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Abstract. Group signatures are a central cryptographic primitive where
users can anonymously and accountably sign messages in the name of a
group they belong to. Several efficient constructions with security proofs
in the standard model (i.e., without the random oracle idealization) ap-
peared in the recent years. However, like standard PKIs, group signa-
tures need an efficient revocation system to be practical. Despite years
of research, membership revocation remains a non-trivial problem: many
existing solutions do not scale well due to either high overhead or con-
straining operational requirements (like the need for all users to update
their keys after each revocation). Only recently, Libert, Peters and Yung
(Eurocrypt’12) suggested a new scalable revocation method, based on the
Naor-Naor-Lotspiech (NNL) broadcast encryption framework, that inter-
acts nicely with techniques for building group signatures in the standard
model. While promising, their mechanism introduces important storage
requirements at group members. Namely, membership certificates, which
used to have constant size in existing standard model constructions, now
have polylog size in the maximal cardinality of the group (NNL, after all,
is a tree-based technique and such dependency is naturally expected). In
this paper we show how to obtain private keys of constant size. To this
end, we introduce a new technique to leverage the NNL subset cover
framework in the context of group signatures but, perhaps surprisingly,
without logarithmic relationship between the size of private keys and
the group cardinality. Namely, we provide a way for users to efficiently
prove their membership of one of the generic subsets in the NNL subset
cover framework. This technique makes our revocable group signatures
competitive with ordinary group signatures (i.e., without revocation) in
the standard model. Moreover, unrevoked members (as in PKIs) still do
not need to update their keys at each revocation.

1 Introduction

Group signatures, as suggested by Chaum and van Heyst [29], allow members of
a group managed by some authority to sign messages in the name of the group
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while hiding their identity. At the same time, a tracing authority can identify
the signer if necessary. A crucial problem is the revocation of the anonymous
signing capability of users who leave (or are banned from) the group.

1.1 Related Work

Ordinary group signatures. The first efficient and provably coalition-resistant
group signature dates back to the work of Ateniese, Camenisch, Joye and Tsudik
[6]. By the time their scheme appeared, the security of the primitive was not ap-
propriately formalized yet. Suitable security definitions remained lacking until
the work of Bellare, Micciancio and Warinschi [8] (BMW) who captured all the
requirements of group signatures in three properties. In (a variant of) this model,
Boneh, Boyen and Shacham [14] obtained very short signatures using the ran-
dom oracle methodology [9].

The BMW model assumes static groups where no new member can be in-
troduced after the setup phase. The setting of dynamically changing groups was
analyzed later on by Bellare-Shi-Zhang [10] and, independently, by Kiayias and
Yung [40]. In the models of [10, 40], constructions featuring relatively short sig-
natures were proposed in [49, 30]. A construction in the standard model was also
suggested by Ateniese et al. [5] under interactive assumptions. At the same time,
Boyen and Waters gave a different solution [18] without random oracles using
more standard assumptions. By improving upon their own scheme, they man-
aged [19] to obtain signatures of constant size. Their constructions [18, 19] were
both presented in the BMW model [8] and provide anonymity in the absence of
signature opening oracle. In the dynamic model [10], Groth [34] showed a system
in the standard model with O(1)-size signatures but, due to very large hidden
constants, his scheme was mostly a feasibility result. Later on, Groth came up
with an efficient realization [35] (and signatures of about 50 group elements)
with the strongest anonymity level.

Revocation. As in ordinary PKIs, where certificate revocation is a critical
issue, membership revocation is a complex problem that has been extensively
studied [20, 7, 26, 17] in the last decade. Generating a new group public key and
distributing new signing keys to unrevoked members is a simple solution. In
large groups, it is impractical to update the public key and provide members
with new keys after they joined the group. Bresson and Stern suggested a dif-
ferent approach [20] consisting of having the signer prove that his membership
certificate does not belong to a list of revoked certificates. Unfortunately, the
length of signatures grows with the number of revoked members. In forward-
secure group signatures, Song [50] chose a different way to handle revocation
but verification takes linear time in the number of excluded users.

Camenisch and Lysyanskaya [26] proposed an elegant method using accumu-
lators1 [11]. Their technique, also used in [52, 24], allows revoking members while

1 An accumulator is a kind of “hash” function mapping a set of values to a short,
constant-size string while allowing to efficiently prove that a specific value was ac-
cumulated.
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keeping O(1) costs for signing and verifying. The downside of this approach is
its history-dependence: it requires users to follow the dynamic evolution of the
group and keep track of all changes: each revocation incurs a modification of the
accumulator value, so that unrevoked users have to upgrade their membership
certificate before signing new messages. In the worst case, this may require up
to O(r) exponentiations, if r is the number of revoked users.

Another drawback of accumulator-based approaches is their limited applica-
bility in the standard model. Indeed, for compatibility reasons with the central
tool of Groth-Sahai proofs, pairing-based accumulators are the only suitable
candidates. However, in known pairing-based accumulators [48, 24], public keys
have linear size in the maximal number of accumulations, which would result
in linear-size group public keys in immediate implementations. To address this
concern in delegatable anonymous credentials, Acar and Nguyen [4] chose to sac-
rifice the constant size of proofs of non-membership but, in group signatures, this
would prevent signatures from having constant size. Boneh, Boyen and Shacham
[14] managed to avoid linear dependencies in a revocation mechanism along the
lines of [26]. Unfortunately, their technique does not seem to readily interact2

with Groth-Sahai proofs [36] so as to work in the standard model.
In [21], Brickell considered the notion of verifier-local revocation group sig-

natures, for which formal definitions were given by Boneh and Shacham [17]
and other extensions were proposed in [46, 53, 42]. In this approach, revocation
messages are only sent to verifiers and the signing algorithm is completely in-
dependent of the number of revocations. Verifiers take as additional input a
revocation list (RL), maintained by the group manager, and have to perform a
revocation test for each RL entry in order to be convinced that signatures were
not issued by a revoked member (a similar revocation mechanism is used in [22]).
The verification cost is thus inevitably linear in the number of expelled users.

In 2009, Nakanishi, Fuji, Hira and Funabiki [45] came up with a revocable
group signature with constant complexities for signing/verifying. At the same
time, group members never have to update their keys. On the other hand, their
proposal suffers from linear-size group public keys in the maximal number N of
users, although a variant reduces the group public key size to O(N1/2).

In anonymous credentials, Tsang et al. [51] showed how to blacklist users
without compromising their anonymity or involving a trusted third party. Their
schemes either rely on accumulators (which may be problematic in our setting)
or have linear proving complexity in the number of revocations. Camenisch,
Kohlweiss and Soriente [25] dealt with revocations in anonymous credentials by
periodically updating users credentials in which a specific attribute indicates a
validity period. In group signatures, their technique would place an important
burden on the group manager who would have to generate updates for each un-

2 In [14], signing keys consist of pairs (g1/(ω+s), s) ∈ G×Zp, where ω ∈ Zp is the secret
key of the group manager, and the revocation method relies on the availability of the
exponent s ∈ Zp. In the standard model, the Groth-Sahai techniques would require
to turn the membership certificates into triples (g1/(ω+s), gs, us), for some u ∈ G (as
in [19]), which is not compatible with the revocation mechanism.
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revoked individual credential.
While, for various reasons, none of the above constructions conveniently sup-

ports large groups, a highly scalable revocation mechanism borrowed from the
literature on broadcast encryption was recently described by Libert, Peters and
Yung [44] (LPY). Using the Subset Cover framework of Naor, Naor and Lotspiech
[47] (NNL), they described a history-independent revocable group signature in
the standard model with constant verification time and at most polylogarithmic
complexity in other parameters. The technique of [44] blends well with structure-
preserving signatures [1, 2] and the Groth-Sahai proofs [36]. The best tradeoff of
[44] builds on the Subset Difference (SD) method [47] in its public-key variant
due to Dodis and Fazio [31]. It features constant signature size and verifica-
tion time, O(logN)-size group public keys, revocation lists of size O(r) (as in
standard PKIs and group signatures with verifier-local revocation) and member-
ship certificates of size O(log3N). This can be reduced to O(logN) using the
Complete Subtree method [47] but revocation lists are then inflated by a factor
of O(logN/r). Although the Layered Subset Difference method [37] allows for
noticeable improvements, the constructions of [44] suffer from relatively large
membership certificates. However, some logarithmic dependency on the group
size is expected when basing revocation on a tree-like NNL methodology.

1.2 Our Contributions

To date, in the only scalable revocable group signatures with constant verification
time in the standard model [44], group members have to store a polylogarithmic
number of group elements. In many applications, however, this can rapidly be-
come unwieldy even for moderately large groups: for example, using the Subset
Difference method with N = 1000 ≈ 210, users may have to privately store thou-
sands of group elements. In order to be competitive with other group signatures
in the standard model such as [35] and still be able to revoke members while
keeping them “stateless”, it is highly desirable to reduce this complexity.

In this paper, we start with the approach of [44] so as to instantiate the
Subset Difference method, but obtain private keys of constant size without de-
grading other performance criteria. This may sound somewhat surprising since,
in the SD method, (poly)logarithmic complexities inherently seem inevitable in
several metrics. Indeed, in the context of broadcast encryption [47], it requires
private keys of size O(log2N) (and even O(log3N) in the public key setting [31]
if the result of Boneh-Boyen-Goh [13] is used). Here, we reduce this overhead to
a constant while the only dependency on N is a O(logN)-size group public key.

The key idea is as follows. As in the NNL framework, group members are
assigned to a leaf of a binary tree and each unrevoked member should belong
to exactly one subset in the cover of authorized leafs determined by the group
manager. Instead of relying on hierarchical identity-based encryption [15, 38, 33]
as in the public-key variant [31] of NNL, we use a novel way for users to non-
interactively prove their membership of some generic subset of the SD method
using a proof of constant size.
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To construct these “compact anonymous membership proofs”, we use con-
cise vector commitment schemes [43, 27], where each commitment can be opened
w.r.t. individual coordinates in a space-efficient manner (namely, the size of a
coordinate-wise opening does not depend on the length of the vector). These
vector commitments interact nicely with the specific shape of subsets – as dif-
ferences between two subtrees – in the SD method. Using them, we compactly
encode as a vector the path from the user’s leaf to the root. To provide evidence
of their inclusion in one of the SD subsets, group members successively prove
the equality and the inequality between two coordinates of their vector (i.e., two
nodes of the path from their leaf to the root) and specific node labels indicated
by an appropriate entry of the revocation list. This is where the position-wise
openability of concise commitments is very handy. Of course, for anonymity
purposes, the relevant entry of the revocation list only appears in committed
form in the group signature. In order to prove that he is using a legal entry of
the revocation list, the user generates a set membership proof [23] and proves
knowledge of a signature from the group manager on the committed RL entry.

Our technique allows making the most of the LPY approach [44] by reducing
the size of membership certificates to a small constant: at the cost of lengthening
signatures by a factor of only 1.5, we obtain membership certificates consisting of
only 9 group elements and a small integer. For N = 1000, users’ private keys are
thus compressed by a multiplicative factor of several hundreds and this can only
become more dramatic for larger groups. At the same time, our main scheme
retains all the useful properties of [44]: like the construction of Nakanishi et al.
[45], it does not require users to update their membership certificates at any
time but, unlike [45], our group public key size is O(logN). Like the SD-based
construction of [44], our system uses revocation lists of size O(r), which is on par
with Certificate Revocation Lists (CRLs) in PKIs. It is worth noting that RLs
are not part of the group public key: verifiers only need to know the number of
the latest revocation epoch and should not bother to read RLs entirely.

Eventually, our novel approach yields revocable group signatures that become
competitive with the regular CRL approach in PKIs: signature generation and
verification have constant cost, signatures and membership certificates being of
O(1)-size while revocation lists have size O(r). A detailed efficiency comparison
with previous approaches is given in the full version of the paper. Finally, it is
conceivable that our improved revocation technique can find applications beyond
group signatures.

2 Background

2.1 Bilinear Maps and Complexity Assumptions

We use bilinear maps e : G × G → GT over groups of prime order p where
e(g, h) 6= 1GT if and only if g, h 6= 1G. In these groups, we rely on hardness
assumptions that are all non-interactive.

Definition 1 ([14]). The Decision Linear Problem (DLIN) in G, is to
distinguish the distributions (ga, gb, gac, gbd, gc+d) and (ga, gb, gac, gbd, gz), with
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a, b, c, d R← Z∗p, z R← Z∗p. The Decision Linear Assumption is the intractability
of DLIN for any PPT distinguisher D.

Definition 2 ([12]). The q-Strong Diffie-Hellman problem (q-SDH) in
G is, given (g, ga, . . . , g(a

q)), for some g R← G and a R← Zp, to find a pair
(g1/(a+s), s) ∈ G× Zp.

We use a signature scheme proposed by Abe et al. [1], the security of which relies
on this assumption.

Definition 3 ([1]). In a group G, the q-Simultaneous Flexible Pairing
Problem (q-SFP) is, given

(
gz, hz, gr, hr, a, ã, b, b̃ ∈ G

)
and q ∈ poly(λ)

tuples (zj , rj , sj , tj , uj , vj , wj) ∈ G7 such that

e(a, ã) = e(gz, zj) · e(gr, rj) · e(sj , tj), (1)

e(b, b̃) = e(hz, zj) · e(hr, uj) · e(vj , wj),

to find a new tuple (z?, r?, s?, t?, u?, v?, w?) ∈ G7 satisfying relations (1) and
such that z? 6∈ {1G, z1, . . . , zq}.

The paper will appeal to an assumption that was implicitly introduced in [16].

Definition 4 ([16]). Let G be a group of prime order p. The `-Diffie-Hellman
Exponent (`-DHE) problem is, given elements (g, g1, . . . , g`, g`+2, . . . , g2`) ∈
G2` such that gi = g(α

i) for each i and where α R← Z∗p, to compute the missing

element g`+1 = g(α
`+1).

We actually need a stronger variant, used in [39], of the `-DHE assumption.

Definition 5. In a group G of prime order p, the Flexible `-Diffie-Hellman
Exponent (`-FlexDHE) problem is, given (g, g1, . . . , g`, g`+2, . . . , g2`) ∈ G2`

such that gi = g(α
i) for each i and where α R← Z∗p, to compute a non-trivial

triple (gµ, gµ`+1, g
µ
2`) ∈ (G\{1G})3, for some µ ∈ Z∗p and where g`+1 = g(α

`+1).

The reason why we need to rely on the above assumption instead of the weaker
`-DHE assumption is that, in our proofs, the exponent µ ∈ Zp will appear inside
Groth-Sahai commitments [36], from which only values of the form (gµ, gµ`+1)
will be efficiently extractable. The additional element gµ2` will thus prevent the
adversary from simply choosing µ = α or µ = α−1.

A proof of the generic hardness of the `-FlexDHE problem is given in [39].
We note that, while the strength of the assumption grows with `, ` is only
logarithmic in the maximal number of users here.

2.2 Groth-Sahai Proof Systems

The fundamental Groth-Sahai (GS) techniques [36] can be based on the DLIN
assumption, where they use prime order groups and a common reference string
containing three vectors ~f1, ~f2, ~f3 ∈ G3, where ~f1 = (f1, 1, g), ~f2 = (1, f2, g) for
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some f1, f2 ∈ G. To commit to X ∈ G, one chooses r, s, t R← Z∗p and computes

~C = (1, 1, X) · ~f1
r
· ~f2

s
· ~f3

t
. In the soundness setting, we have ~f3 = ~f1

ξ1 · ~f2
ξ2

where ξ1, ξ2 ∈ Z∗p. Commitments ~C = (fr+ξ1t1 , fs+ξ2t2 , X · gr+s+t(ξ1+ξ2)) are then
extractable using β1 = logg(f1), β2 = logg(f2). In the witness indistinguishabil-

ity (WI) setting, vectors ~f1, ~f2, ~f3 are linearly independent and ~C is a perfectly
hiding commitment. Under the DLIN assumption, the two kinds of CRS are
indistinguishable.

To commit to an exponent x ∈ Zp, one computes ~C = ~ϕx · ~f1
r
· ~f2

s
, where

r, s R← Z∗p, using a CRS consisting of vectors ~ϕ, ~f1, ~f2. In the perfect soundness

setting, ~ϕ, ~f1, ~f2 are linearly independent whereas, in the WI setting, choosing

~ϕ = ~f1
ξ1 · ~f2

ξ2
gives a perfectly hiding commitment.

To prove that committed variables satisfy a set of relations, the prover com-
putes one commitment per variable and one proof element per relation. Such
non-interactive witness indistinguishable (NIWI) proofs are available for pairing-
product equations, which are relations of the type

n∏
i=1

e(Ai,Xi) ·
n∏
i=1

·
n∏
j=1

e(Xi,Xj)aij = tT , (2)

for variables X1, . . . ,Xn ∈ G and constants tT ∈ GT , A1, . . . ,An ∈ G, aij ∈ Zp,
for i, j ∈ {1, . . . , n}. Efficient NIWI proofs also exist for multi-exponentiation
equations, which are of the form

m∏
i=1

Ayii ·
n∏
j=1

X bjj ·
m∏
i=1

·
n∏
j=1

X yiγijj = T, (3)

for variables X1, . . . ,Xn ∈ G, y1, . . . , ym ∈ Zp and constants T,A1, . . . ,Am ∈ G,
b1, . . . , bn ∈ Zp and γij ∈ G, for i ∈ {1, . . . ,m}, j ∈ {1, . . . , n}.

In pairing-product equations, proofs for quadratic equations consist of 9
group elements whereas linear equations (i.e., where aij = 0 for all i, j in equa-
tion (2)) only demand 3 group elements each. Linear multi-exponentiation equa-
tions of the type

∏m
i=1A

yi
i = T demand 2 group elements.

Multi-exponentiation equations admit zero-knowledge (NIZK) proofs at no
additional cost. On a simulated CRS (prepared for the WI setting), a trapdoor
allows simulating proofs without using the witnesses.

2.3 Structure-Preserving Signatures

Many anonymity-related protocols (e.g., [28, 1, 2, 32, 3]) require to sign elements
of bilinear groups while maintaining the feasibility of conveniently proving that
a committed signature is valid for a committed message.

Abe, Haralambiev and Ohkubo [1, 2] (AHO) showed how to sign n group
elements using signatures consisting of O(1) group elements. In the context of
symmetric pairings, the description hereafter assumes public parameters pp =
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(
(G,GT ), g

)
consisting of groups (G,GT ) of order p > 2λ, where λ ∈ N is a

security parameter, with a bilinear map e : G×G→ GT and a generator g ∈ G.

Keygen(pp, n): given an upper bound n ∈ N on the number of group elements
per signed message, choose generators Gr, Hr

R← G. Pick γz, δz
R← Zp and

γi, δi
R← Zp, for i = 1 to n. Then, compute Gz = Gγzr , Hz = Hδz

r and

Gi = Gγir , Hi = Hδi
r for each i ∈ {1, . . . , n}. Finally, choose αa, αb

R← Zp and
define A = e(Gr, g

αa) and B = e(Hr, g
αb). The public key is defined to be

pk =
(
Gr, Hr, Gz, Hz, {Gi, Hi}ni=1, A, B

)
∈ G2n+4 ×G2

T

while the private key is sk =
(
αa, αb, γz, δz, {γi, δi}ni=1

)
.

Sign(sk, (M1, . . . ,Mn)): to sign a vector (M1, . . . ,Mn) ∈ Gn using the private
key sk = (αa, αb, γz, δz, {γi, δi}ni=1), choose ζ, ρa, ρb, ωa, ωb

R← Zp and com-
pute θ1 = gζ as well as

θ2 = gρa−γzζ ·
n∏
i=1

M−γii , θ3 = Gωar , θ4 = g(αa−ρa)/ωa ,

θ5 = gρb−δzζ ·
n∏
i=1

M−δii , θ6 = Hωb
r , θ7 = g(αb−ρb)/ωb ,

The signature consists of σ = (θ1, θ2, θ3, θ4, θ5, θ6, θ7).

Verify(pk, σ, (M1, . . . ,Mn)): parse σ as (θ1, θ2, θ3, θ4, θ5, θ6, θ7) ∈ G7 and return
1 iff these equalities hold:

A = e(Gz, θ1) · e(Gr, θ2) · e(θ3, θ4) ·
n∏
i=1

e(Gi,Mi),

B = e(Hz, θ1) · e(Hr, θ5) · e(θ6, θ7) ·
n∏
i=1

e(Hi,Mi).

The scheme was proved [1, 2] existentially unforgeable under chosen-message
attacks under the q-SFP assumption, where q is the number of signing queries.

Signatures can be publicly re-randomized to obtain a different signature
{θ′i}7i=1 ← ReRand(pk, σ) on the same message (M1, . . . ,Mn). After randomiza-
tion, we have θ′1 = θ1 while {θ′i}7i=2 are uniformly distributed among the values
such that e(Gr, θ

′
2) · e(θ′3, θ′4) = e(Gr, θ2) · e(θ3, θ4) and e(Hr, θ

′
5) · e(θ′6, θ′7) =

e(Hr, θ5) · e(θ6, θ7). Moreover, {θ′i}i∈{3,4,6,7} are statistically independent of the
message and other signature components. This implies that, in privacy-preserving
protocols, re-randomized {θ′i}i∈{3,4,6,7} can be safely given in the clear as long
as (M1, . . . ,Mn) and {θ′i}i∈{1,2,5} are given in committed form.

2.4 Vector Commitment Schemes

We use concise vector commitment schemes, where commitments can be opened
with a short de-commitment string for each individual coordinate. Such com-
mitments based on ideas from [16, 24] were described by Libert and Yung [43]
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and, under weaker assumptions, by Catalano and Fiore [27]. In [43], the com-

mitment key is ck = (g, g1, . . . , g`, g`+2, . . . , g2`) ∈ G2`, where gi = g(α
i) for each

i. The trapdoor of the commitment is g`+1, which does not appear in ck. To
commit to a vector ~m = (m1, . . . ,m`), the committer picks r R← Zp and com-

putes C = gr ·
∏`
κ=1 g

mκ
`+1−κ. A single group element Wi = gri ·

∏`
κ=1,κ 6=i g

mκ
`+1−κ+i

provides evidence that mi is the i-th component of ~m as it satisfies the relation
e(gi, C) = e(g,Wi) · e(g1, g`)mi . The infeasibility of opening a commitment to
two distinct messages for some coordinate i relies on the `-DHE assumption.
For our purposes, we only rely on the position-wise binding property of vector
commitments and do not need them to be hiding. The randomizer r will thus
be removed from the expression of C.

2.5 The NNL Framework for Broadcast Encryption

The important Subset Cover framework [47] considers secret-key broadcast en-
cryption schemes with N = 2` registered receivers. Each receiver is associated
with a leaf of a complete binary tree T of height ` where each node is assigned
a secret key. If N denotes the universe of users and R ⊂ N is the set of revoked
receivers, the framework’s idea is to partition the set of non-revoked users into
m disjoint subsets S1, . . . , Sm such that N\R = S1 ∪ . . . ∪ Sm. Depending on
the way to divide N\R, different tradeoffs are possible.

The Subset Difference (SD) method yields a transmission cost of O(|R|) and
a storage complexity in O(log2N). For each node xj ∈ T, we call Txj the sub-
tree rooted at xj . The unrevoked set N\R is partitioned into disjoint subsets
Sk1,u1

, . . . , Skm,um . For each i ∈ {1, . . . ,m}, the subset Ski,ui is determined by
a node xki and one of its descendants xui – which are called primary and sec-
ondary roots of Ski,ui , respectively – and it consists of the leaves of Txki that
are not in Txui . Each user belongs to many generic subsets, so that the number
of subsets bounded by m = 2 · |R| − 1, as proved in [47].

In the broadcast encryption scenario, a sophisticated key distribution pro-
cess is necessary to avoid a prohibitive storage overhead. Each subset Ski,ui is
assigned a “proto-key” Pxki ,xui that allows deriving the actual symmetric encryp-
tion key Kki,ui for Ski,ui and as well as proto-keys Pxki ,xul for any descendant

xul of xui . Eventually, each user has to store O(log2N) keys. In the setting of
group signatures, we will show that, somewhat unexpectedly, the use of vector
commitment schemes allows reducing the private storage to a constant: the size
of users’ private keys only depends on the security parameter λ, and not on N .

2.6 Revocable Group Signatures

As in [45, 44], we consider schemes that have their lifetime divided into revocation
epochs at the beginning of which group managers update their revocation lists.

The syntax and the security model are similar to those used by Kiayias
and Yung [40]. Like the Bellare-Shi-Zhang model [10], the Kiayias-Yung model
assumes an interactive join protocol whereby the user becomes a group member
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by interacting with the group manager.

Syntax. We denote by N ∈ poly(λ) the maximal number of group members. At
the beginning of each revocation epoch t, the group manager publicizes an up-to-
date revocation list RLt and we denote by Rt ⊂ {1, . . . , N} the corresponding
set of revoked users (we assume that Rt is part of RLt). A revocable group
signature (R-GS) scheme consists of the following algorithms or protocols.

Setup(λ,N): given a security parameter λ ∈ N and a maximal number of group
members N ∈ N, this algorithm (which is run by a trusted party) generates
a group public key Y, the group manager’s private key SGM and the open-
ing authority’s private key SOA. SGM and SOA are given to the appropriate
authority while Y is publicized. The algorithm initializes a public state St
consisting of set and string data structures Stusers = ∅ and Sttrans = ε.

Join: is an interactive protocol between the group manager GM and a prospec-
tive group member Ui. The protocol involves two interactive Turing ma-
chines Juser and JGM that both take as input Y. The execution, denoted as
[Juser(λ,Y), JGM(λ, St,Y,SGM)], ends with Ui obtaining a membership secret
seci, that no one else knows, and a membership certificate certi. If the pro-
tocol is successful, the group manager updates the public state St by setting
Stusers := Stusers ∪ {i} as well as Sttrans := Sttrans||〈i, transcripti〉.

Revoke: is a (possibly probabilistic) algorithm allowing the GM to generate an
updated revocation list RLt for the new revocation epoch t. It takes as input
a public key Y and a set Rt ⊂ Stusers that identifies the users to be revoked.
It outputs an updated revocation list RLt for epoch t.

Sign: given a revocation epoch t with its revocation list RLt, a membership
certificate certi, a membership secret seci and a message M , this algorithm
outputs ⊥ if i ∈ Rt and a signature σ otherwise.

Verify: given a signature σ, a revocation epoch t, the corresponding revocation
list RLt, a message M and a group public key Y, this deterministic algorithm
returns either 0 or 1.

Open: takes as input a message M , a valid signature σ w.r.t. Y for the indicated
revocation epoch t, the opening authority’s private key SOA and the public
state St. It outputs i ∈ Stusers ∪ {⊥}, which is the identity of a group
member or a symbol indicating an opening failure.

A R-GS scheme must satisfy three security notions that are formally defined in
the full version of the paper. The first one is called security against misidentifi-
cation attacks. It requires that, even if the adversary can introduce and revoke
users at will, it cannot produce a signature that traces outside the set of un-
revoked adversarially-controlled users. The notion of security against framing
attacks captures that under no circumstances should an honest user be held ac-
countable for messages that he did not sign, even if the whole system conspires
against that user. Finally, the notion of anonymity is also defined (by granting
the adversary access to a signature opening oracle) as in the models of [10, 40].
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3 A Revocable Group Signature with Compact Keys and
Constant Verification Time

The number of users is assumed to be N = 2`−1 ∈ poly(λ), for some integer
`, so that each group member is assigned to a leaf of the tree. Each node is
assigned a unique identifier. For simplicity, the root is identified by ID(ε) = 1
and, for each other node x, we define the identifier ID(x) ∈ {1, . . . , 2N − 1} to
be ID(x) = 2 · ID(parent(x)) + b, where parent(x) denotes x’s father in the tree
and b = 0 (resp. b = 1) if x is the left (resp. right) child of its father. The root
of the tree is assigned the identifier IDε = 1.

At the beginning of each revocation epoch t, the GM generates an up-to-date
revocation listRLt containing one entry for each generic subset Sk1,u1

, . . . , Skm,um
produced by the Subset Difference method. These subsets are encoded in such
a way that unrevoked users can anonymously prove their membership of one of
them. Our technique allows to do this using a proof of constant size.

In the generation of RLt, for each i ∈ {1, . . . ,m}, if xki (resp. xui) denotes
the primary (resp. secondary) root of Ski,ui , the GM encodes Ski,ui as a vector
of group elements Ri that determines the levels of nodes xki and xui in the tree
(which are called φi and ψi hereafter) and the identifiers ID(xki) and ID(xui).
Then, the vector Ri is authenticated by means of a structure preserving signa-
ture Θi, which is included in RLt so as to serve in a set membership proof [23].

During the join protocol, users obtain from the GM a structure-preserving
signature on a compact encoding Cv – which is computed as a commitment to
a vector of node identifiers (I1, . . . , I`) – of the path (I1, . . . , I`) between their
leaf v and the root ε. This path is encoded as a single group element.

In order to anonymously prove his non-revocation, a group member Ui uses
RLt to determine the generic subset Skl,ul , with l ∈ {1, . . . ,m}, where his leaf vi
lies. He commits to the corresponding vector of group elements Rl that encodes
the node identifiers ID(xkl) and ID(xul) of the primary and secondary roots of
Skl,ul at levels φl and ψl, respectively. If (I1, . . . , I`) identifies the path from his
leaf vi to ε, the unrevoked member Ui generates a membership proof for the sub-
set Skl,ul by proving that ID(xkl) = Iφl and ID(xul) 6= Iψl (in other words, that
xkl is an ancestor of vi and xul is not). To succinctly prove these statements, Ui
uses the properties of the commitment scheme recalled in Section 2.4. Finally,
in order to convince the verifier that he used a legal element of RLt, Ui follows
the technique of [23] and proves knowledge of a signature Θl on the committed
vector of group elements Rl. By doing so, Ui thus provides evidence that his leaf
vi is a member of some authorized subset Skl,ul without revealing l.

In order to obtain the strongest flavor of anonymity (i.e., where the adver-
sary has access to a signature opening oracle), the scheme uses Kiltz’s tag-based
encryption scheme [41] as in Groth’s construction [35]. In non-frameability con-
cerns, the group member Ui also generates a weak Boneh-Boyen signature [12]
(which yields a fully secure signature when combined with a one-time signature)
using x = logg(X), where X ∈ G is a group element certified by the GM and
bound to the path (I1, . . . , I`) during the join protocol.

11



3.1 Construction

As in the security models of [10, 40], we assume that, before joining the group,
user Ui chooses a long term key pair (usk[i], upk[i]) and registers it in some PKI.

Setup(λ,N): given a security parameter λ ∈ N and N = 2`−1,

1. Choose bilinear groups (G,GT ) of prime order p > 2λ, with g R← G.

2. Define n0 = 2 and n1 = 5. Generate two key pairs (sk
(0)
AHO, pk

(0)
AHO) and

(sk
(1)
AHO, pk

(1)
AHO) for the AHO signature in order to sign messages of n0

and n1 group elements, respectively. These key pairs are

pk
(d)
AHO =

(
G(d)
r , H(d)

r , G(d)
z = G

γ(d)
z
r , H(d)

z = H
δ(d)z
r ,

{G(d)
i = G

γ
(d)
i
r , H

(d)
i = H

δ
(d)
i
r }ndi=1, A

(d), B(d)
)

and sk
(d)
AHO =

(
α
(d)
a , α

(d)
b , γ

(d)
z , δ

(d)
z , {γ(d)i , δ

(d)
i }

nd
i=1

)
, where d ∈ {0, 1}.

3. Generate a public key ck = (g1, . . . , g`, g`+2, . . . , g2`) ∈ G2`−1 for vectors
of dimension ` in the vector commitment scheme recalled in section 2.4.
The trapdoor g`+1 is not needed and can be discarded.

4. As a CRS for the NIWI proof system, select vectors f = (~f1, ~f2, ~f3) s.t.

~f1 = (f1, 1, g) ∈ G3, ~f2 = (1, f2, g) ∈ G3, and ~f3 = ~f1
ξ1 · ~f2

ξ2
, with

f1 = gβ1 , f2 = gβ2 R← G and β1, β2, ξ1, ξ2
R← Z∗p. We also define the

vector ~ϕ = ~f3 · (1, 1, g).
5. Choose (U, V ) R← G2 that, together with generators f1, f2, g ∈ G, will

form a public encryption key.
6. Select a strongly unforgeable one-time signature Σ = (G,S,V).

7. Set SGM :=
(
sk

(0)
AHO, sk

(1)
AHO

)
, SOA :=

(
β1, β2

)
as authorities’ private keys

and the group public key is

Y :=
(
g, pk

(0)
AHO, pk

(1)
AHO, ck = (g1, . . . , g`, g`+2, . . . , g2`), f , ~ϕ, (U, V ), Σ

)
.

Join(GM,Ui): the GM and the prospective user Ui run the following protocol
[Juser(λ,Y), JGM(λ, St,Y,SGM)]:

1. Juser(λ,Y) draws x R← Zp and sends X = gx to JGM(λ, St,Y,SGM). If
X ∈ G already appears in some entry transcriptj of the database Sttrans,
JGM halts and returns ⊥ to Juser.

2. JGM assigns to Ui an available leaf v of identifier ID(v) in the tree T.
Let x1, . . . , x` be the path from x` = v to the root x1 = ε of T. Let
also (I1, . . . , I`) = (ID(x1), . . . , ID(x`)) be the corresponding vector of
identifiers (with I1 = 1 and I` = ID(v) ∈ {N, . . . , 2N − 1}). Then, JGM
does the following.

a. Encode (I1, . . . , I`) as Cv =
∏`
κ=1 g

Iκ
`+1−κ = gI1` · · · g

I`
1 .
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b. Using sk
(0)
AHO, generate an AHO signature σv = (θv,1, . . . , θv,7) on the

pair (X,Cv) ∈ G2 so as to bind the encoded path Cv to the value X
that identifies Ui.

3. JGM sends ID(v) ∈ {N, . . . , 2N − 1} and Cv to Juser that halts if ID(v) 6∈
{N, . . . , 2N − 1} or if Cv is found incorrect. Otherwise, Juser sends a
signature sigi = Signusk[i]

(
X||(I1, . . . , I`)

)
to JGM.

4. JGM checks that Verifyupk[i]

(
(X||(I1, . . . , I`)), sigi

)
= 1. If not JGM aborts.

Otherwise, JGM returns the AHO signature σv to Juser and stores the
transcript transcripti = (X, ID(v), Cv, σv, sigi) in the database Sttrans.

5. Juser defines certi =
(
ID(v), X,Cv, σv

)
∈ {N, . . . , 2N − 1}×G9, where X

will identify Ui. The membership secret seci is defined as seci = x ∈ Zp.
Revoke(Y,SGM, t,Rt): Parse SGM as SGM :=

(
sk

(0)
AHO, sk

(1)
AHO

)
.

1. Using the covering algorithm of the SD method, find a cover of the
unrevoked user set {1, . . . , N}\Rt as the union of disjoint subsets of the
form Sk1,u1

, . . . , Skm,um , with m ≤ 2 · |Rt| − 1.

2. For i = 1 to m, do the following.

a. Consider Ski,ui as the difference between sub-trees rooted at an inter-
nal node xki and one of its descendants xui . Let φi, ψi ∈ {1, . . . , `} be
the depths of xki and xui , respectively, in T assuming that the root

ε is at depth 1. Encode Ski,ui as a vector
(
gφi , g

ID(xki )

1 , gψi , g
ID(xui )

)
.

b. To authenticate Ski,ui and bind it to the revocation epoch t, use

sk
(1)
AHO to generate an AHO signature Θi = (Θi,1, . . . , Θi,7) ∈ G7 on

the message Ri =
(
gt, gφi , g

ID(xki )

1 , gψi , g
ID(xui )

)
∈ G5, where the

epoch number t is interpreted as an element of Zp.
Return the revocation data

RLt =
(
t, Rt, {φi, ψi, ID(xki), ID(xui), Θi = (Θi,1, . . . , Θi,7)}mi=1

)
. (4)

Sign(Y, t, RLt, certi, seci,M): return⊥ if i ∈ Rt. Otherwise, to signM ∈ {0, 1}∗,
generate a one-time signature key pair (SK,VK) ← G(λ). Parse certi as
certi =

(
ID(vi), X,Cvi , σvi

)
∈ {N, . . . , 2N − 1} ×G9 and seci as x ∈ Zp. Let

ε = x1, . . . , x` = vi be the path connecting vi to the root ε of T and let
(I1, . . . , I`) = (ID(x1), . . . , ID(x`)) be the vector of node identifiers. First, Ui
generates a commitment comCvi

to the encoding Cvi of the path (I1, . . . , I`)
from vi to the root. Then, he does the following.

1. Using RLt, find the set Skl,ul , with l ∈ {1, . . . ,m}, containing the leaf vi
identified by ID(vi). Let xkl and xul denote the primary and secondary
roots of Skl,ul at depths φl and ψl, respectively. Since xkl is an ancestor of
vi but xul is not, it must be the case that Iφl = ID(xkl) and Iψl 6= ID(xul).

2. To prove that vi belongs to Skl,ul without leaking l, Ui first re-randomizes

the l-th AHO signature Θl of RLt as {Θ′l,i}7i=1 ← ReRand(pk
(1)
AHO, Θl).
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Then, he commits to the l-th revocation message

Rl = (Rl,1, Rl,2, Rl,3, Rl,4, Rl,5) =
(
gt, gφl , g

ID(xkl )

1 , gψl , g
ID(xul )

)
(5)

and its signature Θ′l = (Θ′l,1, . . . , Θ
′
l,7) by computing Groth-Sahai com-

mitments {comRl,τ }5τ=2, {comΘ′
l,j
}j∈{1,2,5} to {Rl,τ}5τ=2 and {Θ′l,j}j∈{1,2,5}.

a. To prove that Iφl = ID(xkl), Ui computesWφl =
∏`
κ=1, κ 6=φl g

Iκ
`+1−κ+φl

that satisfies the equality e(gφl , Cvi) = e(g1, g`)
Iφl · e(g,Wφl). Then,

Ui generates a commitment comWφl
to Wφl . He computes a NIWI

proof πeq that committed variables (Rl,2, Rl,3, Cvi ,Wφl) satisfy

e(Rl,2, Cvi) = e(Rl,3, g`) · e(g,Wφl). (6)

b. To prove that Iψl 6= ID(xul), Ui computesWψl =
∏`
κ=1, κ 6=ψl g

Iκ
`+1−κ+ψl

that satisfies the equality e(gψl , Cvi) = e(g1, g`)
Iψl · e(g,Wψl). Then,

he computes a commitment comWψl
to Wψl as well as commitments

comΓl and {comΨl,τ }τ∈{0,1,2`} to the group elements

(Γl, Ψl,0, Ψl,1, Ψl,2`) =
(
g1/(Iψl−ID(xul )), gIψl , g

Iψl
1 , g

Iψl
2`

)
.

Then, Ui proves that (Rl,4, Rl,5, Cvi , Γl, Ψl,0, Ψl,1, Ψl,2`) satisfy

e(Rl,4, Cvi) = e(Ψl,1, g`) · e(g,Wψl), e(Ψl,0/Rl,5, Γl) = e(g, g) (7)

e(Ψl,1, g) = e(g1, Ψl,0), e(Ψl,2`, g) = e(g2`, Ψl,0). (8)

We denote this NIWI proof by πneq = (πneq,1, πneq,2, πneq,3, πneq,4).

3. Ui proves that the tuple Rl of (5) is a certified revocation message for
epoch t: namely, he computes a NIWI proof πRl that committed message
elements {Rl,τ}5τ=2 and signature components {Θ′l,j}j∈{1,2,5} satisfy

A(1) · e(Θ′l,3, Θ′l,4)−1 · e(G(1)
1 , gt)−1 = e(G(1)

z , Θ′l,1) · (9)

e(G(1)
r , Θ′l,2) ·

5∏
τ=2

e(G(1)
τ , Rl,τ ),

B(1) · e(Θ′l,6, Θ′l,7)−1 · e(H(1)
1 , gt)−1 = e(H(1)

z , Θ′l,1)

·e(H(1)
r , Θ′l,5) ·

5∏
τ=2

e(H(1)
τ , Rl,τ ),

Since {Θ′l,j}j∈{3,4,6,7} are constants, equations (9) are both linear and
thus require 3 elements each. Hence, πRl takes 6 elements altogether.

4. Let σvi = (θvi,1, . . . , θvi,7) be the AHO signature on (X,Cvi). Compute a

commitment comX to X. Set {θ′vi,j}
7
j=1 ← ReRand(pk

(0)
AHO, σvi) and gen-

erate commitments {comθ′vi,j
}j∈{1,2,5} to {θ′vi,j}j∈{1,2,5}. Then, generate

a NIWI proof πσvi that committed variables satisfy

A(0) · e(θ′l,3, θ′l,4)−1 = e(G(0)
z , θ′l,1) · e(G(0)

r , θ′l,2) · e(G(0)
1 , X) · e(G(0)

2 , Cvi),

B(0) · e(θ′l,6, θ′l,7)−1 = e(H(0)
z , θl,1) · e(H(0)

r , θ′l,5) · e(H(0)
1 , X) · e(H(0)

2 , Cvi)
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5. Using VK as a tag, compute a tag-based encryption [41] of X by com-
puting (Υ1, Υ2, Υ3, Υ4, Υ5) =

(
fz11 , fz22 , X · gz1+z2 , (gVK ·U)z1 , (gVK · V )z2

)
with z1, z2

R← Zp.
6. Generate a NIZK proof that comX = (1, 1, X) · ~f1

wX,1 · ~f2
wX,2 · ~f3

wX,3

and (Υ1, Υ2, Υ3) are BBS encryptions of the same value X. If we write
~f3 = (f3,1, f3,2, f3,3), the Groth-Sahai commitment comX can be written
as (f

wX,1
1 · fwX,33,1 , f

wX,2
2 · fwX,33,2 , X · gwX,1+wX,2 · fwX,33,3 ), so that we have

comX · (Υ1, Υ2, Υ3)−1 =
(
fχ1

1 · f
χ3

3,1, f
χ2

2 · f
χ3

3,2, g
χ1+χ2 · fχ3

3,3

)
(10)

with χ1 = wX,1−z1, χ2 = wX,2−z2, χ3 = wX,3. To prove (10), compute

comχj = ~ϕ χj · ~f1
wχj,1 · ~f2

wχj,2 , with wχj ,1, wχj ,2
R← Zp for j ∈ {1, 2, 3},

as commitments to {χj}3j=1 and generates proofs {πeq-com,j}3j=1 that
χ1, χ2, χ3 satisfy the three linear relations (10).

7. Compute a weak Boneh-Boyen signature σVK = g1/(x+VK) on VK and
a commitment comσVK

to σVK. Then, generate a NIWI proof πσVK
=

(~πσVK,1, ~πσVK,2, ~πσVK,3) ∈ G9 that committed variables (σVK, X) ∈ G2 sat-
isfy the quadratic equation e(σVK, X · gVK) = e(g, g).

8. Compute σots = S(SK, (M,RLt, Υ1, Υ2, Υ3, Υ4, Υ5, Ω, com,Π)) whereΩ =
{Θ′l,i, θ′l,i}i∈{3,4,6,7}, Π =

(
πeq, πneq, πRl , πσvi , {πeq-com,j}

3
j=1, , πσVK

)
and

com =
(
comCvi

, comX , {comRl,τ }5τ=2, comWφl
, comWψl

, {comΘ′
l,j
}j∈{1,2,5},

comΓl , {comΨl,τ }τ∈{0,1,2`}, {comθ′l,j
}j∈{1,2,5}, {comχj}3j=1, comσVK

)
Return the signature σ =

(
VK, Υ1, Υ2, Υ3, Υ4, Υ5, Ω, com,Π, σots

)
.

Verify(σ,M, t, RLt,Y): If V(VK, (M,RLt, Υ1, Υ2, Υ3, Υ4, Υ5, Ω, com,Π), σots) =
0 or if (Υ1, Υ2, Υ3, Υ4, Υ5) is not a well-formed tag-based encryption (that is,
if e(Υ1, g

VK · U) 6= e(f1, Υ4) or e(Υ2, g
VK · V ) 6= e(f2, Υ5)), return 0. Then,

return 1 if all proofs properly verify. Otherwise, return 0.
Open(M, t,RLt, σ,SOA,Y, St): Return ⊥ if Verify(σ,M, t, RLt,Y) = 0. Other-

wise, given SOA = (β1, β2), compute X̃ = Υ3 ·Υ−1/β1

1 ·Υ−1/β2

2 . In the database
Sttrans, find a record 〈i, transcripti = (Xi, ID(vi), Cvi , σvi , sigi)〉 such that
Xi = X̃. If no such record exists in Sttrans, return ⊥. Otherwise, return i.

At first glance, the variable Ψl,2` and the proof of the second equality (8) may
seem unnecessary in step 2.b of the signing algorithm. However, as detailed in
the full version of the paper, this element plays a crucial role when it comes to
prove the security under the `-FlexDHE assumption.

As far as efficiency goes, each entry of RLt contains 7 group elements and two
node identifiers of O(logN) bits each. If λG is the bitlength of a group element,
we have logN � λG/2 (since λ ≤ λG and N is polynomial), so that the number
of bits of RLt is bounded by 2·|Rt|·(7·λG+2 logN+2 log logN) < 2·|Rt|·(9λG)
bits. The size of RLt is thus bounded by that of 18 · |Rt| group elements.

Unlike [44], group members only need to store 9 group elements in their
membership certificate. As far as the size of signature goes, com and Π require
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66 and 60 group elements, respectively. If the one-time signature of [34] is used,
VK and σots consist of 3 elements of G and 2 elements of Zp, respectively. The
global size σ amounts to that of 144 group elements, which is about 50% longer
than [44]. In comparison with [35] (which does not natively support revocation),
signatures are only longer by a factor of 3. At the 128-bit security level, each
group element should have a 512-bit representation and a signature takes 9 kB.

Verifying signatures takes constant time. The signer has to compute at most
2` = O(logN) exponentiations to obtain Wφl and Wψl at the beginning of each
revocation epoch. Note that these exponentiations involve short exponents of
O(logN) bits each. Hence, computing Wφl and Wψl requires O(log2N) multi-
plications in G. For this reason, since we always have log2N � λ (as long as

N � 2λ
1/2

), this cost is dominated by that of a single exponentiation in G.
From a security point of view, we prove the following theorem in the full

version of the paper.

Theorem 1. Under the SFP, FlexDHE, SDH and DLIN assumptions, the scheme
provides anonymity and security against misidentification and framing attacks .
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