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Abstract. In the setting of unconditionally-secure MPC, where dishon-
est players are unbounded and no cryptographic assumptions are used,
it was known since the 1980’s that an honest majority of players is both
necessary and sufficient to achieve privacy and correctness, assuming se-
cure point-to-point and broadcast channels. The main open question that
was left is to establish the exact communication complexity.
We settle the above question by showing an unconditionally-secure MPC
protocol, secure against a dishonest minority of malicious players, that
matches the communication complexity of the best known MPC pro-
tocol in the honest-but-curious setting. More specifically, we present a
new n-player MPC protocol that is secure against a computationally-
unbounded malicious adversary that can adaptively corrupt t < n/2
of the players. For polynomially-large binary circuits that are not too
unshaped, our protocol has an amortized communication complexity of
O(n logn+κ/nconst) bits per multiplication (i.e. AND) gate, where κ de-
notes the security parameter and const ∈ Z is an arbitrary non-negative
constant. This improves on the previously most efficient protocol with
the same security guarantee, which offers an amortized communication
complexity of O(n2κ) bits per multiplication gate. For any κ polynomial
in n, the amortized communication complexity of our protocol matches
the O(n logn) bit communication complexity of the best known MPC
protocol with passive security.
We introduce several novel techniques that are of independent interest
and we believe will have wider applicability. One is a novel idea of com-
puting authentication tags by means of a mini MPC, which allows us to
avoid expensive double-sharings; the other is a batch-wise multiplication
verification that allows us to speedup Beaver’s “multiplication triples”.

1 Introduction

Background. In secure multiparty computation (MPC), a set of n players wish
to evaluate an arbitrary but fixed function F on private inputs. The function F



is known to all the players and it is typically given as an arithmetic circuit C
over some finite field F. It should be guaranteed that the inputs remain private
and at the same time that the output of the computation is correct, even in the
presence of an adversary that can corrupt a certain number t of the players. In
case of a passive adversary, corrupt players simply reveal all their information to
the adversary but otherwise keep following the protocol specification; in case of
an active adversary, a corrupt player is under full control of the adversary and
may arbitrarily misbehave during the protocol execution. By default, the goal is
to obtain security against an active adversary.

The problem of MPC was initially introduced by Yao [23], with the first
generic solutions presented in [17, 9]. These first protocols offered cryptographic
(aka. computational) security, meaning that the adversary is assumed to be
computationally bounded, and can tolerate up to t < n/2 corrupt players. Sub-
sequently, it was shown in [8, 5] that in a setting with perfectly-secure point-to-
point communication and with up to t < n/3 corrupt players, MPC is possible
with unconditional and even perfect security.4 Finally, in [21, 1] it was shown
that if a secure broadcast primitive is given — in addition to the secure point-
to-point communication — then unconditionally (but not perfectly) secure MPC
is possible against up to t < n/2 corrupt players.

These early results showed that MPC is possible in principle (in different set-
tings), but they perform rather poorly in terms of communication complexity,
i.e., the number of bits that the players need to communicate throughout the
protocol. Over the years, a lot of effort has been put into improving the com-
munication complexity of MPC protocols. The table in Figure 1 shows recent
achievements and the state of the art in the settings t < n/2 (cryptographic or
with broadcast) and t < n/3 (perfect or unconditional, without broadcast). Ad-
ditional efficiency improvements are possible if one is willing to sacrifice on the
resilience and lower the corruption threshold t by a small constant fraction, as
shown in [13, 15, 14]. Indeed, lowering t enables to apply several powerful tools,
like packed secret sharing or committee selection. We do not consider this option
here, but aim for optimal resilience.

We can see from Figure 1 that there is a significant discrepancy between the
cryptographic setting with t < n/2, or, similarly, the unconditional/perfect set-
ting with t < n/3, versus the unconditional setting with t < n/2. In the former,
MPC is possible for binary circuits with a near-linear amortized communication
complexity of O(n log n) bits per multiplication gate.5 In the latter, the best
known protocol has an amortized communication complexity of O(n2κ) bits per
multiplication gate. This is not very surprising, since it is probably fair to say
that the unconditional setting with t < n/2 is the most difficult one to deal
with. The reason is that no cryptographic tools can be used, like commitments

4 Unconditional/perfect security means a computationally unbounded adversary and
negligible/zero failure probability.

5 By amortized communication complexity we mean under the assumption that the
circuit is large enough so that the terms that are independent of the size of the
circuit are irrelevant.



Adv Resilience Security Communication Ref

passive t < n/2 perfect O(cMn logn+ n2 logn) [16]

active t < n/2 cryptographic O(cMn2κ+ n3κ) [19]
active t < n/2 cryptographic O(cMnκ+ n3κ) [20]
active t < n/2 cryptographic O(cMn logn) + poly(nκ) [16]

active t < n/3 unconditional O(cMn2κ) + poly(nκ) [18]
active t < n/3 unconditional O(cMn logn+ dMn2 logn) + poly(nκ) [16]
active t < n/3 perfect O(cMn logn+ dMn2 logn+ n3 logn) [4]

active t < n/2 unconditional O(cMn5κ+ n4κ) +O(cMn5κ)BC [10]
active t < n/2 unconditional O(cMn2κ+ n5κ2) +O(n3κ)BC [3]

Fig. 1. Comparison of recent MPC protocols for binary circuits. n denotes the number
of players, κ the security parameter (which we assume to be ≥ logn), cM the number of
multiplication gates in the circuit (which we assume dominates the number of in- and
outputs), and dM the multiplicative depth of the circuit. The communication complex-
ity counts the number of bits that are communicated in total in an execution, plus, in
the setting where a broadcast primitive is needed, the number of bits broadcasted. For
circuits over a larger field F, the logn-terms should be replaced by log(max{n, |F|}).

or signatures, as in the cryptographic setting, nor can we use techniques from
error correcting codes, as in the case t < n/3. Therefore, achieving near-linear
amortized communication complexity for the setting of unconditional security
and t < n/2 has remained a challenging open problem.

We note that, in any of the three settings, O(n log n) bits per multiplication
gate seems to be hard to beat, since not even the best known protocol with
passive security [16] does better than that.

Our Result. For an arbitrary arithmetic circuit over a finite field F, we show
a novel MPC protocol with unconditional security and corruption threshold
t < n/2, which has a communication complexity of O(cM (nφ+κ)+dMn2κ+n7κ)
bits plus O(n3κ) broadcasts, where φ = max{log n, log |F|}. Hence, for binary
circuits that are not too “narrow” (meaning that the multiplicative depth dM
is sufficiently smaller than the number of multiplication gates), our protocol
achieves an amortized communication complexity of O(n log n+κ) bits per mul-
tiplication gate. Furthermore, for any non-negative constant const ∈ Z, a small
modification to our protocol gives O(n log n + κ/nconst) bits per multiplication
gate, so that if κ = O(nconst+1), i.e., κ is at most polynomial in n, we obtain an
amortized communication complexity of O(n log n) bits. Thus, our results show
that even in the challenging setting of unconditional security with t < n/2, near-
linear MPC is possible. Unless there is an additional improvement in the passive
setting, this pretty much settles the question of the asymptotic complexity of
unconditionally-secure MPC.

We would like to point out that the restriction on the multiplicative depth
of the circuit, necessary for the claimed near-linear communication complexity
per multiplication gate to hold, is also present in the easier t < n/3 setting for



the protocols with near-linear communication complexity [16, 4]; whether it is
an inherent restriction is not known.

Techniques. We borrow several techniques from previous constructions of effi-
cient MPC protocols. For instance, we make use of the dispute control technique
introduced in [3], and the (near) linear passively-secure multiplication technique
from [16]. However, our new protocol and its near-linear amortized communica-
tion complexity is to a great extent due to two new techniques, which we briefly
discuss here. More details will be given in Section 2.7 and the full version [6].

Efficient batch verification of multiplication triples. The first technique allows to
efficiently verify that a large list of N shared multiplication-triples are correct,
i.e., satisfy the required multiplicative relation. These multiplication triples are
used in order to implement Beaver’s method of evaluating multiplication gates,
and our new protocol allows us to guarantee all N triples in one shot using
communication complexity that is (nearly) independent of N .

Our new technique is inspired by a method that plays an important role in
the construction of PCP proofs. Given oracle access to three sequences of bits,
or elements from a “small” finite field, a1, . . . , aN , b1, . . . , bN and c1, . . . , cN , we
wish to verify that ai · bi = ci for all i = 1, . . . , N . The procedure should be
query-efficient, i.e., (much) more efficient than when querying and verifying all
triples. Suppose the triples are encoded as low-degree polynomials. This means,
we are given oracle access to evaluations of polynomials f and g of degree < N
and h of degree < 2N − 1, with f(xi) = ai, g(xi) = bi and h(xi) = ci for all
i ∈ {1, . . . , N}, where x1, . . . , xN are fixed disjoint points and h is supposed to
be h = f ·g. The key observation is this: by the fundamental theorem of algebra,
if f · g 6= h then f(σ) · g(σ) 6= h(σ) except with probability at most 2N−1

|K| for a
randomly chosen σ ∈ K, and for any suitably large extension field K.

In our setting, it will turn out that we can indeed enforce the shared multi-
plication triples to be encoded via low-degree polynomials as above. So, by the
above technique, it is possible to verify N multiplication triples with just one
(random) query to f, g and h, and thus with a communication complexity that
essentially only depends on the aspired error probability.

In independent work [12], Cramer et al. propose a 2-party batch zero-knowledge
proof for committed multiplication triples. The techniques used there show some
resemblance, but there are also differences due to the fact that in our setting,
the ai, bi and ci’s are not known to any party.

Multiparty-computing the authentication tags Our other technique is a new way
to “commit” the players to their shares, so that dishonest players who lie about
their shares during reconstruction are caught. This is necessary in the setting t <
n/2, where plain Shamir shares do not carry enough redundancy to reconstruct
in the presence of incorrect shares.

The way we “commit” player Pi to his share σi is by attaching an authenti-
cation tag τ to σi, where the corresponding authentication key is held by some



other player V , acting as verifier.6 The reader may think of τ as τ = µ · σi + ν
over some large finite field, where (µ, ν) forms the key. It is well known and easy
to see that if Pi does not know the key (µ, ν), then he is not able to come up
with σ′i 6= σi and τ ′ such that τ ′ = µ · σ′i + ν, except with small probability.
Thus, incorrect shares can be detected and filtered out.

This idea is not new, and actually goes back to [21], but in all previous work
the tag τ is locally computed by some party, usually the dealer that prepared the
share σi. Obviously, this requires that the dealer knows the key (µ, ν); otherwise,
he cannot compute τ = µ · σi + ν. As a consequence, if the dealer is dishonest,
the authentication tag τ is useless, because with the knowledge of the key, an
authentication tag τ ′ for an incorrect share σ′i can easily be forged. In previous
work, as in [21, 10, 3], this problem was overcome by means of a double sharing,
where every share σi is again shared, and the authentication tags are attached
to the second-level shares. However, such a double sharing obviously leads to a
(at least) quadratic communication complexity.

Instead, here we propose to compute the tag τ by means of a mini MPC, to
which Pi provides his share σi as input, and V his key (µ, ν), and the tag τ is
securely computed jointly by all the players. This way, no one beyond V learns
the key (µ, ν), and forging a tag remains hard, and no expensive double sharing
is necessary.

At first glance this may look hopeless since MPC typically is very expensive,
and we cannot expect to increase the efficiency of MPC by using an expensive
MPC as subprotocol. What saves us is that our mini MPC is for a very specific
function in a very specific setting. We use several tricks, like re-using parts of the
authentication key, batching etc., to obtain a tailored mini MPC for computing
the tag τ , with an amortized communication complexity that has no significant
impact. One of the crucial new tricks is to make use of the fact that Shamir’s
secret sharing scheme is “symmetric” in terms of what is the shared secret and
what are the shares; this allows us to avoid having to re-share the share σi for
the mini MPC, but instead we can use the other shares σj as shares of σi.

2 Near-Linear MPC: Our Result and Approach

2.1 Communication and Corruption Model

We consider a set of n = 2t + 1 players P1, . . . , Pn, which are connected by
means of a complete network of secure synchronous communication channels.
Additionally, we assume a broadcast channel, available to all the players. For
simplicity, we assume the broadcast channel to broadcast single bits; longer
messages are broadcasted bit-wise. For a protocol that instructs the players to
communicate (in total) X bits and to broadcast Y bits, we say that the protocol
has communication complexity X + Y · BC.

We consider a computationally-unbounded active adversary that can adap-
tively corrupt up to t of the players. Adaptivity means that the adversary can
6 Actually, σi comes along with n tags, one for each player acting as verifier V .



corrupt players during the execution of the protocol, and depending on the in-
formation gathered so far. Once a player is corrupted, the adversary learns the
internal state of the player, which consists of the complete history of that player,
and takes over full control of that player and can make him deviate from the
protocol in any desired manner.

For any given arithmetic circuit C over a finite field F, the goal is to have a
protocol that permits the n players to securely evaluate C on their private inputs.
For simplicity, we assume that all the players should learn the entire result.
Security means that the adversary cannot influence the result of the computation
more than by selecting the inputs for the corrupt players, and the adversary
should learn nothing about the uncorrupt players’ inputs beyond what can be
deduced from the result of the computation. This should hold unconditionally,
meaning without any computational restrictions on the adversary, and up to a
negligible failure probability ε.

2.2 Main Result

For an arithmetic circuit C over a finite field F, we denote the respective numbers
of input, output, addition, and multiplication gates in C by cI , cO, cA, and cM ,
and we write ctot = cI + cO + cM (not counting cA). Furthermore, we write dM
to denote its multiplicative depth, i.e., the maximal number of multiplication
gates on any path from an input gate to an output gate.

Theorem 1. For every n, κ ∈ N, and for every arithmetic circuit C over a finite
field F with |F| ≤ 2κ+n, there exists an n-party MPC protocol that securely com-
putes C against an unbounded active adaptive adversary corrupting up to t < n/2
players, with failure probability ε ≤ O(ctotn)/2κ and communication complexity
O(ctot · (nφ+ κ) + dMn

2κ+ n7κ) +O(n3κ) · BC, where φ = max{log |F|, log n}.
More generally, for any const ∈ Z, there exists such a MPC protocol with com-
munication complexity O(ctot · (nφ+ κ/nconst) + dMn

2κ+ n7κ) +O(n3κ) · BC.

Theorem 1 guarantees that for large enough circuits that are not too “narrow”,
meaning that the multiplicative depth dM is significantly smaller than the num-
ber cM of multiplication gates (e.g. dM ≤ cM/(nκ) is good enough), the commu-
nication complexity per multiplication gate (assuming that cM dominates cI , cO
and cR) is O(nφ + κ/nconst) bits, i.e., O(n log n + κ/nconst) for binary circuits,
for an arbitrary non-negative const ∈ Z. Recall, the best previous MPC scheme
in this setting [3] required O(n2κ) bits per multiplication gate. For simplicity,
we focus on the case const = 0 and merely give some indication on how to adapt
the same for larger const.

2.3 The Set Up

We are given positive integers n and κ, and an arithmetic circuit C over a finite
field F. We assume that |F| ≥ 2n2 (or |F| ≥ 2n2+const for an arbitrary const)



— otherwise we consider C over an appropriate extension field7 — and we write
φ = log(|F|), i.e., φ denotes the number of bits needed to represent an element
in F. We may assume that κ ≥ n (otherwise, we set κ = n) and thus that κ is an
integer multiple of n. We fix an extension field K of F such that |K| ≥ 22(κ+n).
Finally, we set M = 2(cM + cR + cI).

As convention, we write elements in F as Roman letters, and elements in K
as Greek letters. Note that F is naturally a subset of K, and thus for s ∈ F
and λ ∈ K, the product λ · s is a well defined element in K. Also note that by
fixing an F-linear bijection Fe → K, where e is the extension degree e = [K : F]
we can understand a vector (s1, . . . , se) ∈ Fe as a field element σ ∈ K, and a
vector (s1, . . . , sq·e) ∈ Fq·e for q ∈ N as a vector σ = (σ1, . . . , σq) ∈ Kq of q field
elements in K.

2.4 Dispute Control

We make use of the dispute control framework due to Beerliová-Trub́ıniová and
Hirt. The idea of dispute control is to divide (the different phases of) the MPC
protocol into n2 segments (of equal “size”), and to execute the segments sequen-
tially. If the execution of a segment should fail due to malicious behavior of some
corrupt parties, then two players are identified that are in dispute and of which
at least one must be corrupt. Then, the failed segment is freshly re-executed,
but now in such a way that the two players in dispute will not be able to get into
dispute anymore, during this segment and during all the remaining segments.
This ensures that overall there can be at most n2 disputes (actually fewer, be-
cause two uncorrupt players will never get into a dispute), and therefore at most
n2 times a segment needs to be re-executed. This means that overall there are
at most 2n2 executions of a segment.

We will show that (if dM is small enough) any segment of size m = M/n2 can
be executed with bit communication complexity O

(
m(nφ+ κ) + n5κ) +O(nκ) ·

BC; it thus follows that the communication complexity of the overall scheme is
2n2 ·O

(
m(nφ+ κ) + n5κ

)
= O

(
M(nφ+ κ) + n7κ

)
bits plus O(n3κ) · BC, which

amounts to O(nφ+ κ) bits per multiplication gate for large enough circuits.
A dispute between two players Pi and Pj typically arises when player Pj

claims to have received message msg from Pi whereas Pi claims that he had
actually sent msg′ 6= msg to Pj . In order to ensure that two players Pi and
Pj in dispute will not get into a new dispute again, they will not communicate
anymore with each other. This is achieved by means of the following two means:

(1) If Pi is supposed to share a secret w and distribute the shares to the players,
then he chooses the sharing polynomial so that Pj ’s share wj vanishes, and
thus there is no need to communicate the share, Pj just takes wj = 0 as his
share. Using the terminology from [3], we call such a share that is enforced
to be 0 a Kudzu share (see also Section 2.5).

7 In this case one has to make sure that the inputs provided by the players belong to
the original base field; this can easily be taken care of by means of our techniques,
without increasing the asymptotic communication complexity.



(2) For other messages that Pi needs to communicate to Pj , he sends to Pj via
a relay: the first player Pr that is not in dispute with Pi and not with Pj .

In order to keep track of the disputes and the players that were caught
cheating, the players maintain two sets, Corr and Disp, which at the beginning
of the execution are both initialized to be empty. Whenever the players jointly
identify a player Pi to be corrupt, then Pi is added to Corr. Additionally, {Pi, Pj}
will be added to Disp for every j ∈ {1, . . . , n}. Whenever there is a dispute
between two players Pi and Pj , so that one of them must be corrupt but it
cannot be resolved which of the two, then {Pi, Pj} is added to Disp. Whenever
a player Pi is in dispute with more than t players, then he must be corrupt
and is added to Corr (and Disp is updated accordingly). We write Dispi for
the set of all players Pj with {Pi, Pj} ∈ Disp. Players that are in dispute (with
some other players) still take part in the protocol, but they do not communicate
anymore with each other. Players in Corr, i.e., players that have been identified
to be corrupt, are excluded from (the remainder of) the protocol execution.
We do not always make this explicit in the description of the protocol when
we quantify over all players but actually mean all players not in Corr. Also,
we do not make it always explicit but understand it as clear that whenever a
new dispute is found, the remainder of the execution of the current segment is
skipped, and the segment is freshly executed with the updated Disp (and Corr).

2.5 The Different Sharings

We will be using different variants and extensions of Shamir’s secret sharing
scheme [22]. We introduce here these different versions and the notation that
we will be using for the remainder of the paper. We consider the field F from
Section 2.3, and fix distinct elements x0, x1, . . . , xn ∈ F with x0 = 0. We also fix
an additional 2n2−n−1 elements xn+1, . . . , x2n2−1 with the property that every
pair xi, xj with i 6= j ∈ {0, . . . , 2n2−1} is disjoint; these additional elements will
be used later on. It may be convenient to view the different kinds of sharings we
introduce below as different data structures for representing an element w ∈ F
by data held among the players.

– A degree-t (Shamir) sharing of w ∈ F consists of n shares w1, . . . , wn ∈ F
of the following form: there exists a sharing polynomial f(X) ∈ F[X] of
degree at most t such that w = f(0) and wj = f(xj) for j ∈ {1, . . . , n}.
Furthermore, share wj is held by player Pj for j ∈ {1, . . . , n}. We denote
such a sharing as [w]. If a designated player Pd (e.g. the dealer) knows all
the shares, and thus also w, we indicate this by denoting the sharing as [w]d.

– A degree-2t (Shamir) sharing of w ∈ F is defined as the degree-t sharing
above, except that the degree of the sharing polynomial f is at most 2t. We
write 〈w〉 for such a sharing, and 〈w〉d for such a sharing when Pd knows all
the shares.

– A twisted degree-t sharing of w ∈ F with respect to player Pi, denoted as
dwci, consists of n − 1 shares w1, ..., wi−1, wi+1, ..., wn ∈ F, of the following



form: there exists a sharing polynomial f(X) ∈ F[X] of degree at most t
such that w = f(xi), f(0) = 0, and wj = f(xj) for j ∈ {1, . . . , n} \ {i}.8
Share wj for j ∈ {1, . . . , n} \ {i} is known to player Pj . We write dwcid for
such a sharing when Pd knows all the shares.

– A twisted degree-2t sharing of w ∈ F with respect to Pi, denoted as 〈w〉i
respectively 〈w〉id when Pd knows all the shares, is defined as the twisted
degree-t sharing above, except that the degree of the sharing polynomial f
is at most 2t.

– A two-level (degree-t/sum) sharing JwK consists of n degree-t Shamir sharings
[w(1)]1, ..., [w(n)]n with w =

∑
d w(d).9 The shares w1(d), . . . , wn(d) given

by [w(d)]d for d ∈ {1, . . . , n} then define a degree-t sharing [w] of w by means
of wj =

∑
d wj(d) for j ∈ {1, . . . , n} (see Figure 2, left). We point out that

the second level shares wi(d) can be understood as Shamir shares of the
sum-shares w(d) of w, as well as sum-shares of the Shamir shares wi of w.

– A two-level (degree-2t/sum) sharing 〈〈w〉〉 is defined similar to above as 〈〈w〉〉 =
(〈w(1)〉1, ..., 〈w(n)〉n) with w =

∑
d w(d).

The above list merely specifies the structures of the different sharings, but does
not address privacy. In our scheme, the different sharings will be prepared in such
a way that the standard privacy requirement holds: the shares of any t players
reveals no information on the shared secret. In the case of a twisted sharing dwci,
privacy is slightly more subtle. Because player Pi is given no share, but, on the
other hand, the sharing polynomial vanishes at 0, privacy will only hold in case
Pi is (or gets) corrupted, so that the t corrupted players miss one polynomial
evaluation; this will be good enough for our purpose.

We note that the players can, by means of local computations, perform cer-
tain computations on the sharings. For instance, by linearity of Shamir’s secret
sharing scheme, it follows that if the players locally add their shares of a degree-t
sharing [v] of v to their shares of a degree-t sharing [w] of w, then they obtain a
degree-t sharing [v+w] of v+w. We denote this computation as [v]+[w] = [v+w].
Also, multiplication with a known constant: c[w] = [cw], or adding a known con-
stant: [w] + d = [w+ d], can be performed by means of local computations. This
holds for all the different sharings discussed above: 〈v〉+c〈w〉+d = 〈v+cw+d〉,
JvK + cJwK + d = Jv + cw + dK etc. Furthermore, locally multiplying the shares
of two degree-t shared secrets results in a degree-2t sharing of the product:
[v] · [w] = 〈v · w〉. Finally, locally multiplying the shares [v] of an ordinarily
degree-t shared secret with the shares dwci of a twisted degree-t shared secret
results in a twisted degree-2t sharing of the product of Pi’s share vi of [v] and w:

8 Thus, instead of plugging the secret into the evaluation at 0 (i.e. into the constant
coefficient of f), we pug it into the evaluation at xi, and require f(0) to vanish and
give player Pi no share.

9 We point out that w(1), ..., w(n) are simply n elements in F, indexed by d = 1, . . . , n,
that add up to w, and they should not be understood as function evaluations. Our
convention is to write w(1), ..., w(n) as sum-shares of w, and w1, . . . , wn as Shamir
shares of w, and w1(d), . . . , wn(d) as Shamir shares of w(d), etc.



[v] · dwci = 〈vi · w〉i. This property of a twisted sharing is of crucial importance
to us; thus, we encourage the reader to verify this claim.

We point out that opening such a product of sharings, like 〈v ·w〉 = [v] · [w],
reveals more information on v and w than just their product. This will be of no
concern to us, because in our scheme, such sharings will only be opened in the
form of 〈u+ v · w〉 = 〈u〉+ [v] · [w], i.e., when masked with a random degree-2t
sharing, which ensures that no information on u, v, w is revealed beyond u+v ·w.

Borrowing the terminology from [3], we say that a sharing [s]d has Kudzu
shares, if the share sj of every player Pj that currently is in Dispd is set to sj = 0,
i.e., the sharing polynomial f(x) is such that f(xj) = 0 for every Pj ∈ Dispd.
The same terminology correspondingly applies to sharings 〈s〉d, dscid and 〈s〉id.
Furthermore, a two-level sharing JsK is said to have Kudzu shares if [s(d)]d
has Kudzu shares for all Pd 6∈ Corr, and [s(d)]d consist of all-0 shares for all
Pd ∈ Corr, and similarly for 〈〈s〉〉.

Finally, we would like to point out that due to the linearity, e sharings
[s1], . . . , [se] of secrets s1, . . . , se ∈ F can also be understood and treated as
a sharing [σ] of σ = (s1, . . . , se), viewed as an element in K and with shares
σi ∈ K, by means of a sharing polynomial f(X) ∈ K[X], but with the same
interpolation points x1, . . . , xn ∈ F ⊆ K.

2.6 Protocol Overview

The protocol consists of three phases: the preparation phase, the input phase,
and the computation phase. We briefly discuss (the goal of) these three phases
here. As discussed in Section 2.4, every phase will be performed in segments;
and whenever a segment fails, then a new dispute is found and added to Disp,
and the segment is re-executed.

Preparation Phase. In this phase, the following data structure is prepared.

Two-level shared multiplication triples: A list M of M correctly two-level
shared triples (JaK, JbK, JcK), where for every10 (JaK, JbK, JcK) ∈ M, the val-
ues a and b are uniformly distributed in F (and independent of each other
and of the other triples in M) and unknown to the adversary, and c = a · b.
We write ∪M for the list of JaK, JbK and JcK sharings contained in M, i.e.,
∪M =

⋃
M{JaK, JbK, JcK}, where the union is over all (JaK, JbK, JcK) ∈M

Local base sharings: The two-level sharings of the multiplication triples are
not fully independent. Instead, for every player Pd there exists a list S(d) of
L = O(M/n) so-called local base sharings [s(d)]d with s(d) ∈ F, such that
for every JwK ∈ ∪M, the sharing [w(d)]d (which is part of JwK) is a linear

10 We use set-notation for lists: for a list L = (`1, . . . , `m), the expression ` ∈ L is un-
derstood as `i for i ∈ {1, . . . ,m}. Also,

P
`∈L u`` should be understood as

Pm
i=1 ui`i.



combination (with known coefficients) of the local base sharings:11

[w(d)]d =
∑

s(d)∈S(d)

us(d)[s(d)]d + u◦.

Although there are dependencies among the second-level shares of different
JwK ∈ ∪M (which means we have to pay special attention when revealing
those, or the local base sharings), it will be the case that the first-level Shamir
sharings [w] are independent among all JwK ∈ ∪M.

For every Pd, the list S(d) will be divided into n3 blocks, each block con-
taining L/n3 sharings [s(d)]d from S(d). Each such block, we can write as
[σ(d)]d with σ(d) ∈ Kq, and understand it as a list of q = L/(n3e) sharings
[σ(d)]d of elements σ(d) ∈ K, where e = [K : F]. As such, S(d) can now be
understood as a list of n3 sharings [σ(d)]d.12

Authentication tags: For every player Pd, every block [σ(d)]d ∈ S(d), every
player Pi holding the shares σi(d) ∈ Kq of block [σ(d)]d, and every player
PV (acting as verifier), the following holds. PV holds a random long-term
authentication key µ ∈ Kq and a random one-time authentication key ν ∈ K,
and Pi holds the (one-time) authentication tag

τ = µ� σi(d) + ν ∈ K ,

where � denotes the standard inner product over K. We stress that ν and,
consequently, τ are fresh for every Pd, every block [σ(d)]d ∈ S(d), and every
Pi and PV , but µ is somewhat re-used: PV uses the same µ for every Pd (but
fresh µ’s for different Pi’s) and for n out of the n3 blocks [σ(d)]d ∈ S(d).13

This data structure is illustrated in Figure 2.
The purpose of the authentication tags (and keys) is to be able to identify an

incorrect share σi(d) claimed by a corrupt player Pi. Indeed, it is well known (and
goes back to Carter and Wegman [7]) that if the adversary has no information
on µ beyond knowing the tags τ for several σi(d) with fresh one-time keys ν,
then the probability for the adversary to produce σ′i(d) 6= σi(d) and τ ′ with
τ ′ = µ�σ′i(d)+ν is at most 1/|K| ≤ 2−2(κ+n). Informally, this means that with
the given data structure, a dishonest player Pi will not be able to lie about his
share σi(d) without being caught.

The use of authentication tags to (try to) commit players to their (sub)share
is not new. What distinguishes our approach from previous work is that here
11 As a consequence, even though every player implicitly holds in total 3Mn subshares

of the JwK ∈ ∪M, he only needs to explicitly store n · L = O(M) values. Thus, to
communicate all these subshares (for all the players), only O(Mn) elements in F
need to be communicated, i.e., a linear number per multiplication triple.

12 We silently assume here that the fraction L/(n3e) is an integer, and we will similarly
do so for a few other fractions later. We may always do so without loss of generality.

13 As a consequence, the total number of fresh one-time keys µ equals the total number
of σ(d)’s (over all d’s), and thus sharing them (which will be needed) does not
increase the overall asymptotic communication complexity.



w → w(1) w(2) · · · w(n)

⇓ ⇓ ⇓ · · · ⇓
w1 → w1(1) w1(2) · · · w1(n)

w2 → w2(1) w2(2) · · · w2(n)
...

...
...

...

wn → wn(1) wn(2) · · · w2(n)

w(d)

⇓
w1(d)

w2(d)
...

wn(d)

∈ span

8>>>>>>>>><>>>>>>>>>:

s(d)

⇓
s1(d)

s2(d)
...

sn(d)

9>>>>>>>>>=>>>>>>>>>;
τ = µ� σi(d) + ν

Fig. 2. For every multiplication triple (a, b, c) ∈ M, every w ∈ {a, b, c} is two-level
shared as JwK (left), and [w(d)]d is a linear combination of Pd’s local base sharings
[si(d)]d (center), and si(d) is authenticated within a batch σi(d) (right).

the tag τ will be computed in a multi-party fashion so that no one beyond the
verifier PV knows the corresponding key. This gives us the decisive advantage
over previous work.

Input Phase. For every player Pi, and for every input x ∈ F of that player
to the circuit, a fresh multiplication triple (JaK, JbK, JcK) is chosen from M, and
a is reconstructed towards Pi. Then Pi announces d = x − a, and the players
compute the sharing JxK = d+JaK. The used triple (JaK, JbK, JcK) is then removed
from M.

Essentially the only thing corrupt players can do to disrupt the computation
phase, is to provide incorrect shares when Pi is supposed to reconstruct some
shared a. However, because every [a(d)]d is a linear combination of the local base
sharings [s(d)]d, and because players are committed to their local base sharings
(block-wise) by means of the authentication tags, players that hand in incorrect
shares can be caught.

Computation Phase. The actual computation is done in a gate-by-gate fash-
ion. To start with, we say that the input values are computed. Then, inductively,
for every gate in the circuit whose input values have already been computed, the
corresponding output value of the gate is computed. This is done as follows. Let
JxK and JyK be the sharings of the input values to the gate. If the gate is an addi-
tion gate, then the output value is computed locally as JzK = Jx+yK = JxK+JyK.
If the gate is a multiplication gate, then the output value is computed by us-
ing Beavers technique [2] as follows. A fresh multiplication triple JaK, JbK, JcK
is selected and the differences Jx − aK = JxK − JaK and Jy − bK = JyK − JbK
are reconstructed. Then, the output value of the gate is computed locally as
JzK = Jx · yK = (x− a)(y− b) + (x− a)JbK + (y− b)JaK− JcK. In the end, once the
output values of the circuit have been computed, they are reconstructed.14

14 For simplicity we assume that all the players are supposed to learn all output values
of the circuit. It is straightforward to adjust our scheme so that different players
learn different output values.



Essentially the only thing corrupt players can do to disrupt the computation
phase, is to provide incorrect shares when the players (try to) reconstruct a
shared value JwK. Since the latter is a linear combination of sharings in ∪M so
that every [w(d)]d is a linear combination of the local base sharings [s(d)]d, and
because players are committed to their local base sharings (block-wise) by the
authentication tags, players that hand in incorrect shares can be caught.

2.7 Two New Essential Ingredients

We present here the two main new components that enable our improved com-
munication complexity.

Batch-wise Multiplication Verification. Assume we have two sharings [a]
and [b] (over F), and the players have computed a sharing [c], which is supposed
to be c = a · b, using an optimistic multiplication protocol (i.e., one that assumes
that players behave). And now the players want to verify that indeed c = a · b,
without revealing anything beyond about a, b, c. The standard way of doing so
(see e.g. [11] or [3]) has a failure probability of 1/|F|, which is too large for
us, or when performed over the bigger field K, has a sufficiently small failure
probability of 1/|K|, but requires to share an element from K for every triple to
be verified. This means we get a communication complexity of at least O(nκ)
bits per multiplication gate, whereas we want O(nφ+ κ).

We achieve the latter by verifying c = a · b batch-wise. This is done by
means of the following method. Let ([a1], [b1], [c1]), . . . , ([aN ], [bN ], [cN ]) be N =
n2 multiplication triples that need to be verified. Consider the degree-(N − 1)
polynomials f and g with f(xk) = ak and g(xk) = bk for all k ∈ {1, . . . , N}. The
players can locally compute [ak] and [bk] with f(xk) = ak and g(xk) = bk for all
k ∈ {N + 1, . . . , 2N − 1}. Furthermore, by using the optimistic multiplication
protocol, we let them compute [cN+1], . . . , [c2N−1] where ck is supposed to be
ak · bk. Let h be the degree-(2` − 2) polynomial with h(xk) = ck for all k ∈
{1, . . . , 2N − 1}. It now holds that all the multiplication triples are correct —
i.e., that ck = ak · bk for all k ∈ {1, . . . , 2N − 1} — if and only if h = f · g as
polynomials. In order to test if h = f · g or not, the players can simply choose
a random challenge σ ∈ K and see if h(σ) = f(σ) · g(σ) or not. For the latter,
the players locally compute their shares of [f(σ)], [g(σ)] and [h(σ)] — each is a
linear combination of the shares of f, g, h that the player holds — and apply the
“expensive” standard multiplication verification to [f(σ)], [g(σ)] and [h(σ)].

Multiparty Computation of the Tags. As mentioned before, the tags τ
should be computed in a multi-party fashion, without blowing up the asymptotic
communication complexity. To simplify the exposition here, we assume for the
moment that each tag τ is computed as τ = µ · σi(d) + ν for µ ∈ K, and where
σi(d) ∈ K is the i-th share of [σ(d)]. A first step in a multi-party computation
usually is to share the inputs; here: µ, σi(d) and ν. However, this blows up the
communication complexity by a factor n, which we cannot afford. Note that
sharing µ is actually ok, since the µ’s are (partly) re-used, and thus we can also



re-use their sharings. Also, sharing ν is ok, since in the actual authentication
scheme we are using (not the simplified version we are discussing here), there
is only one ν for many σi(d)’s. What is problematic, however, is the sharing of
σi(d). And this is where our second new method comes into play. We make use
of the fact that σi(d) is not an arbitrary input to the multi-party computation,
but that it is actually a share of a shared secret σ(d). Due to the symmetry of
Shamir’s secret sharing scheme, we may then view σi(d) as the secret and the
remaining shares σj(d) as a sharing of σi(d). Indeed, any t+1 of the shares σj(d)
can be used to recover σi(d). Thus, in that sense, σi(d) is already shared, and
there is no need to share it once more.

Using this idea, the players can compute τ in a multi-party way as follows.15

Player PV , holding µ and ν, shares µ as a twisted degree-t sharing dµciV , and
ν as a twisted degree-2t sharing 〈ν〉iV . The players now locally compute dµciV ·
[σ(d)] + 〈ν〉iV , which results in a twisted degree-2t sharing 〈µ · σi(d) + ν〉i of
τ = µ · σi(d) + ν, as explained at the end of Section 2.5. These shares can
now be sent to Pi for reconstruction (and correctness of τ will be verified by a
cut-and-choose technique).

We point out that by corrupting t players Pj that do not include PV or Pi, the
adversary can learn µ from the (twisted) shares of the players in Pj . However, it
that case, the adversary cannot anymore corrupt player Pi, and thus knowledge
of µ is of no use. What is important is that the adversary does not learn µ in
case it corrupts Pi, and this we will show to hold.

Adapting the above to τ = µ � σi(d) + ν, and re-using µ and its twisted
sharing, gives the players the means to compute their tags with a communication
complexity that is negligible for large enough circuits.

We now give the detailed protocol for multiparty computing the tag τ . We
assume µ to be shared (component-wise) as dµ1ciV , . . . , dµqciV . The one-time key
ν and the tag τ are chosen/computed by means of the following subprotocol,
unless Pi is in dispute with Pd or with PV . In the former case, his shares are
fixed to 0 anyway, and in the latter, Pi and PV accuse each other anyway. For
simpler notation, we write [σ]d instead of [σ(d)]d, etc.

Protocol TagCompV,i,d

Player PV chooses a random ν ∈ K and shares it (non-verifiably) as 〈ν〉iV with Kudzu
shares. Similarly, player Pd shares o = 0 (i.e., zero) over K as 〈o〉iV with Kudzu shares.
The players locally compute 〈τ〉i =

Pq
k=1[σk]ddµkciV +〈ν〉iV +〈o〉id and send their shares

to Pi. If Pj ∈ Dispi then Pj sends his share of 〈τ〉i to Pi via a relay, i.e., via the first
player that is not in dispute with both Pi and Pj ; for any player Pj ∈ Corr, Pi takes
0 as this player’s share. Pi can now compute the unique degree-2t polynomial that fits
these shares and obtains τ as the evaluation at xi.

It is easy to verify that if all players follow the protocol, then Pi obtains
τ = µ�σi+ν (where σi is determined by [σ]d and ν by 〈ν〉iV ). The correctness

15 The actual scheme will be slightly more complicated due to some issue that we ignore
right now for simplicity.



of the computed tags can be verified by a simple cut-and-choose technique; for
the details, we refer to the full version [6].

The two crucial observations regarding the efficiency of TagCompV,i,d are that
the twisted sharings dµkciV can be re-used and thus only need to be prepared
once and for all, and that the communication complexity of TagCompV,i,d is in-
dependent of q, i.e., of the number of shares that are authenticated in one go. As
such, the communication complexity of the runs of TagCompV,i,d is asymptoti-
cally negligible; hence, we can authenticate the shares “for free”.

Proposition 1 (Privacy of the keys). If PV remains honest and the adver-
sary corrupts at most t− 1 players different to Pi, then the adversary learns no
information on µ = (µ1, . . . , µq) and ν, beyond τ =

∑
k σ

k
i µ

k+ν (for the correct
shares σki , defined by the shares of the uncorrupt players).

By the security of the underlying authentication scheme, this guarantees that
if at some later point player Pi lies about his shares, then he will be caught by PV
except with probability 1/|K|. Interestingly, if the adversary corrupts t players
not including Pi (nor PV ) then he actually learns player PV ’s long-term key µ
(that PV uses to verify Pi’s shares); however, in this case, Pi is guaranteed to
remain honest and provide correct shares. So, this does not help the adversary.

Proof. It is sufficient to prove the claim in case of a corrupt dealer Pd and a
corrupt player Pi, and thus we may assume that the adversary learns the shares
of 〈τ〉i =

∑
k[σk]dµkciV + 〈ν〉iV , i.e., we may assume that all the shares of o are 0.

We understand [σk] as the correct sharing of some σk, determined by the shares
of the uncorrupt players. As such, the data structure 〈τ〉i =

∑
k[σk]dµkciV +

〈ν〉iV , and in particular τ , is well defined, even though the corrupt players may
perform additional computations on their shares of µk and ν. First note that (by
assumption) there are at most t−1 corrupt players Pj that hold a (twisted) share
of µk; thus, the dµkciV ’s give away no information on the µk’s to the adversary.
However, this is not sufficient to argue privacy, since the adversary also learns
all shares of 〈τ〉i =

∑
k[σk]dµkciV + 〈ν〉iV , which potentially may leak additional

information on the µk’s and on ν (beyond τ). To argue privacy, consider a twisted
sharing dδ1ciV of an arbitrary δ1 ∈ K, but with the additional property that
the shares of all corrupt players are 0. Thus, the adversary cannot distinguish
the sharing dµ1ciV from dµ̃1ciV = dµ1 + δ1ciV = dµ1ciV + dδ1ciV . Furthermore,
the adversary cannot distinguish the sharing 〈ν〉iV from 〈ν̃〉iV = 〈ν − σ1δ1〉iV =
〈ν〉iV − [σ1]ddδ1ciV . But now, since

[σ1]ddµ̃1ciV +
∑
k>1

[σk]ddµkciV + 〈ν̃〉iV

= [σ1]ddµ1c+ [σ1]ddδ1ciV +
∑
k>1

[σk]ddµkciV + 〈ν〉iV − [σ1]ddδ1ciV = 〈τ〉i

it holds that the adversary has no information on whether µ1 and ν had been
shared (even when given the remaining µk’s), or µ̃1 and ν̃. This means that
every pair (µ1, ν) with

∑
k σ

k
i µ

k + ν = τ is equally likely for the adversary, and
similarly one can argue for the other µk’s. ut



Proposition 2 (Privacy of the shares). If Pd remains honest, then the ad-
versary learns no information on σ = (σ1, . . . , σq).

The proof of Proposition 2 is similar to that of Proposition 1; for the details, we
refer to [6].

2.8 A High Level Sketch of Our Construction

For the preparation phase, every player, acting as dealer Pd, produces many
sharings [s(d)]d. Correctness is verified batch-wise by means of a standard cut-
and-choose technique. Every list of sharings [s(1)]1, . . . , [s(n)]n then gives rise
to t + 1 two-level sharings JaK by setting a =

∑n
d=1 s(d)xdj for t + 1 different

choices of j. This way, preparing one JaK ∈ ∪M (and the same for JbK ∈ ∪M)
amounts to preparing one [s(d)]d (up to constant factors), which has linear amor-
tized complexity (meaning: a linear number of elements in F). This technique
is borrowed from [16]. Then, JcK, where c is supposed to be a · b, is computed
by means of the passively-secure multiplication protocol due to [16], which has
linear communication complexity. In order to verify the correctness of the c’s,
we use the batch-wise multiplication verification described in Section 2.7. Using
batches of size N = n2, verifying the correctness of N multiplication triples
essentially boils down to reconstructing a constant number of sharings over the
big field K, which consists of every player sending his share (in K) to every other
player. Per multiplication triple, this then amounts to O(κ) bits. Using batches
of size N = n2+const reduces this to O(κ/nconst).

It remains to compute the authentication tags. As explained in Section 2.7,
for a tag τ = µ · σi(d) + ν (where σi(d) consists of many si(d)’s), this can
be done by computing 〈τ〉i =

∑
k[σk(d)]ddµkciV + 〈ν〉iV + 〈o〉id. Since the µ’s

(and their twisted shares) are re-used to some extent, and since the σ(d)’s are
already shared, the communication complexity is dominated by communicating
the shares 〈ν〉iV , 〈o〉id and 〈τ〉i; this consists of a linear number of elements in K
per (large) block σi(d) (and per PV and Pi), making the overall communication
complexity per s(d), and thus per multiplication triple, negligible. The correct-
ness of the tags is verified by a standard cut-and-choose technique. The details
are worked out in the full paper [6].

Once the data structure as described in Section 2.6 is prepared, we are in
good shape. Essentially, the only thing that can cause problems during the input
and the computation phase is that corrupt players hand in incorrect shares; but
this will be detected (since the shares then do not lie on a degree-t polynomial),
and the corrupt players will be found with the help of the authentication tags
(on the local base sharings). The details are explained in [6].

2.9 The Full Protocol

Taking care of all the details when putting the above techniques together is rather
cumbersome, and the resulting detailed protocol description and its analysis is
quite complex and lengthy. Therefore, due to the space limitation, it is given in
the full version [6].



3 Conclusion

We showed that MPC with unconditional security against t < n/2 corrupt play-
ers is possible with amortized asymptotic near-linear communication complexity
O(n log n) bits per multiplication gate for binary circuits. For circuits over a
bigger field F, the log n term is replaced by max{log n, log |F|}. This matches the
communication complexity of the best scheme in the much simpler honest-but-
curious setting. Room for improvement exists in the terms of the communication
complexity that are circuit-size independent, for instance in the O(n7κ) term.
Improving this term permits the amortization to step in for smaller circuits.
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