standard meet in the middle attack on 2-round encryption with

(P1, X
2
1 ) as a single plaintext-ciphertext pair. For each of the 2n values

of (k1, k2) output by the attack, partially encrypt P2 using (k1, k2), and
store in a table the corresponding values of X2

2 , along with the values of
(k1, k2).

(b) Run the standard meet in the middle attack on 2-round encryption with
(X2

1 , C1) as a single plaintext-ciphertext pair. For each of the 2n values
of (k3, k4), partially decrypt C2 using (k3, k4) and check whether the
suggested value for X2

2 appears in the table. If so, check whether the key
(k1, k2, k3, k4) suggested by the table and the current (k3, k4) candidate
encrypts P3 and P4 into C3 and C4, respectively.

It is easy to see that once the right value for X2
1 is considered, the right

values of (k1, k2) are found in Step 2(a) and the right values of (k3, k4) are found
in Step 2(b), and thus, the right value of the key is necessarily found. The time
complexity of the algorithm is 22n. Indeed, Steps 2(a) and 2(b) are called 2n

times (for each value of X2
1 ), and each of them runs the basic meet in the middle

attack on 2-encryption in expected time and memory of 2n. The number of
expected collisions in the table of X2

2 is 2n. Thus, the expected time complexity
of the attack4 is 2n · 2n = 22n.

The memory consumption of the 2-encryption meet in the middle steps is
expected to be about 2n. The size of the table “passed” between Steps 2(a) and
2(b) is also 2n, since each meet in the middle step is expected to output 2n key
candidates. Hence, the expected memory complexity of the entire algorithm is
2n.

3.3 Natural Extensions of the Basic Dissection Algorithm

We now consider the case (r > 4,m = 1) and show that natural extensions of
the Dissect2(4, 1) algorithm presented above, allow to increase the gain over the
standard meet in the middle attack significantly for larger values of r.

4 We remind the reader that we disregard factors which are polynomial in n and r.



It is clear that any algorithm for r′-encryption can be extended to attack
r-encryption for any r > r′, by trying all possible r− r′ keys (kr′+1, . . . , kr), and
applying the basic algorithm to the remaining E[1...r′]. The time complexity is
increased by a multiplicative factor of 2(r−r

′)n, and hence, the ratio 2rn/TM is
preserved. This leads to the following natural definition.

Definition 1. Given an algorithm A for r-encryption whose time and memory
complexities are T and M , respectively, we define Gain(A) = log(2rn/TM)/n =
r − log(TM)/n. The maximal gain amongst all deterministic algorithms for r-
encryption which use 2mn memory, is denoted by GainD(r,m).

By the trivial argument above, GainD(r, 1) is monotone non-decreasing with
r. The Dissect2(4, 1) algorithm shows that GainD(r, 1) ≥ 1 for r = 4, and hence,
for all r ≥ 4. Below we suggest two natural extensions, which allow to increase
the gain up to

√
r.

The LogLayer Algorithm: The first extension of the Dissect2(4, 1) is the
recursive LogLayerr algorithm, applicable when r is a power of 2, which tries all
the possible X2i

1 for i = 1, 2, . . . , r/2− 1 and runs simple meet in the middle at-
tacks on each subcipher E[2i+1...2i+2] separately. As each such attack returns 2n

candidate keys (which can be stored in memory of (r/2) ·2n), the algorithm then
groups 4 encryptions together, enumerates the values X4i

2 for i = 1, 2, . . . , r/4−1,
and runs meet in the middle attacks on each subcipher E[4i+1...4i+4] separately
(taking into account that there are only 2n possibilities for the keys (k4i+1, k4i+2)
and 2n possibilities for the keys (k4i+3, k4i+4)). The algorithm continues recur-
sively (with log r layers in total), until a single key candidate is found.

The memory complexity of LogLayerr is 2n (as we need to store a number
linear in r of lists of 2n keys each). As in the j-th layer of the attack, (r/2j)− 1
intermediate values are enumerated, and as each basic meet in the middle attack
has time complexity of 2n, the overall time complexity of the attack is

log r∏
j=1

2n((r/2
j)−1) · 2n = 2n(r−log r).

The gain is thus Gain(LogLayerr) = log r− 1, which shows that GainD(r, 1) ≥
blog rc − 1.

The Squarer Algorithm: This logarithmic gain of LogLayer can be signif-
icantly outperformed by the Squarer algorithm, applicable when r = (r′)2 is a
perfect square. The Squarer algorithm starts by trying all the possible values
of r′ − 1 intermediate values every r′ rounds, a total of (r′ − 1)2 intermediate
encryption values. Namely, the algorithm starts by enumerating all Xr′

1 , Xr′

2 , . . .,

Xr′

r′−1, X
2r′

1 , X2r′

2 , . . . , X2r′

r′−1, . . ., X
r′(r′−1)
1 , X

r′(r′−1)
2 , . . . , X

r′(r′−1)
r′−1 . Given these

values, the adversary can attack each of the r′-encryptions (e.g., E[1...r′]), sepa-
rately, and obtain 2n “solutions” on average. Then, the adversary can treat each



r′-round encryption as a single encryption with 2n possible keys, and apply an
r′-encryption attack to recover the key.

The time complexity of Squarer is equivalent to repeating 2(r
′−1)(r′−1)n times

a sequence of r′ + 1 attacks on r′-encryption. Hence, the time complexity is at
most 2[(r

′−1)(r′−1)+(r′−1)]·n, and the memory complexity is kept at 2n. Therefore,
Gain(Squarer) ≥

√
r − 1, which shows that GainD(r, 1) ≥ b

√
rc − 1.

Obviously, improving the time complexity of attacking r′-encryption with 2n

memory reduces the time complexity of Squarer as well. However, as the best
known attacks of this kind yields a gain of O(

√
r′) = O(r1/4), the addition to

the overall gain of Squarer is negligible.

3.4 Asymmetric Dissections: 7-Encryption and Beyond

A common feature shared by the LogLayerr and the Squarer algorithms is their
symmetry. In both algorithms, every dissection partitions the composition into
parts of the same size. In this section we show that a better gain can be achieved
by an asymmetric dissection, and present the optimal dissection algorithms of
this type for m = 1 and any number r of encryptions.

We observe that the basic dissection attack is asymmetric in its nature. In-
deed, after the two separate meet in the middle attacks are performed, the
suggestions from the upper part are stored in a table, while the suggestions from
the lower part are checked against the table values. As a result, the number of
suggestions in the upper part is bounded from above by the size of the memory
(which is now assumed to be 2n and kept in sorted order), while the number of
suggestions from the lower part can be arbitrarily large and generated on the fly
in an arbitrary order. This suggests that an asymmetric dissection in which the
lower part is bigger than the upper part, may result in a better algorithm. This
is indeed the case, as illustrated by the following Dissect3(7, 1) algorithm:

1. Given 7 plaintext-ciphertext pairs (P1, C1), (P2, C2), . . . (P7, C7), for each
possible value of X3

1 , X
3
2 , perform:

(a) Apply the basic MITM algorithm to E[1...3] with (P1, X
3
1 ) and (P2, X

3
2 )

as the plaintext/ciphertext pairs, and obtain 2n candidates for the keys
(k1, k2, k3). For each such candidate, partially encrypt the rest of the
plaintexts using (k1, k2, k3) and store the values (X3

4 , . . . , X
3
7 ) in a table,

along with the corresponding key candidate (k1, k2, k3).
(b) Apply Dissect2(4, 1) to E[4...7] with (X3

1 , C1) and (X3
2 , C2) as the plain-

text/ciphertext pairs. Note that since only two pairs are given, algorithm
Dissect2(4, 1) produces 22n possible values of the keys (k4, k5, k6, k7).
However, these values are produced sequentially, and can be checked on-
the-fly by partially decrypting C4, C5, C6, C7, and checking whether the
corresponding vector (X3

4 , . . . , X
3
7 ) appears in the table.

The memory complexity of the algorithm is 2n, as both the basic meet in the
middle attack on triple encryption and the algorithm Dissect2(4, 1) require 2n

memory, and the size of the table “passed” between Steps 2(a) and 2(b) is also
2n.



The time complexity is 24n. Indeed, two n-bit values are enumerated in the
middle, both the basic meet in the middle attack on triple encryption and the
algorithm Dissect2(4, 1) require 22n time, and the remaining 22n possible values
of (k4, k5, k6, k7) are checked instantly. This leads to time complexity of 22n·22n =
24n.

This shows that Gain(Dissect3(7, 1)) = 2, which is clearly better than the
algorithms LogLayerr and Squarer, which reach gain of 2 for the first time only
at r = 8 and at r = 9, respectively.

Furthermore, the algorithm Dissect3(7, 1) can be extended recursively to
larger values of r, to yield better asymptotic for the gain function. Given the
algorithm Dissectj(r

′, 1) such that Gain(Dissectj(r
′, 1)) = ` − 1, we define

the algorithm Dissect1NEXT = Dissect`+1(r′ + ` + 1, 1) for r-encryption, where
r = r′ + ` + 1, as follows:

1. Given r plaintext-ciphertext pairs (P1, C1), (P2, C2), . . . (Pr, Cr), for each
possible value of X`+1

1 , . . . , X`+1
` , perform:

(a) Apply the basic MITM attack to E[1...`+1] with (P1, X
`+1
1 ), . . . , (P`, X

`+1
` )

as the plaintext/ciphertext pairs, and obtain 2n candidates for the keys
(k1, . . . , k`+1). For each such candidate, partially encrypt the rest of the
plaintexts using (k1, . . . , k`+1) and store the values (X`+1

`+1 , . . . , X
`+1
r ) in

a table, along with the corresponding key candidate (k1, . . . , k`+1).
(b) Apply Dissectj(r

′, 1) to E[`+2...r] with (X`+1
1 , C1), . . . , (X`+1

` , C`) as the

plaintext/ciphertext pairs. Check each of the 2(r
′−`)n suggestions for the

keys (k`+2, . . . , kr) on-the-fly by partially decrypting C`+1, . . . , Cr, and
checking whether the corresponding vector (X`+1

`+1 , . . . , X
`+1
r ) appears in

the table.

An exactly similar argument as the one used for Dissect3(7, 1) shows that
the time and memory complexities of Dissect`+1(r) are 2r

′n and 2n, respec-
tively, which implies that Gain(Dissect`+1(r)) = `. In fact, Dissect3(7, 1) can
be obtained from Dissect2(4, 1) by the recursive construction just described.

The recursion leads to a sequence of asymmetric dissection attacks with mem-
ory M = 2n, such that the gain increases by 1 with each step of the sequence.
If we denote the number r of “rounds” in the `’s element of the sequence (i.e.,
the element for which the gain equals to `) by r`, then by the construction, the
sequence satisfies the recursion

r` = r`−1 + ` + 1,

which (together with r2 = 4 which follows from Dissect2(4, 1)) leads to the
formula:

r` =
`(` + 1)

2
+ 1.

The asymptotic gain of this sequence is obtained by representing ` as a function
of r, and is equal to (

√
8r − 7 − 1)/2 ≈

√
2r, which is bigger than the

√
r gain

of the Squarer algorithm.



A thorough analysis, presented in the extended version of this paper [4],
shows that the algorithms obtained by the recursive sequence described above
are the optimal amongst all dissection algorithms that split the r rounds into
two (not necessarily equal) parts, and attacks each part recursively, using an
optimal dissection algorithm.

We conclude that as far as only dissection attacks are concerned, the “magic
sequence” of the minimal numbers of rounds for which the gains are ` = 0, 1, 2, . . .,
is:

Magic1 = {1, 2, 4, 7, 11, 16, 22, 29, 37, 46, 56, . . .}.

This “magic sequence” will appear several more times in the sequel.

4 Parallel Collision Search via Dissection

In Section 3, we considered the scenario of deterministic algorithms which never
err for r-encryption, that is, algorithms which find all the possible values of the
keys which comply with the plaintext/ciphertext pairs, or prove that there are
no such keys. In this scenario, the best previously known generic attack is the
meet in the middle attack, which obtains the tradeoff curve TM = 2rn, where
T and M are the time and memory complexities of the algorithm, respectively.
In this model, we presented several dissection algorithms which allow to achieve

the curve TM = 2(r−
√
2r)n.

In this section, we consider the scenario in which non-deterministic algo-
rithms, which find the right keys with some probability p < 1, are allowed. In
this case, an improved tradeoff curve of T 2M = 2(3/2)rn can be obtained by
the parallel collision search algorithm of van Oorschot and Wiener [18]. We now
show how to combine the dissection algorithms presented in Section 3 with the
parallel collision search algorithm to obtain an even better tradeoff curve with

a multiplicative gain of 2(
√
2r/8)n over the curve of [18].

4.1 Brief Description of the Parallel Collision Search Algorithm

We start with a very brief description of the PCS algorithm suggested in [18].
The algorithm consists of two steps:

1. Find partial collisions, which are key suggestions which comply with half of
the plaintext/ciphertext pairs.

2. For each partial collision, check whether it complies with the second half of
the plaintext/ciphertext pairs.

The first step is performed by constructing two step functions:5

Fupper : (k1, . . . , kr/2) 7→ (X
r/2
1 , . . . , X

r/2
r/2 ) and

F lower : (kr/2+1, . . . , kr) 7→ (X
r/2
1 , . . . , X

r/2
r/2 ),

5 The idea of constructing two step functions was first proposed in [8].



which can be computed easily given the pairs (P1, C1), . . . , (Pr/2, Cr/2), and us-
ing Floyd’s cycle finding algorithm [10] (or another cycle finding algorithm which
requires little memory, such as [16]) to find a collision between them. In the case
of constant memory, Floyd’s algorithm finds such a collision (which produces a
key suggestion which complies with the pairs (P1, C1), . . . , (Pr/2, Cr/2)) in 2(r/4)n

time. If M = 2mn memory is given, this step can be speeded up by incorporating
Hellman’s time-memory tradeoff techniques [5], that allow to find 2mn collisions
simultaneously in 2(r/4+m/2)n time. In both cases, after 2(r/2)n partial collisions
are found, it is expected that one of them passes the condition of the second
step, which means that it is the desired key suggestion. The time complexity of
the algorithm is T = 2(r/4+m/2)n · 2(r/2−m)n = 2(3r/4−m/2)n, which leads to the
tradeoff curve T 2M = 2(3/2)rn.

4.2 The Dissect & Collide Algorithm

In this section we present the Dissect & Collide (DC) algorithm, which uses
dissection to enhance the PCS algorithm.

The basic idea behind the DC algorithm is that it is possible to fix several in-

termediate values after r/2 rounds, that is, (X
r/2
1 , . . . , X

r/2
u ), and construct step

functions F̃upper and F̃ lower in such a way that all the keys they suggest par-

tially encrypt Pi to X
r/2
i and partially decrypt Ci to X

r/2
i , for all i ≤ u. This is

achieved by incorporating an attack on E[1...r/2] with (P1, X
r/2
1 ), . . . , (Pu, X

r/2
u )

as the plaintext/ciphertext pairs into the function Fupper, and similarly with
E[r/2+1...r] and F lower. As a result, a partial collision which complies with the
pairs (P1, C1), . . . , (Pr/2, Cr/2) can be found at the smaller “cost” of finding a
collision which complies only with (Pu+1, Cu+1), . . . , (Pr/2, Cr/2). It should be
noted that this gain could be diminished by the “cost” of the new step function
F̃ , that is higher than the “cost” of the simpler step function F . However, we
show that if the efficient dissection algorithms presented in Section 3 are used to
attack the subciphers E[1...r/2] and E[r/2+1...r], the gain is bigger than the loss,
and the resulting DC algorithm is faster than the PCS algorithm (for the same
amount of memory).

A basic example: Applying DC to 8-encryption As the idea of the
DC algorithm is somewhat involved, we illustrate it by considering the sim-
ple case (r = 8,m = 1). In the case of 8-encryption, the goal of the first step
in the PCS algorithm is to find partial collisions which comply with the pairs
(P1, C1), . . . , (P4, C4). Given memory of 2n, the average time PCS requires for
finding each such collision is 21.5n. The DC algorithm allows to achieve the same
goal in 2n time.

In the DC algorithm, we fix three intermediate values: (X4
1 , X

4
2 , X

4
3 ), and

want to attack the subciphers E[1...4] and E[5...8]. Recall that Dissect2(4, 1)
presented in Section 3 allows to retrieve all 2n values of (k1, k2, k3, k4) which
comply with the pairs (P1, X

4
1 ), (P2, X

4
2 ), (P3, X

4
3 ) in time 22n and memory 2n.

Furthermore, given a fixed value X2
1 , there is a single value of (k1, k2, k3, k4) (on



average) which complies with the three plaintext/ciphertext pairs and the X2
1

value, and this value can be found in time 2n (since the Dissect2(4, 1) algorithm
starts with guessing the value X2

1 and then performs only 2n operations for each
guess).

The algorithm works as follows:

1. Given the plaintexts (P1, P2, P3, P4) and their corresponding ciphertexts
(C1, C2, C3, C4), for each guess of (X4

1 , X
4
2 , X

4
3 ):

2. (a) Define the step functions F̃upper and F̃ lower by:

F̃upper : X2
1 7→ X4

4 and F̃ lower : X6
1 7→ X4

4 .

In order to compute the step function F̃upper, apply Dissect2(4, 1) to
E[1...4] with the plaintext/ciphertext pairs (P1, X

4
1 ), (P2, X

4
2 ), (P3, X

4
3 )

and the intermediate value X2
1 to obtain a unique value of the keys

(k1, k2, k3, k4). Then, partially encrypt P4 through E[1...4] with these keys
to obtain F̃upper(X1

2 ) = X4
4 . The function F̃ lower is computed similarly.

(b) Find a collision between the functions F̃upper and F̃ lower using a variant
of Floyd’s cycle finding algorithm which exploits the M = 2n available
amount of memory.

(c) Check whether the keys (k1, . . . , k4, k5, . . . , k8) suggested by the partial
collision, encrypt (P5, . . . , P8) to (C5, . . . , C8). If not, return to Step 2(a).
After 2n partial collisions are examined and discarded, return to Step 1,
and pick a different guess for (X4

1 , X
4
2 , X

4
3 ).

By the properties of the algorithm Dissect2(4, 1) mentioned above, each step
of the functions F̃ can be performed in 2n time and memory. By the construction
of the step functions, each suggested key (k1, . . . , k4) (or (k5, . . . , k8)) encrypts
(P1, P2, P3) to (X4

1 , X
4
2 , X

4
3 ) (or decrypts (C1, C2, C3) to (X4

1 , X
4
2 , X

4
3 ), respec-

tively), and hence, each collision between F̃upper and F̃ lower yields a suggestion
of (k1, . . . , k4, k5, . . . , k8) which complies with the pairs (P1, C1), . . . , (P4, C4).
Finally, since the step functions are from n bits to n bits, collision between them
can be found instantly given 2n memory. Therefore, the time required for find-
ing a partial collision is 2n, and thus, the total running time of the algorithm is
24n ·2n = 25n. We note that while our DC algorithm outperforms the respective
PCS algorithm (whose time complexity is 25.5n), it has the same performance
as the Dissect4(8, 1) algorithm presented in Section 3. However, as we will show
in the sequel, for larger values of r, the DC algorithms outperform the Dissect
algorithms significantly.

The general algorithms DC(r,m) Now we are ready to give a formal
definition of the class DC(r,m) of algorithms, applicable to r-encryption (for
an even r)6, given memory of 2mn. An algorithm A ∈ DC(r,m) is specified

6 We note that for sake of simplicity, we discuss in this section only even values of r.
An easy (but probably non-optimal) way to use these algorithms for an odd value
of r is to guess the value of the key kr, and for each guess, to apply the algorithms
described in this section to E[1...r−1].



by a number u, 1 ≤ u ≤ r/2, and two sets Iupper and I lower of intermedi-
ate locations in the subciphers E[1...r/2] and E[r/2+1...r], respectively, such that
|Iupper| = |I lower| = r/2− u.

In the algorithm, the adversary fixes u intermediate values (X
r/2
1 , . . . , X

r/2
u ).

Then, she defines the step functions F̃upper and F̃ lower by:

F̃upper : Iupper 7→ (X
r/2
u+1, . . . , X

r/2
r/2 ) and F̃ lower : I lower 7→ (X

r/2
u+1, . . . , X

r/2
r/2 ).

The step function F̃upper is computed by applying a dissection attack to E[1...r/2]

with the plaintext/ciphertext pairs (P1, X
r/2
1 ), . . . , (Pu, X

r/2
u ) and the intermedi-

ate values contained in Iupper to retrieve a unique value of the keys (k1, . . . , kr/2),

and then partially encrypting (Pu+1, . . . , Pr) to obtain (X
r/2
u+1, . . . , X

r/2
r/2 ). The

step function F̃ lower is computed in a similar way, with respect to E[r/2+1...r] and
the set I lower. Then, a variant of Floyd’s cycle finding algorithm which exploits
the 2mn amount of available memory is used to find a collision between F̃upper

and F̃ lower, which yields a suggestion of (k1, . . . , kr/2, kr/2+1, . . . , kr) which com-
plies with the plaintext/ciphertext pairs (P1, C1), . . . , (Pr/2, Cr/2).

Denote the time complexity of each application of F̃ by S = 2sn. An easy
computation shows that the overall time complexity of the algorithm DC(r,m)
is:

2(r/2)n · 2((r/2−u−m)/2)n · 2sn = 2((3/4)r−(u+m−2s)/2)n. (1)

As the time complexity of the PCS algorithm with memory 2mn is 2((3/4)r−m/2)n,
the multiplicative gain of the DC algorithm is 2(u/2−s)n. In particular, for the
specific DC(8, 1) algorithm described above for 8-encryption, we have s = 1,
and thus, the advantage is indeed 2(3/2−1)n = 2n/2 (i.e., the gain is 1/2), as
mentioned above. In the sequel, we denote the parameters Iupper, I lower, u, s
which specify a DC(r,m) algorithm A and determine its time complexity by
Iupper(A), I lower(A), u(A), and s(A), respectively.

We conclude this section by mentioning a difficulty in the implementation
of the DC algorithm. Unlike the PCS algorithm where the output of the step
functions F is always uniquely defined, in DC the functions F̃ return no output
for some of the inputs. This happens since the number of keys (k1, . . . , kr/2)

which comply with the u plaintext/ciphertext values (P1, X
r/2
1 ), . . . , (Pu, X

r/2
u )

and the r/2 − u fixed intermediate values contained in Iupper, is distributed
according to the distribution Poisson(1), and in particular, equals to zero for an
1/e fraction of the inputs. This difficulty can be resolved by introducing flavors
into the step function F̃ , which alter the function in a deterministic way when
it fails to produce output. The exact modification is described in the extended
version of this paper [4].

4.3 The Gain of the Dissect & Collide Algorithm Over the PCS
Algorithm

In this section we consider several natural extensions of the basic DC(8, 1) al-
gorithm presented in Section 4.2. We use these extensions to show that the gain



of the DC algorithms over the PCS algorithm is monotone non-decreasing with

r and is lower bounded by 2(b
√
2rc/8)n for any r ≥ 8.

Before we present the extensions of the basic DC algorithm, we would like to
define formally the notion of gain in the non-deterministic setting. As the best
previously known algorithm in this setting is the PCS algorithm, whose time
complexity given 2mn memory is 2((3/4)r−m/2)n, we define the gain with respect
to it.

Definition 2. The gain of a probabilistic algorithm A for r-encryption whose
time and memory complexities are T and M = 2mn, respectively, is defined as

GainND(A) = (3/4)r −m/2− (log T )/n.

The maximal gain amongst all probabilistic DC algorithms for r-encryption
which require 2mn memory, is denoted by GainND(r,m).

Note that it follows from Equation (1) that if A ∈ DC(r,m), then

GainND(A) = u(A)/2− s(A). (2)

Monotonicity of the gain The most basic extension of the basic DC algo-
rithm is to preserve the gain when additional “rounds” are added. While in the
deterministic case, such an extension can be obtained trivially by guessing sev-
eral keys and applying the previous algorithm, in our setting this approach leads
to a decrease of the gain by 1/2 for each two added rounds (as the complexity
of the PCS algorithm is increased by a factor of 23n/2 when r is increased by 2).
However, the gain can be preserved in another way, as shown in the following
lemma.

Lemma 1. Assume that an algorithm A ∈ DC(r′,m) has gain `. Then there
exists an algorithm B ∈ DC(r′ + 2,m) whose gain is also equal to `.

Due to space restrictions, the proof of the lemma is presented in the extended
version of this paper [4]. Here we only note that the algorithm B is constructed

from A by choosing Iupper(B) = Iupper(A)∪{Xr′/2
1 }, and similarly for I lower(B).

Lemma 1 implies that the gain of the DC algorithms is monotone non-
decreasing with r, and in particular, that GainND(r, 1) ≥ 1/2, for any even
r ≥ 8.

An analogue of the LogLayer algorithm The next natural extension of
the basic DC algorithm is an analogue of the LogLayer algorithm presented in
Section 3.3. Recall that the LogLayerr algorithm, applicable when r is a power
of 2, consists of guessing the set of intermediate values:

I0 = {X2
1 , X

4
1 , . . . , X

r−2
1 , X4

2 , X
8
2 , . . . , X

r−4
2 , X8

3 , . . . , X
r−8
3 , . . . , X

r/2
log r−1},

and applying a recursive sequence of meet in the middle attacks on 2-encryption.
Using this algorithm, we can define the algorithm LLr ∈ DC(2r, 1), by specifying



Iupper(LLr) = I0, and I lower(LLr) in a similar way. Since |I0| = r − log r − 1,
we have u(LLr) = r − (r − log r − 1) = log r + 1. It follows from the structure
of the LogLayerr algorithm that given the values in I0, it can compute the
keys (k1, . . . , kr) in time and memory of 2n. Hence, we have s(LLr) = 1. By
Equation (2), it follows that Gain(LLr) = (log r + 1)/2− 1 = (log r − 1)/2.

The basic algorithm for 8-encryption is the special case LL4 of this algorithm.
The next two values of r also yield interesting algorithms: LL8 yields gain of 1
for (r = 16,m = 1), which amounts to an attack on 16-encryption with (T =
210.5n,M = 2n), and LL16 yields gain of 1.5 for (r = 32,m = 1), which amounts
to an attack on 32-encryption with (T = 222n,M = 2n). Both attacks outperform
the Dissect attacks and are the best known attacks on 16-encryption and on 32-
encryption, respectively.

An analogue of the Squarer algorithm: The logarithmic asymptotic gain
of the LL sequence can be significantly outperformed by an analogue of the
Squarer algorithm, presented in Section 3.3. Recall that the Squarer algorithm,
applicable when r = (r′)2 is a perfect square, starts by guessing the set of (r′−1)2

intermediate encryption values:

I1 = {Xr′

1 , . . . , Xr′

r′−1, X
2r′

1 , . . . , X2r′

r′−1, . . . , X
r′(r′−1)
1 , . . . , X

r′(r′−1)
r′−1 },

and then performs a two-layer attack, which amounts to r′ + 1 separate at-
tacks on r′-encryption. Using this algorithm, we can define the algorithm Sqr ∈
DC(2r, 1), by specifying Iupper(Sqr) = I0, and I lower(Sqr) in a similar way.
Since |I0| = (r′ − 1)2, we have u(Sqr) = r − (r′ − 1)2 = 2r′ − 1. The step
complexity s(Sqr) is the time complexity required for attacking r′-encryption
without fixed intermediate values. Hence, by Equation (2),

Gain(Sqr) = r′ − 1/2− f1(r′),

where 2f1(r)n is the time complexity of the best possible attack on r-encryption
with 2n memory.

The basic algorithm for 8-encryption is the special case Sq2 of this algorithm.
Since for small values of r′, the best known attacks on r′-encryption are obtained
by the dissection attacks presented in Section 3.4, the next elements of the
sequence Sqr which increase the gain, correspond to the next elements of the
sequence Magic1 = {1, 2, 4, 7, 11, 16, . . .} described in Section 3.4. They lead to
gains of 1.5, 2.5, and 3.5 for r = 32, 98, and r = 242, respectively. For large
values of r, the PCS algorithm outperforms the Dissect algorithms, and using
it we obtain:

Gain(Sqr) ≥ r′ − 1/2− ((3/4)r′ − 1/2) = r′/4 =
√

2r/8.

This shows that the asymptotic gain of the DC algorithms is at least
√

2r/8.
We note that as for r′ ≥ 16, the DC algorithm outperforms both the Dissect

and the PCS algorithms, we can use it instead of PCS in the attacks on r′-
encryption in order to increase the gain for large values of r. However, as the
gain of DC over PCS for r′-encryption is only of order O(

√
r′) = O(r1/4), the

addition to the overall gain of Sqr is negligible.



Two-layer DC algorithms A natural extension of the Sqr algorithm is the
class of two-layer DC algorithms. Assume that r = 2r1 · r2, and that there exist
algorithms A1, A2 for r1-encryption and for r2-encryption, respectively, which
perform in time 2sn and memory 2n given sets of intermediate values Iupper1 and
Iupper2 , respectively.

Then we can define an algorithm A ∈ DC(r, 1) whose step function is com-
puted by a two-layer algorithm: First, E[1...r/2] is divided into r2 subciphers of
r1 rounds each, and the algorithm A1 is used to attack each of them separately
and compute 2n possible suggestions for each set of r1 consecutive keys. Then,
each r1-round encryption is considered as a single encryption with 2n possible
keys, and the algorithm A2 is used to attack the resulting r2-encryption. The
set Iupper(A) is chosen such that both A1 and A2 algorithms perform in time
2s. Formally, if we denote u1 = |Iupper1 |, then the set Iupper(A) consists of r2
“copies” of the set Iupper1 , r1 − 1− u1 intermediate values after each r1 rounds,
and one copy of the set Iupper2 . The set I lower(A) is defined similarly. Hence,

u(A) = r/2− |Iupper(A)| = r/2− (r2 · u1 + (r2 − 1)(r1 − 1− u1) + u2) =
r2 + r1 − u1 − u2 − 1.

As s(A) = s, we have GainND(A) = (r2 + r1 − u1 − u2 − 1)/2− s.
Note that the algorithm Sqr is actually a two-layer DC algorithm, with

r1 = r2 = r′ and Iupper1 = Iupper2 = ∅. It turns out that for all 8 ≤ r ≤ 128,
the maximal gains are obtained by two-layer DC algorithms where r1, r2 are
chosen from the sequence Magic1 presented in Section 3.4, and A1, A2 are the
respective Dissect algorithms. The cases of r = 8, 16, 32 presented above are
obtained with r1 = 4 and r2 = 1, 2, 4 (respectively), and the next numbers of
rounds in which the gain increases are r = 56, 88, 128, obtained for r1 = 4 and
r2 = 7, 11, 16, respectively. The continuation of the “non-deterministic magic
sequence” is, however, more complicated. For example, the two-layer algorithm
for r = 176 with (r1 = 4, r2 = 22) has the same gain as the algorithm with
(r1 = 4, r2 = 16), and the next increase of the gain occurs only for r = 224, and
is obtained by a two-layer algorithm with (r1 = 7, r2 = 16). For larger values of r,
more complex algorithms, such as a three-layer algorithm with r1 = r2 = r3 = 7
for 686-encryption, outperform the two-layer algorithms. We leave the analysis
of the whole magic sequence to the full version of the paper, and conclude that
the minimal numbers of rounds for which the gain equals 0.5, 1, 1.5, . . . are:

MagicND
1 = {8, 16, 32, 56, 88, 128, . . .}.

Finally, we note that two-layer DC algorithms can be applied also for m > 1, and
can be used to show that the first numbers of rounds for which GainND(r,m) =
0.5, 1, 1.5, 2, . . . are:

MagicND
m = {8m, 8m + 8, 8m + 16, . . . , 16m, 16m + 16, 16m + 32, . . . , 32m,

32m + 24, 32m + 48, . . . , 56m, . . .}.

The full analysis of the case m > 1 will appear in the full version of the paper.



5 Applications

In this section, we apply our new dissection algorithms to several well known
bicomposite search problems. As described in the introduction, we can represent
such a problem as an r × r execution matrix which is treated as a multiple-
encryption scheme with r rounds. In the case of knapsacks, we are allowed to
choose any constant value of r when n grows to infinity in order to optimize the
value of t for any given m. In other cases, r is restricted to a specific value or
to a set of values. For example, in the special case of Rubik’s cube, we know
that a 20-move solution exists for any reachable state, and thus it does not make
sense to choose r > 20. Such constraints can limit the choice of parameters for
our algorithms, and thus we may not be able to exploit the available memory as
efficiently as in the case of knapsacks.

Since the analysis of our multiple encryption algorithms assumes the random-
ness of the underlying block ciphers, we have to justify this assumption for each
reduction we consider. For example, in the case of knapsacks with n generators,
strong randomness assumptions are common practice whenever n is sufficiently
large (e.g., see [1, 7]), and we can use the same assumptions when we consider
subproblems with n/r generators for any constant r.

5.1 Applications to Knapsacks

The knapsack problem is a well-known problem that has been studied for many
years. For more than 30 years, the best known algorithm for knapsacks was the
Schroeppel-Shamir algorithm [17], which requires 2n/2 time and 2n/4 memory.
Surprisingly, in 2010, Howgrave-Graham and Joux [7] showed how to solve the
knapsack problem in time much better than 2n/2, by using the associativity
and commutativity properties of addition. This result was further improved by
Becker, Coron and Joux in [1]. In addition to their basic results, Howgrave-
Graham and Joux [7] also described reduced-memory algorithms, and in par-
ticular [1] described a memoryless attack which requires only 20.72n time. All
these new attacks are heuristic in a sense that they may fail to find a solution
even when it exists, and thus they cannot be used in order to prove the nonexis-
tence of solutions. In addition to these heuristic algorithms, Becker, Coron and
Joux [1] also considered deterministic algorithms that never err, and described
a straight-line time-memory tradeoff curve, but this curve was only valid in the
range 1/16 ≤ m ≤ 1/4.

In this section, we show how to use our generic dissection techniques in
order to find deterministic algorithms for the knapsack problem which are better
than the deterministic tradeoff curve described in [1] over the whole range of
1/16 < m < 1/4. In addition, we can expand our tradeoff curve in a continuous
way for any smaller value of m ≤ 1/4. By combining our generic deterministic
and non-deterministic algorithms, we can get a new curve which is better than



the best knapsack-specific algorithms described in [7] and [1] for the large interval
of (approximately) 1/100 ≤ m < 1/6.7

The formal reduction of the knapsack problem to r-round encryption (for
any r) is given in the extended version of this paper [4], but it is not required
in order to understand the rest of this paper. Given M = 2mn memory, our
goal is to solve the knapsack problem by applying the reduction with a value
of r which optimizes the time complexity of our multiple encryption algorithm.
Formally, for any r, we apply the multiple encryption algorithm with an effective
block size reduced by a factor of r, i.e., n∗ = n/r. By equating M = 2mn with
M = 2n(m

∗r), we can see that the effective memory unit increases by the same
ratio, i.e, m∗ = mr. We denote by f(r, n∗,m∗) the running time of our multiple
encryption algorithm on an r-round block cipher with a block size of n∗ bits and
M∗ = 2m

∗n∗ available memory, given r plaintext-ciphertext pairs. Using this
notation, we would like to find r that minimizes f(r, n∗,m∗) = f(r, n/r,mr).
We call such a value of r an optimal value.

We note that the deterministic algorithms applied in [7] and [1] for 1/16 ≤
m ≤ 1/4 implicitly perform a reduction to multiple encryption with the fixed
parameters r = 4 and r = 16. In fact, for the case of knapsacks and these choices
of r, these algorithms are closely related to our square algorithms (described in
Section 3.3). However, as we now show, we can get a better tradeoff curve by
using other choices of r.

Time-Memory Tradeoff Curves for Knapsacks Using our multiple en-
cryption algorithms, we construct time-memory tradeoff curves for knapsacks:
we start with deterministic algorithms and consider first the case of 1/m ∈
{1, 2, 4, 7, 11, 16, ...}, which is the “magic sequence” constructed in Section 3.4.
In order to simplify our notation, we denote the j’th element of this sequence
by bj , starting from j = 0. In the case of 1/m = bj for j ≥ 2, we simply choose
r = 1/m = bj and run the algorithm with n∗ = n/m and m∗ = m/m = 1. For
example, in case m = 1/4, we run the 4-round multiple encryption with m∗ = 1,
for which the time complexity is T = 22n

∗
= 22(n/4) = 2n/2, or t = 1/2. In case

m = 1/7, we run the 7-round dissection algorithm with m∗ = 1, for which the
time complexity is T = 24n

∗
= 24n/7, or t = 4/7. In the extended version of this

paper [4], we show that in the case of 1/m ∈ {4, 7, 11, 16, ...}, our choice of r
is indeed optimal. Thus, we obtain a sequence of optimal points on the deter-
ministic time-memory tradeoff curve. In order to obtain an optimal continuous
curve for 0 < m ≤ 1/4, we need to use our algorithms for integral m∗ ≥ 2. As
described in the extended version of this paper [4], these algorithms enable us
to connect in a straight line any two consecutive time-memory tradeoff points
for 1/m ∈ {4, 7, 11, 16, ...}, and obtain a continuous curve (as shown on the left
diagram of Figure 1).

7 We note that since our algorithms do not efficiently exploit more than 2n/4 memory,
our tradeoff curves are only defined for m ≤ 0.25. This should be contrasted with
the non-deterministic algorithms of [7] and [1], whose main results solve the problem
in time less than 2n/3 with about 2n/3 memory.



For non-deterministic algorithms, we use the same approach, and consider
first the “magic sequence” constructed in Section 4 for 1/m ∈ {16, 32, 56, ...}.
We choose r = 1/m and the corresponding values of t (1/10.5, 1/22, 1/39.5,...).
Similarly to the deterministic case, we can use our non-deterministic algorithms
for integral m∗ ≥ 2 in order to obtain a continuous curve (as shown on the right
diagram of Figure 1). The full details of how to connect consecutive points on
the curve will be given in the full version of this paper.

Top Legend:

Our curve
The curved obtained in [1]

Bottom Legend:

Our curve
The curve obtained by extending thepm � 0.211, t � 0.421q attack given in [7]
The memoryless attack with t � 0.72
obtained in [1]
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On the top: A comparison between time-memory tradeoff curves obtained with deter-
ministic algorithms. Our curve (defined for m ≤ 1/4) is strictly better than the curve
obtained in [1] (defined only for 1/16 ≤ m ≤ 1/4) for any 1/16 < m < 1/4.
On the bottom: A comparison between general time-memory tradeoff curves. Our gen-
eral time-memory tradeoff curve is better than the attacks of [1] and [7] in the interval
of (approximately) 1/100 ≤ m < 1/6.

Fig. 1. Time-Memory Tradeoff Curves for Knapsack



5.2 Improving Rebound Attacks On Hash Functions

Another application of our new techniques can significantly improve rebound
attacks [13] on hash functions. An important procedure in such attacks is to
match input/output differences through an S-box layer (or a generalized S-box
layer). More precisely, the adversary is given a list LA of input differences and
a list LB of output differences, and has to find all the input/output difference
pairs that can happen through the S-box layer. A series of matching algorithms
were recently developed, optimizing and improving various rebound attacks [15].

Our dissection algorithms can be applied for this problem as well, replacing
the gradual matching or parallel matching presented at Crypto 2011 by [15]. For
example, we can improve the rebound attack on Luffa using a variant of our
Dissect2(4, 1) algorithm. As described in the extended version of this paper [4],
we can reduce the memory complexity of the matching algorithm from 2102 to
only 266 without affecting the time complexity of the attack (which remains at
2104).

5.3 Applications to Relational Databases

As a final example of the versatility of our algorithm, we note that in some cases,
it may be possible to use the dissection technique to speed up the processing of
queries in relational databases. The problem of composing block ciphers can be
viewed as the problem of computing the join of several databases, where each
database contains all the possible plaintext/ciphertext pairs, and the join opera-
tion equates the previous ciphertext with the next plaintext. When intermediate
joined databases blow up in size but the final database is quite small, it may
be better to use the dissection technique which guesses some middle values and
splits the computation into smaller independent parts. More details about this
potential application will be given in the full version of this paper.

6 Summary

In this paper we introduced the new dissection technique which can be applied to
a broad class of problems which have a bicomposite structure. We used this tech-
nique to obtain improved complexities for several well studied problems such as
the cryptanalysis of multiple-encryption schemes and the solution of hard knap-
sacks. The main open problem in this area is to either improve our techniques or
to prove their optimality. In particular, we conjecture (but can not prove) that
any attack on multiple-encryption schemes should have a time complexity which
is at least the square root of the total number of possible keys.
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