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Abstract. It is well-known that one-way permutations (and even one-
to-one one-way functions) imply the existence of non-interactive com-
mitments. Furthermore the construction is black-box (i.e., the underlying
one-way function is used as an oracle to implement the commitment
scheme, and an adversary attacking the commitment scheme is used as
an oracle in the proof of security).

We rule out the possibility of black-box constructions of non-interactive
commitments from general (possibly not one-to-one) one-way functions.
As far as we know, this is the first result showing a natural cryptographic
task that can be achieved in a black-box way from one-way permutations
but not from one-way functions.

We next extend our black-box separation to constructions of non-interactive
commitments from a stronger notion of one-way functions, which we refer
to as hitting one-way functions. Perhaps surprisingly, Barak, Ong, and
Vadhan (Siam JoC ’07) showed that there does exist a non-black-box
construction of non-interactive commitments from hitting one-way func-
tions. As far as we know, this is the first result to establish a “separation”
between the power of black-box and non-black-box use of a primitive to
implement a natural cryptographic task.

We finally show that unless the complexity class NP has program check-
ers, the above separations extend also to non-interactive instance-based
commitments, and 3-message public-coin honest-verifier zero-knowledge
protocols with O(logn)-bit verifier messages. The well-known classical
zero-knowledge proof for NP fall into this category.
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1 Introduction

It is well-known that most of the cryptographic constructions are “black-box”
in the sense that they ignore the specific implementation of the primitive, and
they use both the primitive and the adversary (in the proof of security) as an
oracle. Thus black-box constructions capture a main body of our techniques
in cryptography for designing protocols and proving their security. In addition,
black-box constructions are usually much more efficient than their non-black-
box counterparts. In light of this, studying the power and limits of black-box
constructions has been a major line of research in cryptography, aiming at finding
the “minimal cryptographic primitives” under which a cryptographic task Q is
possible and “separating” Q from “weaker primitives”.

Black-Box Separations. The seminal work of Impagliazzo and Rudich [44] put
forward a framework for proving the limits of black-box constructions by separat-
ing public-key cryptography from private-key cryptography when the construc-
tion is black-box. Many other black-box separation results were subsequently es-
tablished (e.g., [62, 21, 22, 12, 64, 46, 51]1). Reingold, Trevisan, and Vadhan [60]
further studied various forms of black-box constructions (based on their proof of
security). 2 In search of the “minimal” computational primitives required for ac-
complishing cryptographic tasks, one-way functions emerge as the central player:
Almost all natural cryptographic primitives “imply” one-way functions [43, 57,
38]; moreover, all these constructions are black-box.

One-Way Functions vs. Permutations. One-way permutations are a closely re-
lated primitive to one-way functions. Even though it is known that there is no
black-box construction of one-way permutations from one-way functions [8, 41,
63, 61, 45]3, a surprisingly successful line of research has been to first realize a
cryptographic task securely based on the existence of one-way permutations,
weaken the assumption to one-to-one one-way functions, and then eventually
obtain a construction solely based on the existence of general one-way functions.
Examples of this phenomenon include works on pseudorandom generators [11, 66,
49, 25, 26, 42] and statistical zero-knowledge arguments as well as statistically-
hiding commitments [13, 31, 14, 55, 23, 18, 35, 56, 39, 37, 40].

1 A closely related line of research aimed at proving lower-bounds on the efficiency of
black-box constructions (e.g., [47, 19, 50, 34, 6, 17]).

2 Our notion of black-box construction here corresponds to the notion of fully black-
box construction as defined in [60] where we also include the security parameter; see
Definition 4.

3 The results implicit in [8, 41, 63] show that there is no fully black-box construction
of one-way permutations from one-way functions (see [51] for an exposition of this
argument). This results extends even to separating one-way functions from injective
one-way functions. Rudich [61] observes that this separation is implicit in those
previous works and improves them to separate one-way permutations from random
oracles, even if the construction is allowed to have small completeness error, at the
cost of assuming a combinatorial conjecture that was later resolved in [45]. See [61]
for more discussions.



Why Trying to Rely on One-Way Functions? We emphasize that all known
candidates for one-way permutations are based on structured number-theoretic
assumptions, and the vulnerability of such structured primitives to possible alge-
braic (sub-exponential) attacks [48] makes the feasibility of using one-way func-
tions (rather than permutations) interesting both from theoretical and practical
points of view. This puts forward the following basic question:

Main Question 1: Is there any natural cryptographic task that can be
accomplished based on the black-box assumption of one-way permutations
but not one-way functions?

We consider one-way functions and permutations both as computational as-
sumptions and not as natural cryptographic tasks, and so the separation of one-
way permutations from one-way functions does not answer our question above.

The Power of Black-Box vs. Non-Black-Box Constructions. Another similar suc-
cessful line of research in the foundations of cryptography has been to start by
providing non-black-box constructions of a primitive and later turning them into
black-box ones. Examples include e.g., secure computations from various primi-
tive [36, 15, 16, 65, 32], oblivious transfer from semi-honest oblivious transfer [33],
constant-round zero-knowledge arguments and trapdoor commitments from one-
way functions [58], etc. Despite this, as far as we know the following intriguing
question has remained open:

Main Question 2: Is there a natural cryptographic task Q that can be
based on a cryptographic primitive P in a non-black-box way, while no
black-box construction of Q based on P exists?

In this work we answer both the above questions affirmatively: (1) There is a
cryptographic task that can be based on one-way permutations but not one-way
functions in a black-box way. (2) The same primitive can be used to separates the
power of black-box and non-black-box constructions. Interestingly, the primitive
is a very natural cryptographic building block: non-interactive commitments.

Commitment Schemes. Bit-commitments are one of the most fundamental cryp-
tographic building blocks. Their application ranges from zero-knowledge proofs
[30, 28] to secure computations [27]. Roughly speaking, a commitments scheme
is a two-stage protocol between two parties: the sender and the receiver. In the
first, so-called, commitment phase, the sender commits to a secret bit b; and
then later in the decommitment phase, the sender reveals the bit b together with
some additional information which allows the receiver to verify the correctness of
the decommitment. Commitment schemes are required to satisfy two properties:
hiding and binding. Roughly speaking, the hiding property stipulates that after
the commitment phase the bit b should remain hidden to the receiver, whereas
the binding property asserts that in the decommitment phase the sender is not
able to decommit successfully to both b = 0 and b = 1.



The results of Naor [54] and H̊astad, Impagliazzo, Luby and Levin [42] estab-
lish that the existence of one-way functions implies the existence of commitment
schemes where the commitment phase consists of two messages. Furthermore
their construction is black-box and the commitment scheme uses the underlying
one-way function as an oracle. On the other hand, Impagliazzo and Luby [43]
establish that the existence of commitment schemes implies the existence of
one-way functions (in a black-box way).

In this work we focus on the black-box complexity of non-interactive com-
mitments—namely, commitment schemes where both the commitment phase
and the decommitment phase consist of a single message. The results of [9, 26]
establish the existence of non-interactive commitments based on one-way permu-
tations (or even one-to-one one-way functions) using a black-box construction.
These results extend even to the case of families of one-way permutations where
given an index p one can efficiently verify that fp is indeed a permutation.4 The
work of Naor showed how to obtain interactive commitments based on any one-
way function in a black-box way, where the commitment phase consists only of a
random message from the receiver followed by a message from the sender (thus
the first message can be eliminated in the common reference string model). In
this work we study the following natural question left open by previous work:
Is there a black-box construction of non-interactive commitments from one-way
functions? We provide a negative answer:

Theorem 1. There is no black-box construction of non-interactive commitments
from one-way functions.

The separation extends to stronger primitives than one-way functions (e.g.,
families of collision-resistant hash function). As far as we know, this is the first
result showing a natural cryptographic task that can be constructed in a black-
box way from one-way permutations but not from one-way functions resolving
our first question affirmatively.

Non-Black-Box Non-Interactive Commitments from One-Way Functions. The
elegant work by Barak, Ong and Vadhan [7] provides a non-black-box construc-
tion of non-interactive commitments assuming the existence of one-way functions
and certain hitting-set generators (see the discussion in Section 3) against co-
non-deterministic circuits (see Definition 6 for a formalization) which can be
constructed under worst-case complexity assumptions. Roughly speaking, the
hitting-set generator G : {0, 1}` 7→ {0, 1}poly(n) is used to derandomize Naor’s 2-
message commitment scheme by executing the commitment in parallel over all of
G({0, 1}`) as the “first messages” of the protocol (thus we require 2` = poly(n)).
Naor’s commitment has the nice property that for every one-way function used,
most of {0, 1}n can be fixed as the first message to make the scheme perfectly
binding. The hitting property of the generator G guarantees that at least one of
the fixed first messages G({0, 1}`) makes the (non-interactive) scheme binding.

4 For example, one can sample a random prime number p and define the permutation
fp to be the discrete logarithm function in the group Z∗

p. Primality of p can be tested
efficiently [52, 59, 1] and this guarantees fp is indeed a permutation.



Conditional Separation of the Power of Black-Box and Non-Black-Box Con-
structions. The result of [7] together with our Theorem 1 show that under
any complexity assumption that guarantees the existence of hitting-set genera-
tors against co-nondeterministic circuits, non-black-box constructions are more
powerful than black-box constructions (since a non-black-box construction of
non-interactive commitments from one-way functions would exist, while no such
black-box construction exists). As we will see shortly, we are able to make this
“separation” (between the power of the two models) unconditional by defining
a new primitive that can be used as a hitting-set generator.

Non-Interactive Commitments from Hitting One-Way Functions. Inspired by
the work of [7], we introduce the notion of hitting one-way functions; roughly
speaking, a (one-way) function f is said to be hitting, if for every co-non-
deterministic circuit of size n which accepts at least half of its inputs, there
exists at least one input x ∈ [1, . . . , n2] ⊆ {0, 1}n which f(x) is accepted by the
circuit. It is easy to see that a random oracle is a hitting one-way function with
overwhelming probability (see Lemma 8). Furthermore, we show that there ex-
ists a non-black-box construction of non-interactive commitments from hitting
one-way functions as follows. Following [7], we derandomize Naor’s commitment
scheme by evaluating the hitting one-way function f on the inputs 1, . . . , n2 (ap-
propriately planted in {0, 1}n), where n is a polynomial that is determined by
the size of the verification circuit in Naor’s commitment. Since Naor’s commit-
ment also relies on the use of the one-way function f , the choice of n depends on
the circuit size of f ; thus the construction is non-black-box. Thus we obtain the
following theorem whose proof can be found in the full version of the paper.5

Theorem 2. There is a non-black-box construction of non-interactive commit-
ments from hitting one-way functions.

In contrast, we prove the following theorem in the black-box regime.

Theorem 3. There is no black-box construction of non-interactive commitments
from hitting one-way functions.

As far as we know, this constitutes the first separation between the power
of black-box and non-black-box use of a primitive in the implementation of a
natural cryptographic task. This is different from the results of Barak [5] and
Goldreich-Krawczyk [24] which provide a separation between the power of black-
box and non-black-box proofs of security, and in this work all proofs of security
are black-box. Thus we also resolve our second main question affirmatively.

Extensions to 3-Message Zero-Knowledge and Instance-Based Commitments. A
major application of commitment schemes is to construct zero-knowledge proofs

5 Our positive and negative results are robust to choosing n2 as the size of the hitting
set generator and they can be adopted to work with any function ω(n). We choose
to use n2 for sake of simplicity.



for NP. We also directly study the constructions of 3-message zero-knowledge
proofs based on one-way functions and also the type of non-interactive (instance-
based) commitments that are useful to construct such zero-knowledge proofs. We
extend our impossibility result (of black-box constructions from one-way func-
tions) also for these primitives, but in a conditional way. Namely, our separations
hold assuming that the complexity class NP does not have “program checkers”
[10]. For these results we refer the reader to the full version of the paper.

2 Separation from One-Way Functions

Here we outline the proof of Theorem 1. Due to lack of space, here we settle this
theorem only for the natural setting that the verification of the decommitment
is deterministic and the scheme has perfect completeness; we refer the reader to
full version of the paper for the proof of the general case.

We start by formalizing the notion of black-box constructions by following the
paradigm of [60] and incorporating the security parameter. Roughly speaking,
black-box constructions consist of two reductions: implementation and proof of
security. The implementation Q of the new primitive Q uses any implementation
P of the base primitive P only as an oracle. The security reduction S bases the
security of QP on the security of P as follows: for every (unbounded) adversary
A who breaks the security of QP , SA,P breaks the security of P . Note that a
commitment scheme has two players, and so breaking the security amounts to
breaking either of hiding or binding properties. The following definition formal-
izes the above definition for the case of commitment schemes.

Definition 4. A black-box construction of non-interactive commitments from
one-way functions is a pair of efficient oracle algorithms Com(·) = (S(·), R(·))
such that: The parties receive the common input 1n as the security parameter
and access an oracle f = {fm : {0, 1}m 7→ {0, 1}m}. The security of the scheme
is guaranteed through reductions to the one-wayness of f as follows.

– Proving the Hiding: There is an efficient security reduction H that proves
that Comf is hiding. Namely, for every oracle f and every malicious receiver
R̂ (who could arbitrarily depend on f) that distinguishes commitments to

0, 1 with non-negligible advantage ε > 1/ poly(n), the oracle algorithm Hf,R̂

breaks the one-wayness of f with probability at least poly(ε/n) over a poly-
nomially related m = nΘ(1) input length:

Pr
y

$←f(Um)

[Hf,Ŝ(y) ∈ f−1(y)] ≥
( ε
m

)O(1)

.

– Proving the Binding: It is defined similarly to the definition of Hiding
using another reduction B that inverts f with non-negligible probability given
oracle address to f and any adversary who breaks the binding of Comf .

In order to prove Theorem 1, we employ the methodology formally described
in the following lemma (which is also used in the previous works of [6, 17]). See
[17] for a proof of a stronger version of this lemma.



Lemma 5. There is no black-box construction of non-interactive commitments
form OWFs, if there is any randomized oracle O with the following properties:

1. The hiding or binding of ComO is violated by a poly(n)-query attack.
2. O is strongly one-way in the sense that no poly(n)-query computationally-

unbounded adversary can invert O over O(Un) with probability ≥ 1/ poly(n).

In the following we describe how to find a distribution for the randomized
oracle O so that we can apply Lemma 5 to prove Theorem 1.

O Cannot be a Random Oracle. We first note that we can not simply use O
to be a random oracle which is indeed a common method to derive separations
from one-way functions. This is expected, since otherwise we could also get a
separation from one-way permutations (since random oracle and random per-
mutation oracle are indistinguishable over large enough input lengths), and this
would be a contradiction. In particular, relative to a random oracle, with high
probability, there exists a one-to-one one-way function6 which is indeed sufficient
for constructing non-interactive commitments in a black-box way [9].

Partially-Fixed Random Oracles. We overcome the above obstacle by choosing
the distribution of our oracle O to be fixed over a polynomial-size subset F
of its domain (which in fact depends on the construction Com itself), and at
any other point out of F we choose the answers randomly. In general, we call
oracles partially-fixed random. Partially-fixed random oracles allow us to bypass
the obstacle explained above against random oracles, because the way we fix
the part F most likely makes the oracle O have collisions; thus, O will not be
one-to-one. In fact, the collisions of O are planted in an adversarial way against
the construction Com and that is why the distribution of O depends on Com.7

It is easy to see that a partially-fixed random oracle is still hard to invert
using poly(n)-query attacks. We show how to define the the distribution of O
such that, either of the binding or hiding properties of ComO will be violated
through a poly(n)-query attack. As we discussed above, this is sufficient for
deriving a black-box separation. We prove the existence of such partially-fixed
random oracle O by proving that there are in fact two partially-fixed random
oracles OR and OS such that either of the following holds:

1. The hiding of ComOR is broken by a poly(n)-query malicious receiver R̂.

2. The binding of ComOS is broken by a poly(n)-query malicious sender Ŝ.

Therefore, there always exists an oracle O ∈ {OS ,OR} relative to which either

of the hiding or binding properties of Com is broken by some Adv ∈ {R̂, Ŝ}.
6 For example, using standard tricks one can make the output of the random oracle

long enough, say n3 bits, while the input is only n bits. Such function is one-to-one
with overwhelming probability.

7 As far as we know, this way of choosing the oracle’s distribution based on the scheme
itself was fist employed in the work of Gertner et al. [22].



The Cheating Strategies Ŝ, R̂. The cheating sender Ŝ and the distribution of
OS are defined assuming that R̂ fails in its attack, but that is still sufficient for
us. The oracle OR is simply the random oracle, but the oracle OS will always
be fixed over a polynomial-size domain (thus the final oracle O ∈ {OR,OS}
will always be a partially-fixed random oracle. The algorithm of the malicious
R̂ is in fact very simple: try to learn any query q that has a non-negligible
chance of being asked by the sender during the generation of the commitment
C, and after learning these queries make a guess about the committed bit b by
outputting the more likely value of b conditioned on the knowledge learned about
the random oracle OR. In the following we formally describe this algorithm
and will show that if this algorithm fails in guessing the bit b correctly with
probability 1/2+1/poly(n), then we can come up with a partially-fixed random
oracle OS such that the binding of ComOS could be violated.

2.1 Technical Tool: Learning Heavy Queries

Suppose Com = (S,R) is a non-interactive commitment scheme in a model where
some randomized oracle O (e.g., the random oracle) is accessed by the sender S
and the receiver R and suppose S generates a commitment C to a random bit

b
$← {0, 1}. Let S be the view of the sender consisting its randomness as well as

its oracle query-answers and R be the view of the receiver after the verification
of C which consists of C itself, the revealed bit b and some “decommitment”
string D justifying the claim of S that he had committed to b. We can look at
all of S,R, C, b, and D as random variables depending on the randomness of the
parties and the randomness of O. That is the case also for the set of queries
Q(S),Q(R) asked by the sender and the receiver represented in their views.

Consider the following simple learning algorithm that upon receiving C,

which is the commitment to a random b
$← {0, 1}, keeps updating a “learned”

set of oracle query-answer pairs L as follows: As long as there is an oracle query
q 6∈ L which has ε probability to be asked by the sender during the generation
of C or by the receiver during the verification of C:

Pr[q ∈ Q(S) ∪Q(R) | C,L] ≥ ε,

then go ahead and ask q from the oracle. After asking q from O, the pair (q,O(q))
will be added to L and the knowledge of O(q) will be incorporated in deciding
which other queries might be likely as described above. A result due to [6] shows
that such learning algorithm would (on average) ask at most poly(n/ε) = poly(n)
queries and reach a point that there is no “ε-heavy” query left for the distribution
of the views of the sender and the (honest) receiver conditioned on the learned
information (C,L). As we will see, this learning algorithm will essentially form

the cheating receiver’s algorithm R̂.

2.2 Defining the Cheating Strategies

Suppose we execute the learning algorithm above when the randomized oracle
O in the scheme is simply a random oracle. We focus on the moment that



the learning algorithm stops (i.e., for any query q 6∈ L it holds that Pr[q ∈
Q(S)∪Q(R) | C,L] < ε), and divide possible the cases into two. In each case we
show how to derive a cheating party and a corresponding randomized oracle.

Case 1. In the first case, with non-negligible probability 1/poly(n) over the
executing of the learning algorithm, at the end there is a value b ∈ {0, 1} such
that Pr[b is the committed bit | (C,L)] > 1/2 + 1/ poly(n). In this case we can
simply take OR to be the random oracle, and relative to OR the cheating strategy
R̂ could just follow the learning algorithm above and output the more likely value
of b conditioned on its view (C,L) at the end. It is easy to see that this malicious

receiver R̂ can guess the bit b with probability at least 1/2 + 1/ poly(n).

Case 2. In the second case, at the end of the learning phase when there is no ε-
heavy query left to be learned, with overwhelming probability: both of the values
of b ∈ {0, 1} are almost equally likely to be the committed bit conditioned on
knowing (C,L). We will show that at this point there is always a way to fix a set
of oracle query-answer pairs F for some partially-fixed random oracle OS such
that Ŝ can successfully open the commitment C (which is the result of a single
execution of the learning algorithm and is fixed forever) into both of {0, 1}.

Since we are in the case that conditioned on (C,L) both values of b ∈ {0, 1}
have non-zero (in fact ≈ 1/2) chance to be the committed bit, we can always
sample two views V0 = (S0,R0),V1 = (S1,R1) of full executions of the system
for the sender and the receiver where they are both consistent with (C,L) and
Vb describes a case where C is a commitment to the bit b. Note that due to
the (assumed) perfect completeness of the scheme, in both of the views V0,V1

the verification leads to an accept. We claim that if S0 and S1 are consistent
over the query-answer pairs that they posses (i.e., use the same answer for the
queries that they both have asked: Q(S0)∩Q(S1)) then we are done, because we
can take F to be the answers to Q(S0)∪Q(S1) plus the query-answer pairs of L
and fix F as part of the partially-fixed random oracle OS . This way, whenever
the sender wants to decommit to the bit b ∈ {0, 1} it can use the fixed view
Sb ∈ Vb for the needed decommitment, and he knows that such decommitment
will always lead to the verification described by R0 ∈ Vb (since the verification
is deterministic) which is an accept.

It only remains to show how to find a pair of consistent views V0,V1. Here
we use the fact that conditioned on (C,L), both of {0, 1} have chance > 1/3 to
be the committed bit. Using a probabilistic analysis and also relying on the fact
that there is no ε-heavy query left conditioned on (C,L) (when the committed
bit is considered random), and assuming that the total number of oracle queries
of (S,R) is at most m, one can show that with probability ≥ 1 − 3mε a pair
of random samples V0,V1, where Vb is sampled conditioned on (C,L, b), would
have no query in common out of L (i.e., Q(V0) ∩ Q(V1) ⊆ L). The reason is
that for any query q which has probability at most ε to be in the queries of V,
by conditioning on b = 0 or b = 1, this probability can increase at most to 3ε.
Therefore, if we sample and fix V0, any of the m queries of the sampled V0 would
be sampled in V1 only with probability at most 3ε. Thus, by a union bound,



with probability at least 1 − 3mε, none of the quereis of V0 will be sampled in
V1. Since both of V0,V1 are sampled conditioned on (and consistent with) L, we
conclude that such samples are in fact consistent.

The Role of Non-Interactivity. Our argument above only applies to the non-
interactive setting because of the way we constructed (Ŝ,OS) in case R̂ does not
succeed. In particular, in the interactive setting C would be the transcript of an
interactive protocol which could change every time that the protocol is executed,
even if the sender commits to the same message using the same randomness, sim-
ply because the receiver’s randomness might change every time. That should not
be a surprise since Naor’s commitment scheme [54] is a black-box construction
based on one-way functions and has only two messages during the commitment
phase (which perfectly complements our negative result of Theorem 1).

3 Separation from Hitting One-Way Functions

In this Section we outline the proof of Theorem 3. Before doing so we need to
develop the notion of a hitting one-way function.

3.1 Hitting One-Way Functions

Hitting Set Generators. A (basic) hitting set generator G is an efficient deter-
ministic procedure to generate sets that intersect any “dense” set recognized by
an efficient circuit. More formally, given n ≥ m, G runs in time poly(n) and gen-
erates a set of m-bit strings H such that for any circuit T accepting at least half
of {0, 1}m, it holds that T (h) = 1 for at least one h ∈ H (see [29] and references
therein for more background on the subject). A hitting set generator G can be
directly used to derandomize the complexity class RP and perhaps surprisingly
even to derandomize the class BPP [3, 4]. Here we are interested in the notion of
hitting set generators against co-nondeterministic circuits defined as follows.

Definition 6 (Co-Nondeterministic Circuits). A nondeterministic Boolean
circuit T takes two inputs and accepts the set ST defined as follows ST = {x |
∃ w, T (x,w) = 1}. A co-nondeterministic Boolean circuit T also takes two inputs
and accepts the set ST = {x | ∀ w, T (x,w) = 0}. By abusing the notation we
call the first input simply the “input” and call the second input the “witness”.
Thus, the input length refers to the length of x. If the input length is n, we call

dT (n) = |ST∩{0,1}n|
2n the input density of T .

Now we introduce a new primitive that combines a one-way function and a
hitting set generator against co-nondeterministic circuits.

Definition 7 (Hitting One-Way Functions). We say a function f : {0, 1}n 7→
{0, 1}n hits a co-nondeterministic circuit T of size n and input length m if it
holds that {f(1)|m, . . . f(n2)|m} ∩ ST 6= ∅ where 1, 2, . . . , n2 are analogs of the
first n2 elements of {0, 1}n and y|m refers to the first m bits of y. We say that



a sequence of functions {fn : {0, 1}n 7→ {0, 1}n} is a hitting function, if fn hits
every circuit T of size n and input density dT ≥ 1/2 for large enough n. A length
preserving function family f = {fn : {0, 1}n 7→ {0, 1}n} is simply called a hitting
one-way function, if it is both hitting and one-way simultaneously.

As we will see later, a random oracle is a hitting one-way function with
overwhelming probability, and thus being hitting one-way could be thought of
as a natural abstracted property of a random oracle (similar to e.g., collision
resistance). Moveover, it is easy to see (details in the full version) that hitting
one-wayness can be formalized using a standard cryptographic security game,
and as such, the assumption that a function f is a hitting one-way function is a
falsiafiable assumption, in the terminology of Naor [53].8

Black-Box Constructions from Hitting One-Way Functions. We skip a separate
definition for black-box constructions based on hitting one-way functions, since
this definition could be obtained from Definition 4 and Definition 7. Namely,
given any oracle adversary that breaks the security of Comf , the security reduc-
tion Secf,Adv, with non-negligible probability shall break the hitting one-way
property of the oracle f (by either inverting f , or finding a circuit T of input
density dT ≥ 1/2 that is not hit by f together with a witness of such claim).

3.2 Outline of the Proof of Theorem 3

In order to prove Theorem 3, we rely on the proof of Theorem 1 outlined in
Section 2. A natural approach would be to show that our partially-fixed random
oracle O is already a hitting one-way function with overwhelming probability.
Doing so would prove Theorem 3 as a direct extension of the proof of Theo-
rem 1, however, the problem with this approach is that a partially-fixed random
function f , in general, might not be a hitting function, simply because the fixed
part of the randomized function f could be adversarially chosen to make it not
hit a particular circuit T . However, recall that our oracle OR relative to which
the cheating receiver R̂ was successful, was indeed the random oracle. So in the
following we start by handling the case that R̂ was a successful cheating receiver.

Case 1: The cheating receiver R̂ succeeds relative to a random oracle. It is easy
to see that a random oracle is one-way with high probability.9 We first show that
a random oracle is also a hitting function with overwhelming probability (and
so it will be hitting one-way).

8 A subtle point here is that the hitting property is defined w.r.t. co-nondeterministic
(as opposed to nondeterministic) circuits. Thus when f is not hitting, there always
exits a polynomal-size witness for that: a circuit T of size n and input length m and
a sequence w1, . . . , wn2 such that T (f(i)|m, wi) = 1 for all i ∈ [n2] ⊂ {0, 1}n.

9 Recall that our random oracle chooses its randomness after the adversary is fixed
and is different from the settings of [44, 20] who fix the random oracle after sampling
it once and for all.



Lemma 8. For every n ∈ N, with probability at least 1− 2−n
2(1−o(1)) a random

function f : {0, 1}n 7→ {0, 1}n hits all co-nondeterministic circuits of size n and
input density dT ≥ 1/2.

Proof. Fix any co-nondeterministic circuit T of size n and input density dT ≥
1/2. Any of the random images of f(j) for j ∈ [n2] ⊆ {0, 1}n (when truncated to
the right size) will hit an element in ST with probability at least the input density
of T which is dT ≥ 1/2. Therefore, the probability that none of {f(1), . . . f(n2)}
hits ST is at most 2−n

2

. Since the total number of circuits of size10 n is at most
2O(n logn), the lemma follows by a union bound.

Lemma 8 implies that for large enough n a random function from {0, 1}n
to {0, 1}n is hitting with overwhelming probability. Therefore Lemma 8 is suf-
ficient for refuting the existence of black-box constructions of non-interactive
commitments from hitting one-way functions. Namely, for large enough n, with
overwhelming probability, there exists no circuit T of size n that the security
reduction Sec (of any potential black-box construction Com) can output to re-
fute the hitting property of f . Therefore, in this case the security reduction Sec
might as well just try to invert the random oracle (with the help of the adver-
sary). This means that, if we are in Case 1 (where OR is the random oracle),
we can safely assume that we are back to the setting of Theorem 1 where the
security reduction only tries to invert f , but we have already settled this case!

Generalization. The argument above can be generalized to any black-box sepa-
ration result that is established through an attack in the random-oracle model
to also handle primitives that in addition are hitting (e.g., hitting one-way func-
tions, hitting collision resistant hash functions, etc). Thus, the result of [44] can
be extended to separate key-agreement from hitting one-way functions.

Case 2: The cheating receiver R̂ fails relative to a random oracle. In this case,
we would like to follow the general structure of Case 2 in Section 2, but as
we mentioned before the issue is that the partially-fixed randomized oracle OS

might not be a hitting function. However, recall that the fixed part of OS was
due to the learned set L and the query-answer pairs inside the two randomly
sampled views V0 and V1. Therefore, even though we fixed the sampled part of
the oracle inside (L,Q(V0),Q(V1)) and relied on the remaining randomness of
OS to conclude that OS is one-way, this fixed part was also generated through
a randomized process (even though it was fixed after being sampled). This lets
us to still have a hope that the whole random process of generating OS (also
over the randomness of generating the fixed part at the beginning) makes the
final result a hitting one-way function with overwhelming probability.

Recall that the two sampled views V0,V1 were obtained conditioned on (C,L,
and) the committed bit to be 0 and 1. Now suppose instead of such samples we
would have sampled only one view V (for the sender and the receiver) conditioned
on the values of (C,L) but without conditioning the committed bit b to be 0 or

10 Here we denote the size of a circuit by the number of its wires.



1. Then, since C was already the commitment to a random bit b, V would be
a sample from the real distribution of the views of the sender and the receiver
conditioned on (C,L). Therefore, the joint samples (C,L,V) together have the
same marginal distribution as (C,L,V′) where V′ is the true view of the parties.
Therefore we can conclude the following crucial property of our sampling process:
If we first sample (C,L,V) to get a partial oracle over F = (L,Q(V)) and then
choose the oracle answers to any query out of F at random, the final result is a
random oracle. The reason simply is that this property holds for (C,L,V′) which
has the same marginal distribution as that of (C,L,V); so the same should hold
for (C,L,V) as well! We call such randomized partial functions (which are not
defined over some of their inputs) partially-defined random functions.

Definition 9 (Partially-Defined Random Functions). Suppose f is a ran-
dom variable whose output is a partial function from {0, 1}n to {0, 1}n (therefore,
a sample f ← f might be defined only over a subset of its domain {0, 1}). Define

the randomized total function f̃ over the domain {0, 1}n (as the random exten-

sion of f) as follows: First sample f
$←f . Then for every point x ∈ {0, 1} which is

not among the queries answered by f choose a random answer from {0, 1}n. Call

the resulting function f̃ (and its random variable f̃). If the randomized function

f̃ is distributed exactly the same as a uniformly sampled function from {0, 1}n
to {0, 1}n, then we call f a partially-defined random function.

The New Definition of OS. The fact that a random extension of the randomized
partial function described in (C,L,V) is a random oracle indicates that our ran-
domized oracle OS which was generated through two sampled views V0,V1 might
have similar properties and be a hitting one-way function. With this intuition in
mind, we change the distribution of the randomized oracle OS as follows: The
two sampled views V0 and V1 are sampled independently conditioned on (C,L)
without conditioning on the bit b to be 0 or 1 (just like the way V was sampled).
The final (new) definition of the randomized oracle OS is as follows. We first
sample (C,L,V0,V1) as above to randomly sample a partial oracle f , and then

randomly extend it to a full oracle f̃ ≡ OS according to Definition 9. Since we
would like to avoid rejection-sampling (not to change the marginal distributions
of (C,L,V0) and (C,L,V1)) if the sampled views V0,V1 had contradicting an-
swers for any oracle query q we choose the answer provided by one of V0,V1

at random. In the following we will show that a cheating sender Ŝ still exists
relative to OS , and that relative to Ŝ, OS remains one-way and hitting.

Concluding Theorem 3. The following three propositions imply Theorem 3.

Proposition 10. If R̂ does not break the hiding of ComOR , then there exists a
malicious sender Ŝ that breaks the binding of ComOS .

Proof. Since we are in the case that the cheating receiver R̂ is not successful,
thus the distribution of the bit b conditioned on (C,L) remains close to uniform
over {0, 1}, which means that in our new way of sampling (V0,V1), still with



probability polynomially close to 1/2 (and so bigger than, say, 1/3) we get that
V0 (resp. V1) corresponds to the bit b = 0 (resp. b = 1) used as the committed bit
by the sender. Therefore by choosing the fixed part of OS based on the sampled
answers of (L,Q(V0),Q(V1)), with Ω(1) probability we get a cheating sender Ŝ
who is able to successfully decommit to both values of the bit b using the fixed
sampled view Vb.

Proposition 11 (OS Remains One-Way). No poly(n)-query adversary Adv
can invert OS(Un) with probability 1/ poly(n), even when Adv is given oracle

access to the cheating sender Ŝ.

Proof. Any query out of L ∪ Q(V0) ∪ Q(V1) is answered at random and the

cheating sender Ŝ is defined solely based on (L,V0,V1).

The main techincal meat of the proof of Theorem 3 is found in the following
proposition. Due to lack to space, we only provide a very high-level outline.

Proposition 12. OS is hitting with overwhelming probability.

Proof (Outline). We would like to show that when one evaluates the oracle OS

over [n2] it will hit at least one of the accepted inputs of any (co-nondeterministic)
circuit T of input density dT ≥ 1/2 with “high” probability ρ. We want the
probability ρ to be extremely close to one so that we can change the order of
quantifiers and conclude that OS hits all circuits of size n.

Recall that each of the sampled partial oracles f0, f1 described by the query-
answer pairs in (L,V0) and (L,V1) is a partially-defined random oracle, and that
the final oracle OS is a random extension of the “combination” of f0 and f1 (that
combines the answers of f0 and f1 whenever their sets of queries out of L do not
collide). The intuition is that now, over the domain [n2] (planted at the beginning
of {0, 1}n) at least half of the queries are answered randomly and independently
and would behave like a random function because they either come from f0, or f1,
or from the final random extension of (f0, f1) to the full domain of {0, 1}n which
we denote by f ′ (and is chosen independently of (f0, f1)). More formally, since f ′

is chosen independently of (f0, f1), both of (f0, f
′) and (f1, f

′) are also partially-
defined random oracles. Moreover, we know that over the domain [n2], at least
half of the queries are answered either by (f0, f

′) or by (f1, f
′). We would like to

use this property to conclude that OS hits every circuit with high probability.
Formalizing this intuition, however, is far from easy and the challenge stems

from the fact that, as we said before, we want the probability ρ to be extremely
close to one. Because of this, we can not afford the 1/poly(n) probability that
queries the sampled views V0 an V1 might have collisions (out of L) and resample
OS again. Therefore, we define the oracle OS in a randomized way, even when
such collisions happen. To prove that the sample oracle OS is hitting with very
high probability, we develop and employ new concentration bounds to control
the probability that OS is not hitting. We refer the reader for the full version
the paper for the full proof.
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