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Abstract. We propose a new approach to practical two-party computation secure
against an active adversary. All prior practical protocols were based on Yao’s gar-
bled circuits. We use an OT-based approach and get efficiency via OT extension
in the random oracle model. To get a practical protocol we introduce a number of
novel techniques for relating the outputs and inputs of OTs in a larger construc-
tion.
We also report on an implementation of this approach, that shows that our pro-
tocol is more efficient than any previous one: For big enough circuits, we can
evaluate more than 20000 Boolean gates per second. As an example, evaluat-
ing one oblivious AES encryption (∼ 34000 gates) takes 64 seconds, but when
repeating the task 27 times it only takes less than 3 seconds per instance.

1 Introduction

Secure two-party computation (2PC), introduced by Yao [32], allows two parties to
jointly compute any function of their inputs in such a way that 1) the output of the
computation is correct and 2) the inputs are kept private. Yao’s protocol is secure only if
the participants are semi-honest (they follow the protocol but try to learn more than they
should by looking at their transcript of the protocol). A more realistic security definition
considers malicious adversaries, that can arbitrarily deviate from the protocol.

A large number of approaches to 2PC have been proposed, falling into three main
types, those based on Yao’s garbled circuit techniques, those based on some form of
homomorphic encryption and those based on oblivious transfer. Recently a number
of efforts to implement 2PC in practice have been reported on; In sharp contrast to
the theory, almost all of these are based on Yao’s garbled circuit technique. A main
advantage of Yao’s garbled circuits is that it is primarily based on symmetric primitives:
It uses one OT per input bit, but then uses only a few calls to, e.g., a hash function
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per gate in the circuit to be evaluated. The other approaches are heavy on public-key
primitives which are typically orders of magnitude slower than symmetric primitives.

However, in 2003 Ishai et al. introduced the idea of extending OTs efficiently [18]—
their protocol allows to turn κ seed OTs based on public-key crypto into any polyno-
mial ` = poly(κ) number of OTs using only O(`) invocations of a cryptographic hash
function. For big enough ` the cost of the κ seed OTs is amortized away and OT ex-
tension essentially turns OT into a symmetric primitive in terms of its computational
complexity. Since the basic approach of basing 2PC on OT in [14] is efficient in terms
of consumption of OTs and communication, this gives the hope that OT-based 2PC too
could be practical. This paper reports on the first implementation made to investigate
the practicality of OT-based 2PC.

Our starting point is the efficient passive-secure OT extension protocol of [18]
and passive-secure 2PC of [14]. In order to get active security and preserve the high
practical efficiency of these protocols we chose to develop substantially different tech-
niques, differentiating from other works that were only interested in asymptotic effi-
ciency [15,29,20]. We report a number of contributions to the theory and practice of
2PC:

1. We introduce a new technical idea to the area of extending OTs efficiently, which al-
lows to dramatically improve the practical efficiency of active-secure OT extension.
Our protocol has the same asymptotic complexity as the previously best protocol
in [15], but it is only a small factor slower than the passive-secure protocol in [18].

2. We give the first implementation of the idea of extending OTs efficiently with active
security. The protocol generates 500,000 OTs per second, showing that implemen-
tations needing a large number of actively secure OTs can be practical.

3. We introduce new technical ideas which allow to relate the outputs and inputs of
OTs in a larger construction, via the use of information theoretic tags. This can be
seen as a new flavor of committed OT that only requires symmetric cryptography.
In combination with our first contribution, our protocol shows how to efficiently
extend committed OT. Our protocols assume the existence of OT and are secure in
the random oracle model.

4. We give the first implementation of practical 2PC not based on Yao’s garbled circuit
technique. Introducing a new practical technique is a significant contribution to the
field in itself. In addition, our protocol shows favorable timings compared to the
Yao-based implementations.

1.1 Comparison with Related Work

The question on the asymptotic computational overhead of cryptography was (essen-
tially) settled in [19]. On the other hand, there is a growing interest in understanding
the practical overhead of secure computation, and several works have perfected and im-
plemented protocols based on Yao’s garbled circuits [28,3,26,23,30,31,16,27,25,1,17],
protocols based on homomorphic encryption [21,10,22,4] and protocols based on
OT [20,24,6].
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Security Model Rounds Time
(a) DK [9] (3 parties) Passive SM O(d) 1.5s
(b) DK [9] (4 parties) Active SM O(d) 4.5s
(c) sS [1] Active SM O(1) 192s
(d) HEKM [17] Passive ROM O(1) 0.2s
(e) IPS-LOP [20,24] Active SM O(d) 79s
(f) This (single) Active ROM O(d) 64s
(g) This (27, amortized) Active ROM O(d) 2.5s

Table 1. Brief comparison with other implementations.

A brief com-
parison of the time
needed for oblivi-
ous AES evaluation
for the best known
implementations are
shown in Table 1.4

The protocols in
rows (a-b) are for
3 and 4 parties
respectively, and
are secure against at

most one corrupted party. One of the goals of the work in row (c) is how to efficiently
support different outputs for different parties: in our OT based protocol this feature
comes for free. The time in row (e) is an estimate made by [24] on the running time of
their optimized version of the OT-based protocol in [20]. The column Round indicates
the round complexity of the protocols, d being the depth of the circuit while the column
Model indicates whether the protocol was proven secure in the standard model (SM) or
the random oracle model (ROM).

The significance of this work is shown in row (g). The reason for the dramatic drop
between row (f) and (g) is that in (f), when we only encrypt one block, our implemen-
tation preprocesses for many more gates than is needed, for ease of implementation.
In (g) we encrypt 27 blocks, which is the minimum value which eats to up all the pre-
processed values. We consider these results positive: our implementation is as fast or
faster than any other 2PC protocol, even when encrypting only one block. And more
importantly, when running at full capacity, the price to pay for active security is about a
factor 10 against the passive-secure protocol in (d). We stress that this is only a limited
comparison, as the different experiments were run on different hardware and network
setups: when several options were available, we selected the best time reported by the
other implementations. See Sect. 6 for more timings and details of our implementation.

1.2 Overview of Our Approach

We start from a classic textbook protocol for 2PC [13, Sec. 7.3]. In this protocol, Al-
ice holds secret shares xA, yA and Bob holds secret shares xB , yB of some bits x, y
s.t. xA ⊕ xB = x and yA ⊕ yB = y. Alice and Bob want to compute secret shares of
z = g(x, y) where g is some Boolean gate, for instance the AND gate: Alice and Bob
need to compute a random sharing zA, zB of z = xy = xAyA⊕xAyB⊕xByA⊕xByB .
The parties can compute the AND of their local shares (xAyA and xByB), while they
can use oblivious transfer (OT) to compute the cross products (xAyB and xByA). Now
the parties can iterate for the next layer of the circuit, up to the end where they will
reconstruct the output values by revealing their shares.

4 Oblivious AES has become one of the most common circuits to use for benchmarking generic
MPC protocols, due to its reasonable size (about 30000 gates) and its relevance as a building
block for constructing specific purpose protocols, like private set intersection [11].
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This protocol is secure against a semi-honest adversary: assuming the OT protocol
to be secure, Alice and Bob learn nothing about the intermediate values of the compu-
tation. It is easy to see that if a large circuit is evaluated, then the protocol is not secure
against a malicious adversary: any of the two parties could replace values on any of the
internal wires, leading to a possibly incorrect output and/or leakage of information.

F2PC

FDEAL

aOT aAND

aBit

EQOT

Sect. 3

Sect. 5

Sect. 4

Fig. 1. Paper outline. This order of pre-
sentation is chosen to allow the best
progression in introduction of our new
techniques.

To cope with this, we put MACs on all
bits. The starting point of our protocol is obliv-
ious authentication of bits. One party, the key
holder, holds a uniformly random global key
∆ ∈ {0, 1}κ. The other party, the MAC holder,
holds some secret bits (x, y, say). For each such
bit the key holder holds a corresponding uni-
formly random local key (Kx,Ky ∈ {0, 1}κ)
and the MAC holder holds the corresponding
MAC (Mx = Kx ⊕ x∆, My = Ky ⊕ y∆).
The key holder does not know the bits and the
MAC holder does not know the keys. Note that
Mx⊕My = (Kx⊕Ky)⊕(x⊕y)∆. So, the MAC
holder can locally compute a MAC on x⊕y under
the keyKx⊕Ky which is non-interactively com-
putable by the key holder. This homomorphic
property comes from fixing ∆ and we exploit it
throughout our constructions. From a bottom-up
look, our protocol is constructed as follows (see Fig. 1 for the main structure):

Bit Authentication: We first implement oblivious authentication of bits (aBit). As de-
tailed in Sect. 4, to construct authenticated bits we start by extending a few (say
κ = 640) seed

(
2
1

)
-OTs into many (say ` = 220) OTs, using OT extension. Then,

if A wants to get a bit x authenticated, she can input it as the choice bit in an OT,
while B can input (Kx,Kx ⊕ ∆), playing the sender in the OT. Now A receives
Mx = Kx ⊕ x∆. It should, of course, be ensured that even a corrupted B uses the
same value ∆ in all OTs. I.e., it should hold for all produced OTs that the XORs of
the offered message pairs are constant—this constant value is then taken to be ∆. It
turns out, however, that when using the highly efficient passive-secure OT extender
in [18] and starting from seed OTs where the XORs of message pairs are constant,
one also produces OTs where the XORs of message pairs are constant, and we note
that for this use the protocol in [18] happens to be active-secure! Using cut-and-
choose we ensure that most of the XORs of message pairs offered in the seed OTs
are constant, and with a new and inexpensive trick we offer privacy and correctness
even if few of these XORs have different values. This cut-and-choose technique
uses one call to a box EQ for checking equality.

Authenticated local AND: From aBits we then construct authenticated local ANDs
(aAND), where the MAC holder locally holds random authenticated bits a, b, c
with c = ab. To create authenticated local ANDs, we let one party compute c = ab
for random a and b and get authentications on a, b, c (when creating aANDs, we
assume the aBits are already available). The challenge is to ensure that c = ab. We
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construct an efficient proof for this fact, again using the box EQ once. This proof
might, however, leak the bit a with small but noticeable probability. We correct this
using a combiner.

Authenticated OT: From aBits we also construct authenticated OTs (aOT), which
are normal

(
2
1

)
-OTs of bits, but where all input bits and output bits are obliviously

authenticated. This is done by letting the two parties generate aBits representing
the sender messages x0, x1 and the receiver choice bit c. To produce the receiver’s
output, first a random aBit is sampled. Then this bit is “corrected” in order to be
consistent with the run of an OT protocol with input messages x0, x1 and choice
bit c. This correction might, however, leak the bit c with small but noticeable prob-
ability. We correct this using an OT combiner. One call to the box EQ is used.

2PC: Given two aANDs and two aOTs one can evaluate in a very efficient way any
Boolean gate: only 4 bits per gate are communicated, as the MACs can be checked
in an amortized manner.

That efficient 2PC is possible given enough aBits, aANDs and aOTs is no surprise.
In some sense, it is the standard way to base passive-secure 2PC on passive-secure
OT enhanced with a particular flavor of committed OT (as in [8,12]). What is new is
that we managed to find a particular committed OT-like primitive which allows both
a very efficient generation and a very efficient use: while previous results based on
committed OT require hundreds of exponentiations per gate, our cost per gate is in the
order of hundreds of hash functions. To the best of our knowledge, we present the first
practical approach to extending a few seed OTs into a large number of committed OT-
like primitives. Of more specific technical contributions, the main is that we manage
to do all the proofs efficiently, thanks also to the preprocessing nature of our protocol:
Creating aBits, we get active security paying only a constant overhead over the passive-
secure protocol in [18]. In the generation of aANDs and aOTs, we replace cut-and-
choose with efficient, slightly leaky proofs and then use a combiner to get rid of the
leakage: When we preprocess for ` gates and combine B leaky objects to get each
potentially unleaky object, the probability of leaking is (2`)−B = 2− log2(`)(B−1). As
an example, if we preprocess for 220 gates with an overhead of B = 6, then we get
leakage probability 2−100.

As a corollary to being able to generate any ` = poly(κ) active-secure aBits from
O(κ) seed OTs and O(`) calls to a hash-function, we get that we can generate any
` = poly(κ) active-secure

(
2
1

)
-OTs of κ-bit strings from O(κ) seed OTs and O(`)

calls to a hash-function, matching the asymptotic complexity of [15] while dramatically
reducing their hidden constants.

2 Preliminaries and Notation

We use κ (and sometimes ψ) to denote the security parameter. We require that a poly-
time adversary break the protocol with probability at most poly(κ)2−κ. For a bit-string
S ∈ {0, 1}∗ we define 0S

def
= 0|S| and 1S

def
= S. For a finite set S we use s ∈R S to

denote that s is chosen uniformly at random in S. For a finite distribution D we use
x← D to denote that x is sampled according to D.
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The UC Framework. We prove our results static, active-secure in the UC framework [5],
and we assume the reader to be familiar with it. We will idiosyncratically use the word
box instead of the usual term ideal functionality. To simplify the statements of our
results we use the following terminology:

Definition 1. We say that a box A is reducible to a box B if there exist an actively
secure implementation π of A which uses only one call to B. We say that A is locally
reducible to B if the parties of π do not communicate (except through the one call to B).
We say that A is linear reducible to B if the computing time of all parties of π is linear
in their inputs and outputs. We use equivalent to denote reducibility in both directions.

It is easy to see that if A is (linear, locally) reducible to B and B is (linear, locally)
reducible to C, then A is (linear, locally) reducible to C.

Hash Functions. We use a hash function H : {0, 1}∗ → {0, 1}κ, which we model as
a random oracle (RO). We sometimes use H to mask a message, as in H(x) ⊕M . If
|M | 6= κ, this denotes prg(H(x))⊕M , where prg is a pseudo-random generator prg :
{0, 1}κ → {0, 1}|M |. We also use a collision-resistant hash function G : {0, 1}2κ →
{0, 1}κ.

As other 2PC protocols whose focus is efficiency [23,17], we are content with a
proof in the random oracle model. What is the exact assumption on the hash func-
tion that we need for our protocol to be secure, as well as whether this can be imple-
mented under standard cryptographic assumption is an interesting theoretical question,
see [2,7].

Oblivious Transfer. We use a box OT(τ, `) which can be used to perform τ
(
2
1

)
-

oblivious transfers of strings of bit-length `. In each of the τ OTs the sender S has two
inputs x0, x1 ∈ {0, 1}`, called the messages, and the receiver R has an input c ∈ {0, 1},
called the choice bit. The output to R is xc = c(x0 ⊕ x1) ⊕ x0. No party learns any
other information.

Equality Check. We use a box EQ(`) which allows two parties to check that two strings
of length ` are equal. If they are different the box leaks both strings to the adversary,
which makes secure implementation easier. We define and use this box to simplify the
exposition of our protocol. In practice we implement the box using the commit-and-
open approach. Hashing a string (together with some randomness) is a secure imple-
mentation of commitment in the random oracle model. See the full version for more
details.

Leakage Functions. We use a concept of a leakage function on τ bits, which is a class
L of distributions, where each L ∈ L is a distribution on (S, c) ∈ 2{1,...,τ} × {0, 1},
where, as we will see later, c = 0 is interpreted as a failure to create leakage and c = 1
is interpreted as leakage of the bits indexed by i ∈ S. We say that L is κ-secure if the
expected value of τ − c|S| is at least κ and we says that L is κ-secure if all L ∈ L are
κ-secure. See the full version for a more detailed definition.

3 The Two-Party Computation Protocol
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F2PC

FDEAL

aOT aANDaBit

Fig. 2. Sect. 3 outline.

We want to implement the box F2PC for Boolean two-
party secure computation as described in Fig. 4. We will
implement this box in the FDEAL-hybrid model of Fig. 5.
This box provides the parties with aBits, aANDs and
aOTs, and models the preprocessing phase of our pro-
tocol. In Fig. 3 we introduce notation for working with
authenticated bits. The protocol implementing F2PC in
the dealer model is described in Fig. 6. The dealer offers
random authenticated bits (to A or B), random authenti-
cated local AND triples and random authenticated OTs.
Those are all the ingredients that we need to build the 2PC protocol. Note that the dealer
offers randomized versions of all commands: this is not a problem as the “standard” ver-
sion of the commands (the one where the parties can specify their input bits instead of
getting them at random from the box) are linearly reducible to the randomized version,
as can be easily deduced from the protocol description. The following result is proven
in the full version.

Theorem 1. The protocol in Fig. 6 securely implements the box F2PC in the FDEAL-
hybrid model with security parameter κ.

Why the global key queries? The FDEAL box (Fig. 5) allows the adversary to guess the
value of the global key, and it informs it if its guess is correct. This is needed for tech-
nical reasons: When FDEAL is proven UC secure, the environment has access to either
FDEAL or the protocol implementing FDEAL. In both cases the environment learns the
global keys ∆A and ∆B . In particular, the environment learns ∆A even if B is honest.
This requires us to prove the sub-protocol for FDEAL secure to an adversary knowing
∆A even if B is honest: to be be able to do this, the simulator needs to recognize ∆A

if it sees it—hence the global key queries. Note, however, that in the context where we
use FDEAL (Fig. 6), the environment does not learn the global key ∆A when B is hon-
est: A corrupted A only sees MACs on one bit using the same local key, so all MACs
are uniformly random in the view of a corrupted A, and B never makes the local keys
public.

Amortized MAC checks. In the protocol of Fig. 6, there is no need to send MACs and
check them every time we do a “reveal”. In fact, it is straightforward to verify that
before an Output command is executed, the protocol is perfectly secure even if the
MACs are not checked. Notice then that a key holder checks a MAC Mx on a bit x
by computing M ′x = Kx ⊕ x∆ and comparing M ′x to the Mx which was sent along
with x. These equality checks can be deferred and amortized. Initially the MAC holder,
e.g. A, sets N = 0κ and the key holder, e.g. B, sets N ′ = 0κ. As long as no Output
command is executed, when A reveals x she updatesN ← G(N,H(Mx)) for the MAC
Mx she should have sent along with x, and B updates N ′ ← G(N ′, H(M ′x)); Here G
is a collision resistant hash function. Before executing an Output, A sends N to B
who aborts if N 6= N ′. Security of this check is easily proved in the random oracle
model. The optimization brings the communication complexity of the protocol down
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Global Key: We call ∆A,∆B ∈ {0, 1}κ the two global keys, held by B and A respectively.
Authenticated Bit: We write [x]A to represent an authenticated secret bit held by A. Here

B knows a key Kx ∈ {0, 1}κ and A knows a bit x and a MAC Mx = Kx ⊕ x∆A ∈
{0, 1}κ. Let [x]A

def
= (x,Mx,Kx).a

If [x]A = (x,Mx,Kx) and [y]A = (y,My,Ky) we write [z]A = [x]A ⊕ [y]A to indicate
[z]A = (z,Mz,Kz)

def
= (x ⊕ y,Mx ⊕My,Kx ⊕Ky). Note that no communication is

required to compute [z]A from [x]A and [y]A.
It is possible to authenticate a constant bit (a value known both to A and B) b ∈ {0, 1}
as follows: A sets Mb = 0κ, B sets Kb = b∆A, now [b]A

def
= (b,Mb,Kb). For a constant

b we let [x]A ⊕ b
def
= [x]A ⊕ [b]A, and we let b[x]A be equal to [0]A if b = 0 and [x]A if

b = 1.
We say that A reveals [x]A by sending (x,Mx) to B who aborts if Mx 6= Kx ⊕ x∆A.
Alternatively we say that A announces x by sending x to B without a MAC.
Authenticated bits belonging to B are written as [y]B and are defined symmetrically,
changing side of all the values and using the global value ∆B instead of ∆A.

Authenticated Share: We write [x] to represent the situation where A and B hold
[xA]A, [xB ]B and x = xA ⊕ xB , and we write [x] = ([xA]A, [xB ]B) or [x] = [xA|xB ].
If [x] = [xA|xB ] and [y] = [yA|yB ] we write [z] = [x] ⊕ [y] to indicate [z] =
([zA]A, [zB ]B) = ([xA]A ⊕ [yA]A, [xB ]B ⊕ [yB ]B). Note that no communication is re-
quired to compute [z] from [x] and [y].
It is possible to create an authenticated share of a constant b ∈ {0, 1} as follows: A and
B create [b] = [b|0]. For a constant value b ∈ {0, 1}, we define b[x] to be equal to [0] if
b = 0 and [x] if b = 1.
When an authenticated share is revealed, the parties reveal to each other their authenti-
cated bits and abort if the MACs are not correct.

a Since ∆A is a global value we will not always write it explicitly. Note that in x∆A, x
represents a value, 0 or 1, and that in [x]A, Kx and Mx it represents a variable name. I.e.,
there is only one key (MAC) per authenticated bit, and for the bit named x, the key (MAC)
is named Kx (Mx). If x = 0, then Mx = Kx. If x = 1, then Mx = Kx ⊕∆A.

Fig. 3. Notation for authenticated and shared bits.

Rand: On input (rand, vid) from A and B, with vid a fresh identifier, the box picks r ∈R

{0, 1} and stores (vid , r).
Input: On input (input,P, vid , x) from P ∈ {A,B} and (input,P, vid , ?) from the other

party, with vid a fresh identifier, the box stores (vid , x).
XOR: On command (xor, vid1, vid2, vid3) from both parties (if vid1, vid2 are defined and

vid3 is fresh), the box retrieves (vid1, x), (vid2, y) and stores (vid3, x⊕ y).
AND: As XOR, but store (vid3, x · y).
Output: On input (output,P, vid) from both parties, with P ∈ {A,B} (and vid defined),

the box retrieves (vid , x) and outputs it to P.

At each command the box leaks to the environment which command is being executed (keep-
ing the value x in Input secret), and delivers messages only when the environment says so.

Fig. 4. The box F2PC for Boolean Two-party Computation.

from O(κ|C|) to O(|C| + oκ), where o is the number of rounds in which outputs are
opened. For a circuit of depth O(|C|/κ), the communication is O(|C|).

8



Initialize: On input (init) from A and (init) from B, the box samples ∆A,∆B ∈ {0, 1}κ,
stores them and outputs ∆B to A and ∆A to B. If A (resp. B) is corrupted, she gets to
choose ∆B (resp. ∆A).

Authenticated Bit (A): On input (aBIT,A) from A and B, the box samples a random
[x]A = (x,Mx,Kx) with Mx = Kx ⊕ x∆A and outputs it (x,Mx to A and Kx

to B). If B is corrupted he gets to choose Kx. If A is corrupted she gets to choose
(x,Mx), and the box sets Kx = Mx ⊕ x∆A.

Authenticated Bit (B): On input (aBIT,B) from A and B, the box samples a random
[x]B = (x,Mx,Kx) with Mx = Kx ⊕ x∆B and outputs it (x,Mx to B and Kx

to A). As in Authenticated Bit (A), corrupted parties can choose their own randomness.
Authenticated local AND (A): On input (aAND,A) from A and B, the box samples ran-

dom [x]A,[y]A and [z]A with z = xy and outputs them. As in Authenticated Bit (A),
corrupted parties can choose their own randomness.

Authenticated local AND (B) Defined symmetrically.
Authenticated OT (A-B): On input (aOT,A,B) from A and B, the box samples random

[x0]A,[x1]A,[c]B and [z]B with z = xc = c(x0 ⊕ x1) ⊕ x0 and outputs them. As in
Authenticated Bit, corrupted parties can choose their own randomness.

Authenticated OT (B-A): Defined symmetrically.a

Global Key Queries: The adversary can at any point input (A,∆) and be told whether∆ =
∆B . And it can at any point input (B,∆) and be told whether ∆ = ∆A.

a The dealer offers aOTs in both directions. Notice that the dealer could offer aOT only in
one direction and the parties could then “turn” them: as regular OT, aOT is symmetric as
well.

Fig. 5. The box FDEAL for dealing preprocessed values.

Implementing FDEAL. In the following sections we show how to implement FDEAL. In
Sect. 4 we implement just the part with the commands Authenticated Bits. In Sect. 5
we show how to extend with the Authenticated OT command, by showing how to
implement many aOTs from many aBits. In the full version we show how to further
extend with the Authenticated local AND command. We describe the extensions sep-
arately, but since they both maintain the value of the global keys, they will produce
aANDs and aOTs with the same keys as the aBits used, giving an implementation of
FDEAL.

4 Bit Authentication

aBit

WaBit

LaBit

OTEQ

Fig. 7. Sect. 4 outline.

In this section we show how to efficiently implement
(oblivious) bit authentication, i.e., we want to be in a
situation where A knows some bits x1, . . . , x` together
with MACsM1, . . . ,M`, while B holds a global key∆A

and local keys K1, . . . ,K` s.t. Mi = Ki⊕xi∆A, as de-
scribed in FDEAL (Fig. 5). Given the complete symmetry
of FDEAL, we only describe the case where A is MAC
holder.

If the parties were honest, we could do the following:
A and B run an OT where B inputs the two messages
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Initialize: When activated the first time, A and B activate FDEAL and receive ∆B and ∆A

respectively.
Rand: A and B ask FDEAL for random authenticated bits [rA]A, [rB ]B and stores [r] =

[rA|rB ] under vid .
Input: If P = A, then A asks FDEAL for an authenticated bit [xA]A and announces (i.e., no

MAC is sent together with the bit) xB = x⊕ xA, and the parties build [xB ]B and define
[x] = [xA|xB ]. The protocol is symmetric for B.

XOR: A and B retrieve [x], [y] stored under vid1, vid2 and store [z] = [x]⊕ [y] under vid3.
For brevity we drop explicit mentioning of variable identifiers below.

AND: A and B retrieve [x], [y] and compute [z] = [xy] as follows:
1. The parties ask FDEAL for a random AND triplet [u]A, [v]A, [w]A with w = uv.

A reveals [f ]A = [u]A ⊕ [xA]A and [g]A = [v]A ⊕ [yA]A.
The parties compute [xAyA]A = f [yA]A ⊕ g[xA]A ⊕ [w]A ⊕ fg.

2. Symmetrically the parties compute [xByB ]B.
3. The parties ask FDEAL for a random authenticated OT [u0]A, [u1]A, [c]B, [w]B with
w = uc.
They also ask for an authenticated bit [rA]A.
Now B reveals [d]B = [c]B ⊕ [yB ]B.
A reveals [f ]A = [u0]A ⊕ [u1]A ⊕ [xA]A and [g]A = [rA]A ⊕ [u0]A ⊕ d[xA]A.
Compute [sB ]B = [w]B⊕f [c]B⊕g. Note that at this point [sB ]B = [rA⊕xAyB ]B.

4. Symmetrically the parties compute [sA]A = [rB ⊕ xByA]A.
A and B compute [zA]A = [rA]A ⊕ [sA]A ⊕ [xAyA]A and [zB ]B = [rB ]B ⊕ [sB ]B ⊕
[xByB ]B and let [z] = [zA|zB ].

Output: The parties retrieve [x] = [xA|xB ]. If A is to learn x, B reveals xB . If B is to learn
x, A reveals xA.

Fig. 6. Protocol for F2PC in the FDEAL-hybrid model

(Ki,Ki ⊕ ∆A) and A inputs choice bit xi, to receive
Mi = Ki ⊕ xi∆A. However, if B is dishonest he might
not use the same ∆A in all OTs. The main ideas that make the protocol secure against
cheating parties are the following:

1. For reasons that will be apparent later, we will actually start in the opposite direc-
tion and let B receive some authenticated bits yi using an OT, where A is supposed
to always use the same global key ΓB . Thus an honest A inputs (Li, Li ⊕ ΓB) in
the OTs and B receives Ni = Li⊕ yiΓB . To check that A is playing honest in most
OTs, the authenticated bits are arranged into pairs and a check is performed, which
restricts A to cheat in at most a few OTs.

2. We then notice that what A gains by using different ΓB’s in a few OTs is no more
than learning a few of B’s bits yi. We call this a leaky aBit, or LaBit.

3. We show how to turn this situation into an equivalent one where A (not B) receives
authenticated random bits xi (none of which leaks to B) under a “slightly insecure”
global key ΓA. The insecurity comes from the fact that the leakage of the yi’s turns
into the leakage of a few bits of the global key ΓA towards A. We call this an aBit
with weak global key, or WaBit.

4. Using privacy amplification, we amplify the previous setting to a new one where A
receives authenticated bits under a (shorter) fully secure global key ∆A, where no
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bits of ∆A are known to A, finally implementing the aBit command of the dealer
box.

We will proceed in reverse order and start with step 4 in the previous description: we
will start with showing how we can turn authenticated bits under an “insecure” global
key ΓA into authenticated bits under a “secure” (but shorter) global key ∆A.

4.1 Bit Authentication with Weak Global Key (WaBit)

We will first define the box providing bit authentication, but where some of the bits of
the global key might leak. We call this box WaBit (bit authentication with weak global
key) and we formally describe it in Fig. 8. The box WaBitL(`, τ) outputs ` bits with
keys of length τ . The box is also parameterized by a class L of leakage functions on
τ bits. The box aBit(`, ψ) is the box WaBitL(`, ψ) where L is the class of leakage
functions that never leak.

Honest Parties:
1. The box samples ΓA ∈R {0, 1}τ and outputs it to B.
2. The box samples and outputs [x1]A, . . . , [x`]A. Each [xi]A = (xi,M

′
i ,K

′
i) ∈

{0, 1}1+2τ s.t. M ′i = K′i ⊕ xiΓA.
Corrupted Parties:

1. If A is corrupted, then A may choose a leakage function L ∈ L. Then the box
samples (S, c)← L. If c = 0 the box outputs fail to B and terminates. If c = 1,
the box outputs {(i, (ΓA)i)}i∈S to A.

2. If A is corrupted, then A chooses the xi and the M ′i and then K′i =M ′i ⊕ xiΓA.
3. If B is corrupted, then B chooses ΓA and the K′i.

Global Key Queries: The adversary can input Γ and will be told if Γ = ΓA.

Fig. 8. The box WaBitL(`, τ) for Bit Authentication with Weak Global Key

1. The parties invoke WaBitL(`, τ) with τ = 22
3
ψ. The output to A is

((M ′1, x1), . . . , (M
′
`, x`)). The output to B is (ΓA,K′1, . . . ,K′`).

2. B samples A ∈R {0, 1}ψ×τ , a random binary matrix with ψ rows and τ columns, and
sends A to A.

3. A computes Mi = AM ′i ∈ {0, 1}ψ and outputs ((M1, x1), . . . , (M`, x`)).
4. B computes ∆A = AΓA and Ki = AK′i and outputs (∆A,K1, . . . ,K`).

Fig. 9. Sub-protocol for reducing aBit(`, ψ) to WaBitL(`, τ).

In Fig. 9 we describe a protocol which takes a box WaBit, where one quarter of the
bits of the global key might leak, and amplifies it to a box aBit where the global key
is perfectly secret. The protocol is described for general L and it is parameterized by
a desired security level ψ. The proof of the following theorem can be found in the full
version.
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Honest Parties:
1. The box samples ΓB ∈R {0, 1}` and outputs it to A.
2. The box samples and outputs [y1]B, . . . , [yτ ]B. Each [yi]B = (yi, Ni, Li) ∈
{0, 1}1+2` s.t. Ni = Li ⊕ yiΓB .

Corrupted Parties:
1. If A is corrupted, then A may input a leakage function L ∈ L. Then the box samples

(S, c) ← L. If c = 0 the box outputs fail to B and terminates. If c = 1, the box
outputs {(i, yi)}i∈S to A.

2. Corrupted parties get to specify their outputs as in Fig. 8.
Choice Bit Queries: The adversary can input ∆ and will be told if ∆ = (y1, . . . , yτ ).

Fig. 10. The box LaBitL(τ, `) for Bit Authentication with Leaking Bits

1. A and B invoke LaBitL(τ, `). B learns ((N1, y1), . . . , (Nτ , yτ )) and A learns
(ΓB , L1, . . . , Lτ ).

2. A lets xj be the j-th bit of ΓB and Mj the string consisting of the j-th bits from all the
strings Li, i.e. Mj = L1,j ||L2,j || . . . ||L`,j .

3. B lets ΓA be the string consisting of all the bits yi, i.e. ΓA = y1||y2|| . . . ||y`, and
lets Kj be the string consisting of the j-th bits from all the strings Ni, i.e. Kj =
N1,j ||N2,j || . . . ||N`,j .

4. A and B now hold [xj ]A = (xj ,Mj ,Kj) for j = 1, . . . , `.

Fig. 11. Sub-protocol for reducing WaBitL(`, τ) to LaBitL(τ, `)

Theorem 2. Let τ = 22
3 ψ and L be a

(
3
4τ

)
-secure leakage function on τ bits. The

protocol in Fig. 9 securely implements aBit(`, ψ) in the WaBitL(`, τ)-hybrid model
with security parameter ψ. The communication is O(ψ2) and the work is O(ψ2`).

4.2 Bit Authentication with Leaking Bits (LaBit)

We now show another insecure box for aBit. The new box is insecure in the sense that a
few of the bits to be authenticated might leak to the other party. We call this box an aBit
with leaking bits, or LaBit and formally describe it in Fig. 10. The box LaBitL(τ, `)
outputs τ authenticated bits with keys of length `, and is parameterized by a class of
leakage functions L on τ -bits. We show that WaBitL can be reduced to LaBitL. In the
reduction, a LaBit that outputs authenticated bits [yi]B to B is turned into a WaBit that
outputs authenticated bits [xj ]A to A, therefore we present the LaBit box that outputs
bits to B. The reduction is strongly inspired by the OT extension techniques in [18].

Theorem 3. For all `, τ and L the boxes WaBitL(`, τ) and LaBitL(τ, `) are linear
locally equivalent, i.e., can be implemented given the other in linear time without inter-
action.

The proof can be found in the full version. Note that since we turn LaBitL(τ, `) into
WaBitL(`, τ), if we choose ` = poly(ψ) we can turn a relatively small number
(τ = 22

3 ψ) of authenticated bits towards one player into a very larger number (`) of
authenticated bits towards the other player.
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4.3 A Protocol For Bit Authentication With Leaking Bits

In this section we show how to construct authenticated bits starting from OTs. The
protocol ensures that most of the authenticated bits will be kept secret, as specified by
the LaBit box in Fig. 10.

The main idea of the protocol, described in Fig. 12, is the following: many authen-
ticated bits [yi]B for B are created using OTs, where A is supposed to input messages
(Li, Li ⊕ ΓB). To check that A is using the same ΓB in every OT, the authenticated
bits are randomly paired. Given a pair of authenticated bits [yi]B, [yj ]B, A and B com-
pute [zi]B = [yi]B ⊕ [yj ]B ⊕ di where di = yi ⊕ yj is announced by B. If A behaved
honestly, she knows the MAC that B holds on zi, otherwise she has 1 bit of entropy
on this MAC, as shown below. The parties can check if A knows the MAC using the
EQ box described in Sect. 2. As B reveals yi ⊕ yj , they waste [yj ]B and only use [yi]B
as output from the protocol—as yj is uniformly random yi ⊕ yj leaks no information
on yi. Note that we cannot simply let A reveal the MAC on zi, as a malicious B could
announce 1⊕ zi: this would allow B to learn a MAC on zi and 1⊕ zi at the same time,
thus leaking ΓB . Using EQ forces a thus cheating B to guess the MAC on a bit which
he did not see, which he can do only with negligible probability 2−`.

1. A samples ΓB ∈R {0, 1}` and for i = 1, . . . , T samples Li ∈R {0, 1}`, where T = 2τ .
2. B samples (y1, . . . , yT ) ∈R {0, 1}T .
3. They run T OTs, where for i = 1, . . . , T party A offers (Yi,0, Yi,1) = (Li, Li ⊕ ΓB)

and B selects yi and receives Ni = Yi,yi = Li ⊕ yiΓB . Let [y1]B, . . . , [yT ]B be the
candidate authenticated bits produced so far.

4. B picks a uniformly random pairing π (a permutation π : {1, . . . , T } → {1, . . . , T }
where ∀i, π(π(i)) = i), and sends π to A. Given a pairing π, let S(π) = {i|i ≤ π(i)},
i.e., for each pair, add the smallest index to S(π).

5. For all τ indices i ∈ S(π):
(a) B announces di = yi ⊕ yπ(i).
(b) A and B compute [zi]B = [yi]B ⊕ [yπ(i)]B ⊕ di.
(c) Let Zi and Wi be the MAC and the local key for zi held by A respectively B. They

compare these using EQ and abort if they are different.
The τ comparisons are done using one call on the τ`-bit strings (Zi)i∈S(π) and
(Wi)i∈S(π).

6. For all i ∈ S(π) A and B output [yi]B.

Fig. 12. The protocol for reducing LaBit(τ, `) to OT(2τ, `) and EQ(τ`).

Note that if A uses different ΓB in two paired instances, Γi and Γj say, then the
MAC held by B on yi⊕yj (and therefore also zi) is (Li⊕yiΓi)⊕ (Lj⊕yjΓj) = (Li⊕
Lj)⊕(yi⊕yj)Γj⊕yi(Γi⊕Γj). Since (Γi⊕Γj) 6= 0` and yi⊕yj is fixed by announcing
di, guessing this MAC is equivalent to guessing yi. As A only knows Li, Lj , Γi, Γj and
yi ⊕ yj , she cannot guess yi with probability better than 1/2. Therefore, if A cheats
in many OTs, she will get caught with high probability. If she only cheats on a few
instances she might pass the test. Doing so confirms her guess on yi in the pairs where
she cheated. Now assume that she cheated in instance i and offered (Li, Li ⊕ Γ ′B)
instead of (Li, Li ⊕ ΓB). After getting her guess on yi confirmed she can explain the
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run as an honest run: If yi = 0, the run is equivalent to having offered (Li, Li ⊕ ΓB),
as B gets no information on the second message when yi = 0. If yi = 1, then the
run is equivalent to having offered (L′i, L

′
i ⊕ ΓB) with L′i = Li ⊕ (ΓB ⊕ Γ ′B), as

L′i ⊕ ΓB = Li ⊕ ΓB and B gets no information on the first message when yi = 1. So,
any cheating strategy of A can be simulated by letting her honestly use the same ΓB in
all pairs and then let her try to guess some bits yi. If she guesses wrong, the deviation
is reported to B. If she guesses right, she is told so and the deviation is not reported to
B. This, in turn, can be captured using some appropriate class of leakage functions L.
Nailing down the exact L needed to simulate a given behavior of A, including defining
what is the “right” ΓB , and showing that the needed L is always κ-secure is a relatively
straight-forward but very tedious business. The proof of the following theorem can be
found in the full version.

Theorem 4. Let κ = 3
4τ , and let L be a κ secure leakage function on τ bits. The pro-

tocol in Fig. 12 securely implements LaBitL(τ, `) in the (OT(2τ, `),EQ(τ`))-hybrid
model. The communication is O(τ2). The work is O(τ`).

Corollary 1. Let ψ denote the security parameter and let ` = poly(ψ). The box
aBit(`, ψ) can be reduced to (OT( 443 ψ,ψ),EQ(ψ)). The communication isO(ψ`+ψ2)
and the work is O(ψ2`).

Proof. Combining the above theorems we have that aBit(`, ψ) can be reduced to
(OT( 443 ψ, `),EQ( 223 ψ`)) with communicationO(ψ2) and workO(ψ2`). For any poly-
nomial `, we can implement OT( 443 ψ, `) given OT( 443 ψ,ψ) and a pseudo-random gen-
erator prg : {0, 1}ψ → {0, 1}`. Namely, seeds are sent using the OTs and the prg is
used to one-time pad encrypt the messages. The communication is 2`. If we use the
RO to implement the pseudo-random generator and count the hashing of κ bits as O(κ)
work, then the work isO(`ψ). We can implement EQ( 223 ψ`) by comparing short hashes
produced using the RO. The work is O(ψ`). 2

Since the oracles (OT( 443 ψ,ψ),EQ(ψ)) are independent of `, the cost of essen-
tially any reasonable implementation of them can be amortized away by picking ` large
enough. See the full version for a more detailed complexity analysis.

Efficient OT Extension: We notice that the WaBit box resembles an intermediate step
of the OT extension protocol of [18]. Completing their protocol (i.e., “hashing away”
the fact that all messages pairs have the same XOR), gives an efficient protocol for OT
extension, with the same asymptotic complexity as [15], but with dramatically smaller
constants. See the full version for details.

5 Authenticated Oblivious Transfer aOT

LaOT

aBit EQ

Fig. 13. Sect. 5 outline.

In this section we show how to implement aOTs.
We implemented aBits in Sect. 4, so what remains
is to show how to implement aOTs from aBits
i.e., to implement the FDEAL box when it outputs
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[x0]A, [x1]A, [c]B, [z]B with z = c(x0 ⊕ x1) ⊕ x0 = xc.
Because of symmetry we only show the construction of
aOTs from aBits with A as sender and B as receiver.

Honest Parties: For i = 1, . . . , `, the box outputs random [xi0]A, [x
i
1]A, [c

i]B, [z
i]B with

zi = ci(xi0 ⊕ xi1)⊕ xi0.
Corrupted Parties:

1. If B is corrupted he gets to choose all his random values.
2. If A is corrupted she gets to choose all her random values. Also, she may, at any

point before B received his outputs, input (i, gi) to the box in order to try to guess
ci. If ci 6= gi the box will output fail and terminate. Otherwise the box proceeds
as if nothing has happened and A will know the guess was correct. She may input
as many guesses as she desires.

Global Key Queries: The adversary can at any point input (A,∆) and will be returned
whether ∆ = ∆B . And it can at any point input (B,∆) and will be returned whether
∆ = ∆A.

Fig. 14. The Leaky Authenticated OT box LaOT(`)

The protocol runs ` times in parallel. The description is for a single run of LaOT.

1. A and B get [x0]A, [x1]A, [c]B and [r]B from the dealer using the aBit box.
2. Let [x0]A = (x0,Mx0 ,Kx0), [x1]A = (x1,Mx1 ,Kx1), [c]B = (c,Mc,Kc), [r]B =

(r,Mr,Kr).
3. A chooses random strings T0, T1 ∈ {0, 1}κ.
4. A sends (X0, X1) to B where X0 = H(Kc) ⊕ (x0||Mx0 ||Tx0) and X1 = H(Kc ⊕
∆B)⊕ (x1||Mx1 ||Tx1).

5. B computes (xc||Mxc ||Txc) = Xc ⊕ H(Mc). B aborts if Mxc 6= Kxc ⊕ xc∆A.
Otherwise, let z = xc.

6. B announces d = z ⊕ r to A and the parties compute [z]B = [r]B ⊕ d. Let [z]B =
(z,Mz,Kz).

7. A sends (I0, I1) to B where I0 = H(Kz)⊕ T1 and I1 = H(Kz ⊕∆B)⊕ T0.
8. B computes T1⊕z = Iz ⊕H(Mz). Notice that now B has both (T0, T1).
9. A and B both input (T0, T1) to EQ. The comparisons are done using one call to

EQ(`2κ).
10. If the values are the same, they output [x0]A, [x1]A, [c]B, [z]B.

Fig. 15. The protocol for authenticated OT with leaky choice bit

We go via a leaky version of authenticated OT, or
LaOT, described in Fig. 14. The LaOT box is leaky in the sense that choice bits may
leak when A is corrupted: a corrupted A is allowed to make guesses on choice bits, but
if the guess is wrong the box aborts revealing that A is cheating. This means that if the
box does not abort, with very high probability A only tried to guess a few choice bits.

The protocol to construct a leaky aOT, described in Fig. 15, proceeds as follows:
First A and B get [x0]A, [x1]A (A’s messages), [c]B (B’s choice bit) and [r]B. Then A
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1. A and B generate `′ = B` authenticated OTs using LaOT(`′). If the box does not abort,
name the outputs {[xi0]A, [xi1]A, [ci]B, [zi]B}`

′
i=1.

2. B sends a B-wise independent permutation π on {1, . . . , `′} to A. For j = 0, . . . , `− 1,
the B quadruples {[xπ(i)0 ]A, [x

π(i)
1 ]A, [c

π(i)]B, [z
π(i)]B}jB+B

i=jB+1 are defined to be in the
j-th bucket.

3. We describe how to combine two OTs from a bucket, call them [x10]A, [x
1
1]A, [c

1]B, [z
1]B

and [x20]A, [x
2
1]A, [c

2]B, [z
2]B. Call the result [x0]A, [x1]A, [c]B, [z]B. To combine more

than two, just iterate by taking the result and combine it with the next leaky OT.
(a) A reveals d = x10 ⊕ x11 ⊕ x20 ⊕ x21.
(b) Compute: [c]B = [c1]B⊕[c2]B, [z]B = [z1]B⊕[z2]B⊕d[c1]B, [x0]A = [x10]A⊕[x20]A,

[x1]A = [x10]A ⊕ [x21]A.

Fig. 16. From Leaky Authenticated OTs to Authenticated OTs

transfers the message z = xc to B in the following way: B knows the MAC for his
choice bit Mc, while A knows the two keys Kc and ∆B . This allows A to compute
the two possible MACs (Kc,Kc ⊕∆B) respectively for the case of c = 0 and c = 1.
Hashing these values leaves A with two uncorrelated strings H(Kc) and H(Kc⊕∆B),
one of which B can compute as H(Mc). These values can be used as a one-time pad
for A’s bits x0, x1 (and some other values as described later). B can retrieve xc and
announce the difference d = xc ⊕ r and therefore compute the output [z]B = [r]B ⊕ d.

In order to check if A is transmitting the correct bits x0, x1, she will transfer the
respective MACs together with the bits: as B is supposed to learn xc, revealing the MAC
on this bit does not introduce any insecurity. However, A can now mount a selective
failure attack: A can check if B’s choice bit c is equal to, e.g., 0 by sending x0 with the
right MAC and x1 together with a random string. Now if c = 0 B only sees the valid
MAC and continues the protocol, while if c = 1 B aborts because of the wrong MAC.
A similar attack can be mounted to check if c = 1. We will fix this later by randomly
partitioning and combining a few LaOTs together.

On the other hand, if B is corrupted, he could be announcing the wrong value d. In
particular, A needs to check that the authenticated bit [z]B is equal to xc without learning
c. In order to do this, we have A choosing two random strings T0, T1, and append them,
respectively, to x0, x1 and the MACs on those bits, so that B learns Tc together with
xc. After B announces d, we can again use the MAC and the keys for z to perform a
new transfer: A uses H(Kz) as a one-time pad for T1 and H(Kz ⊕∆B) as a one-time
pad for T0. Using Mz , the MAC on z, B can retrieve T1⊕z . This means that an honest
B, that sets z = xc, will know both T0 and T1, while a dishonest B will not be able
to know both values except with negligible probability. Using the EQ box A can check
that B knows both values T0, T1. Note that we cannot simply have B openly announce
these values, as this would open the possibility for new attacks on A’s side. The proof
of the following theorem can be found in the full version.

Theorem 5. The protocol in Fig. 15 securely implements LaOT(`) in the
(aBit(4`, κ),EQ(2`κ))-hybrid model.

To deal with the leakage of the LaOT box, we let B randomly partition the LaOTs
in small buckets: all the LaOTs in a bucket will be combined using an OT combiner, as
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shown in Fig. 16, in such a way that if at least one choice bit in every bucket is unknown
to A, then the resulting aOT will not be leaky. The overall protocol is secure because
of the OT combiner and the probability that any bucket is filled only with OTs where
the choice bit leaked is negligible, as shown in the full version.

Theorem 6. Let aOT(`) denote the box which outputs ` aOTs as in FDEAL. If
(log2(`) + 1)(B− 1) ≥ ψ, then the protocol in Fig. 16 securely implements aOT(`) in
the LaOT(B`)-hybrid model with security parameter ψ.

6 Experimental Results

We did a proof-of-concept implementation in Java. The hash function in our protocol
was implemented using Java’s standard implementation of SHA256. The implementa-
tion consists of a circuit-independent protocol for preprocessing all the random values
output by FDEAL, a framework for constructing circuits for a given computation, and a
run-time system which takes preprocessed values, circuits and inputs and carry out the
secure computation.

We will not dwell on the details of the implementation, except for one detail re-
garding the generation of the circuits. In our implementation, we do not compile the
function to be evaluated into a circuit in a separate step. The reason is that this would
involve storing a huge, often highly redundant, circuit on the disk, and reading it back.
This heavy disk access turned out to constitute a significant part of the running time in
an earlier of our prototype implementations, which we discarded. Instead, in the current
prototype, circuits are generated on the fly, in chunks which are large enough that their
evaluation generate large enough network packages that we can amortize away commu-
nication latency, but small enough that the circuit chunks can be kept in memory during
their evaluation. A circuit compiled is hence replaced by a succinct program which
generates the circuit in a streaming manner. This circuit stream is then sent through the
runtime machine, which receives a separate stream of preprocessed FDEAL-values from
the disk and then evaluates the circuit chunk by chunk in concert with the runtime ma-
chine at the other party in the protocol. The stream of preprocessed FDEAL-values from
the disk is still expensive, but we currently see no way to avoid this disk access, as the
random nature of the preprocessed values seems to rule out a succinct representation.

For timing we did oblivious ECB-AES encryption. (Both parties input a secret 128-
bit key KA respectively KB , defining an AES key K = KA ⊕KB . A inputs a secret
`-block message (m1, . . . ,m`) ∈ {0, 1}128`. B learns (EK(m1), . . . , EK(m`)).) We
used a modified version of the AES circuit from [31] and we thank Benny Pinkas,
Thomas Schneider, Nigel P. Smart and Stephen C. Williams for providing us with this
circuit.

The reason for using AES is that it provides a reasonable sized circuit which is also
reasonably complex in terms of the structure of the circuit and the depth, as opposed
to just running a lot of AND gates in parallel. Also, AES has been used for benchmark
in previous implementations, like [31], which allows us to do a crude comparison to
previous implementations. The comparison can only become crude, as the experiments
were run in different experimental setups.
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` G σ Tpre Tonl Ttot/` G/Ttot

1 34,520 55 38 4 44 822
27 922,056 55 38 5 1.6 21,545
54 1,842,728 58 79 6 1.6 21,623
81 2,765,400 60 126 10 1.7 20,405

108 3,721,208 61 170 12 1.7 20,541
135 4,642,880 62 210 15 1.7 20,637

256 8,739,200 65 406 16 1.7 20,709
512 17,478,016 68 907 26 1.8 18,733

1,024 34,955,648 71 2,303 52 2.3 14,843
2,048 69,910,912 74 5,324 143 2.7 12,788
4,096 139,821,440 77 11,238 194 2.8 12,231
8,192 279,642,496 80 22,720 258 2.8 12,170

16,384 559,284,608 83 46,584 517 2.9 11,874

Fig. 17. Timings: The reported time for to ` ≤ 135 is the average over 5 runs. For ` ≥ 256 is for
single runs. Units are as follows: ` is number of 128-bit blocks encrypted, G is Boolean gates, σ
is bits of security, Tpre, Tonl, Ttot are seconds.

In the timings we ran A and B on two different machines on Aarhus University’s
intranet (using two Intel Xeon E3430 2.40GHz cores on each machine). We recorded
the number of Boolean gates evaluated (G), the time spent in preprocessing (Tpre) and
the time spent by the run-time system (Tonl). In the table in Fig. 17 we also give the
amortized time per AES encryption (Ttot/` with Ttot

def
= Tpre+Tonl) and the number of

gates handled per second (G/Ttot). The time Tpre covers the time spent on computing
and communicating during the generation of the values preprocessed by FDEAL, and the
time spent storing these value to a local disk. The time Tonl covers the time spent on
generating the circuit and the computation and communication involved in evaluating
the circuit given the values preprocessed by FDEAL.

We work with two security parameters. The computational security parameter κ
specifies that a poly-time adversary should have probability at most poly(κ)2−κ in
breaking the protocol. The statistical security parameter σ specifies that we allow the
protocol to break with probability 2−σ independent of the computational power of the
adversary. As an example of the use of κ, our keys and therefore MACs have length κ.
This is needed as the adversary learns H(Ki) and H(Ki⊕∆) in our protocols and can
break the protocol given ∆. As an example of the use of σ, when we generate ` gates
with bucket sizeB, then σ ≤ (log2(`)+1)(B−1) due to the probability (2`)1−B that a
bucket might end up containing only leaky components. This probability is independent
of the computational power of the adversary, as the components are being bucketed by
the honest party after it is determined which of them are leaky.

In the timings, the computational security parameter has been set to 120. Since our
implementation has a fixed bucket size of 4, the statistical security level depends on
`. In the table, we specify the statistical security level attained (σ means insecurity
2−σ). At computational security level 120, the implementation needs to do 640 seed
OTs. The timings do not include the time needed to do these, as that would depend on
the implementation of the seed OTs, which is not the focus here. We note, however,
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that using, e.g., the implementation in [31], the seed OTs could be done in around 20
seconds, so they would not significantly affect the amortized times reported.

The dramatic drop in amortized time from ` = 1 to ` = 27 is due to the fact that
the preprocessor, due to implementation choices, has a smallest unit of gates it can
preprocess for. The largest number of AES circuits needing only one, two, three, four
and five units is 27, 54, 81, 108 and 135, respectively. Hence we preprocess equally
many gates when ` = 1 and ` = 27.

As for total time, we found the best amortized behavior at ` = 54, where oblivious
AES encryption of one block takes amortized 1.6 seconds, and we handle 21,623 gates
per second. As for online time, we found the best amortized behavior at ` = 2048,
where handling one AES block online takes amortized 32 milliseconds, and online we
handle 1,083,885 gates per second. We find these timings encouraging and we plan an
implementation in a more machine-near language, exploiting some of the findings from
implementing the prototype.
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