
How to Compute under AC0 Leakage without
Secure Hardware

Guy N. Rothblum⋆

Microsoft Research, Silicon Valley Campus

Abstract. We study the problem of computing securely in the presence
of leakage on the computation’s internals. Our main result is a general
compiler that compiles any algorithm P , viewed as a boolean circuit,
into a functionally equivalent algorithm P ′. The compiled P ′ can then be
run repeatedly on adversarially chosen inputs in the presence of leakage
on its internals: In each execution of P ′, an AC0 adversary can (adap-
tively) choose any leakage function that can be computed in AC0 and
has bounded output length, apply it to the values on P ′’s internal wires
in that execution, and view its output. We show that no such leakage
adversary can learn more than P ’s input-output behavior. In particular,
the internals of P are protected.
Security does not rely on any secure hardware, and is proved under a
computational intractability assumption regarding the hardness of com-
puting inner products for AC0 circuits with pre-processing. This new
assumption has connections to long-standing open problems in complex-
ity theory.

1 Introduction

Modern cryptographic algorithms are often modeled as “black boxes”. It is
commonly assumed that their keys, internal computations, and randomness are
opaque to external adversaries. In practice, however, these algorithms might be
run in adversarial settings where keys are compromised and computations are
not be fully opaque, e.g. because of side channel attacks.

Side channel attacks exploit the physical implementation of cryptographic
algorithms. The physical implementation might enable observations and mea-
surements on the cryptographic algorithm’s internals. Attacks such as these can
and have broken systems with a mathematical security proof, without violating
any of the underlying mathematical principles. (see [KJJ99,RCL] for just two ex-
amples). A growing body of recent research on cryptography resilient to leakage
or side-channel attacks aims to build robust mathematical models of realistic
side channel attacks, and to develop methods grounded in modern cryptography
to provably resist such attacks.

One line of research aims to construct specific primitives (e.g. encryption
schemes) resilient to side-channel attacks, e.g. [AGV09,BKKV10]. A different

⋆ Some of this research was done while the author was at the Center for Computa-
tional Intractability at Princeton University, supported by a Computing Innovation
Fellowship and by NSF grant CCF-0832797.

line, which we pursue in this work, aims to construct leakage-resilience com-
pilers for transforming general algorithms (represented as stateful circuits) into
functionally equivalent stateful circuits that are resilient to side-channel attacks
on any polynomial number of executions (the polynomial is not fixed in ad-
vance). Typically, these results consider a family L of leakage attacks, and show
(via a simulation argument) that even an adversary who can adaptively choose
inputs to each execution, and launch a leakage attack from the family L on each
execution, learns no more about the underlying functionality than it would from
black-box (i.e. input-output) access. It is usually assumed that the initial circuit
compilation is done (once only) without any leakage. Afterwards, every execu-
tion of this stateful circuit—including any and all state updates—is subject to
leakage attacks from the family L.

A fascinating question for research on leakage-resilience compilers, from both
a foundational and a practical perspective, is: “for which leakage families L do
there exist secure compilers?” There are, unfortunately, inherent limitations on
the leakage functions that can be handled. For example, they must be of bounded
length—otherwise the entire circuit internals can leak, and we enter the more
challenging domain of code obfuscation. In particular, the impossibility results
of Barak et al. [BGI+01] imply that there does not exist a leakage-resilience
compiler that can protect against leakage of unbounded length. In fact, the
impossibility result of [BGI+01] can be used to show that there is no leakage-
resilience compiler that protects against even a single bit of polynomial-time
leakage. Given this impossibility, work on leakage-resilience compilers has consid-
ered various additional restrictions on the leakage functions (on top of bounded
output length):

Wire-Probe/Bit Leakage. Ishai Sahai and Wagner [ISW03] view algorithms
as boolean circuits. They considered leakage functions that expose the values on
a bounded number of wires in each circuit evaluation. For this class of leakage
functions they show (unconditionally) a leakage-resilience compiler for general
circuits. Ajtai [Ajt11] considered the RAM model. He divided each RAM compu-
tation into sub-computations, and considered leakage functions that exposed a
constant fraction of the memory words involved in each sub-computation. He ob-
tained a leakage-resilience compiler for general RAM computations. The leakage
model is qualitatively similar to that of [ISW03], in the sense that the (length
bounded) leakage operates separately on each bit of the computation—either
exposing it in its entirety or revealing nothing at all. We view the main (and
important) improvement in [Ajt11] versus [ISW03] as the quantitative improve-
ment to fraction of leaked bits that can be tolerated in each execution of the
transformed computation.

Computationally Bounded Leakage. Faust, Rabin, Reyzin, Tromer and
Vaikuntanathan [FRR+10] considered leakage functions with two restrictions:
(i) the functions are computationally bounded, e.g. capable of computing only
AC0 functions of the values on the circuit’s wires,1 and (ii) the computation
can use perfectly secure hardware components, whose internals never leak. We
view this second assumption as a strong restriction on the leakage functions:

1 Their full result is actually more general, and can handle ACC0[p] or noisy leakage.

they cannot even compute a single bit of information about the internals of the
secure hardware components, which are used multiple times throughout the exe-
cution. For this family of leakage functions, Faust et al. showed (unconditionally)
a general leakage-resilience compiler for transforming any circuit.

AC0 leakage is a qualitatively richer class than wire-probe leakage. In partic-
ular, for a fixed leakage bound λ, AC0 leakage can output the values of λ wires,
but potentially also much more (e.g. the AND of all circuit wire values). The
results of [FRR+10], however, are qualitatively incomparable to [ISW03] because
of the secure hardware restriction.

Only-Computation (OC) Leakage. Goldwasser and Rothblum [GR10] and
Juma and Vhalis [JV10] considered leakage under the restriction that “only com-
putation leaks information”, as pioneered by Micali and Reyzin [MR04]. Here,
each execution of the algorithm is divided into ordered sub-computations, and
the leakage function operates separately (if adaptively) on each sub-computation.
Those works also assumed the existence of perfect (simple) secure hardware com-
ponents, and showed general leakage-resilience compilers under different crypto-
graphic assumptions. More recently, Goldwasser and Rothblum [GR12] showed
how to remove both the use of secure hardware and the computational assump-
tion, obtaining an unconditional compiler for protecting computations from the
“only-computation leaks information” (OC) family of leakage functions.

Comparing this to the other models described above, we note that (for a
fixed leakage bound) OC leakage is qualitatively richer than wire probe leakage,
but incomparable to AC0 leakage.

Remark 1 (A Foundational Perspective.). While the study of leakage-resilient
cryptography is motivated by real-world attacks and security considerations, it
explores a foundational question: The issue at its heart is the difference between
giving an adversary black-box access to a program and access to the program’s
code or internals. This question is central to the foundations and the prac-
tice of cryptography. [GR12] note that the connection between obfuscation and
leakage-resilience hinted at above is no accident: Obfuscation considers the task
of compiling a program to make it completely unintelligible, or “impervious to all
leakage” (i.e. even to an adversary with complete access to the program’s code).
Unfortunately, full-blown obfuscation is provably impossible in many settings
[BGI+01,GK05], and is considered intractable in practice. Perhaps as a result of
this impossibility, much of cryptography only considers adversaries that have (at
best) “black box” access to the programs under attack. Leakage-resilience com-
pilation can be viewed as exploring the middle ground between full access to the
code and black-box access: Giving the adversary limited access to the program’s
internals and its code. Our primary motivation in this work is understanding
which kinds of restricted access to code permit secure compilation (i.e. leakage
resilience). On this note, an interpretation of this paper’s main result for the
setting of obfuscation is provided below, following Theorem 1.

From a real-world security perspective, we note that we do not view AC0

leakage as a realistic model for all side-channel attacks. In fact, some common
real-world side channel attacks are not covered by AC0 leakage (or any of the
leakage families considered in the leakage-resilience literature). See e.g. the work

of Renauld et al. [RSVC+11]). We view this as motivation for further study of
leakage-resilience compilation against more and richer classes of attacks.

λ(·)-IPPP Assumption (informal). The Inner-Product with Pre-Processing
(IPPP) Problem considers predicting the inner product of two uniformly random
vectors x, y ∈ {0, 1}κ using an AC0 circuit and an arbitrary polynomial-time pre-
processing step that is run separately on x and on y (with polynomial output
length). Without pre-processing, it is known that predicting the inner product
is hard for AC0 [Raz87,Smo87]. With joint pre-processing on x and y, one can
simply compute the inner product, and so the problem becomes easy. With
(polynomial time) pre-processing that is run separately on x and on y, there
is no known AC0 predictor with non-negligible advantage (we emphasize that
the pre-processing step’s output length can be polynomial). This question has
been explicitly considered in the literature for some time (e.g. [BFS86]). We
introduce the 1-IPPP Assumption, which says that even given polynomial-time
pre-processing (separately on x and on y), no AC0 circuit ensemble can predict
the inner product with non-negligible advantage.

More generally, we consider also the problem of compressing the instance
size of inner product from κ to λ(κ) < κ bits using an AC0 circuit and arbitrary
polynomial-time pre-processing on x and on y separately. By “compressing”,
we mean that the instance size is reduced while still maintaining noticeable
statistical difference between the distribution of YES and NO instances (inner
product 1 and 0 respectively), see [HN10,DI06]. Without pre-processing, Dubrov
and Ishai [DI06] showed that it is hard for AC0 to compress parity instances to
sub-linear length κ1−δ (in fact this was later used in the result of [FRR+10]). We
introduce the λ(κ)-IPPP Assumption, which says that even given polynomial-
time pre-processing (on x and on y, each separately), no AC0 circuit ensemble
can compress the instance size of inner product to length λ(κ).

See Section 2.2 and the full version for formal definitions and a further study
of IPPP. We note here that (even for λ(κ) = κ1−δ), the λ(κ)-IPPP Assumption
might be viewed as relatively mild compared to many standard cryptographic
assumptions. In particular, it may hold even if P = NP .

Main result. Our main result is a leakage resilience compiler for AC0 leak-
age. Security relies on the λ(·)-IPPP assumption. For security parameter κ, the
transformed circuit is resilient to λ(κ) bits of AC0 leakage from each execution.

Theorem 1. For any function λ(·) : N → N, under the λ(·)-IPPP assumption
there exists a leakage resilience compiler for AC0 leakage. For security parameter
κ ∈ N, and for a poly(κ)-size input circuit C to be transformed, the adversary’s
runtime can be polynomial in κ, and the leakage from each execution can be any
(adaptively chosen) AC0 function of length λ(κ). The size of the transformed
circuit is O(|C| · κ3).

See Definition 2 for the formal definition of a secure compiler for AC0 leakage.
We emphasize that the leakage bound in this result is equal to the “com-

pression” factor in the IPPP assumption. In particular, assuming the λ(κ)-IPPP
Assumption for all sub-linear λ(κ) = κ1−δ (we find this to be a plausible assump-
tion), we get resilience to any sub-linear leakage amount of leakage per execution

(similar to the leakage bound in [FRR+10]). We remark that even a compiler that
handles only a single bit of leakage from each execution is already non-trivial—in
particular, since the number of executions is an unbounded polynomial, the to-
tal combined leakage from the repeated executions can be much larger than the
size of the transformed circuit. We also recall that for polynomial-time leakage
(i.e. leakage not restricted to AC0), it is impossible to build a leakage-resilience
compiler that handles even a single bit of leakage (see above).

AC0-Leakage Resilience and Obfuscation. Theorem 1 can also be inter-
preted as providing an obfuscator that is secure against AC0-adversaries. Obfus-
cation is the task of “garbling” programs to make them unintelligible. Barak et
al. [BGI+01] define an obfuscator as a compiler that takes an input program P
and outputs a secure obfuscation P ′: a different program with the same func-
tionality as P . The security requirement is that access to (the code of) P ′ “leaks
no more” than black-box access to P . More formally, they require that for any
efficient adversary A there exists a simulator S, s.t. any predicate that A can
compute from the obfuscated P ′, can also be computed by S from black-box
access to P . [BGI+01] show that this strong notion of obfuscation is impossible
to achieve in general.

We note that one can view the predicate computed by the obfuscation adver-
sary A as a single bit of leakage on the internals of P ′. Taking this view, Theorem
1 shows that (under the 1-IPPP Assumption) obfuscation against bounded AC0

adversaries is possible. In fact, obfuscation is possible even when the AC0 adver-
sary can run the program on inputs of its choice, and observe these executions
in their entirety. We note that previous works, such as [FRR+10], that rely on
secure hardware do not provide this strong obfuscation guarantee: There is no
analogue to secure hardware in the standard obfuscation setting (their work can
be interpreted as providing obfuscation against an AC0 adversary who can only
observe an a-priori bounded number of executions).

Theorem 1 side-steps the impossibility result of [BGI+01], because there the
adversary needs to run computations that are as complex as the obfuscated
circuit. In our construction and setting, on the other hand, the compiled circuits
run computations (such as parities) that provably cannot be done in AC0, and
the adversary is bounded to AC0 computations. We find the general question of
obfuscation against bounded adversaries to be a fascinating one, and note that
it is closely related to leakage-resilience compilation.

Comparison to prior work. We now compare the result of Theorem 1 to prior
works on leakage-resilience compilers (see also the discussion above on these prior
works).

Wire Probe Leakage. Comparing to the work of [ISW03] on wire probe leakage
and to the more recent work of Ajtai [Ajt11], the main novelty of our result is
in handling the richer class of AC0 leakage. On the other hand, those results
did not rely on unproven assumptions and the quantitative leakage bounds (as
a fraction of the transformed computation’s size) were better.

AC0 Leakage. The most closely related work is that of Faust et al. [FRR+10],
and their construction is a starting point for ours (see below). The main added

benefit of our work is in removing the secure hardware assumption (again, this
can be viewed as handling a larger class of leakage functions). The main qual-
itative disadvantage is in the introduction of the unproved IPPP assumption.
Quantitatively, the amount of leakage we can handle depends on the function
λ(·) for which IPPP is hard. If we assume hardness for any sub-linear λ(·) func-
tion, we get similar leakage bounds to [FRR+10]. Finally, the circuit blowup of
the [FRR+10] compiler is O(κ2), whereas ours is O(κ3).

OC Leakage. Our end result is qualitatively incomparable to Goldwasser and
Rothblum [GR12], because only-computation leakage and AC0 leakage are in-
comparable. We do note, however, that their result is unconditional and the
circuit blowup is smaller (κω, where ω is the exponent for matrix multiplica-
tion, versus κ3 in our work). Both our work and theirs tackle the challenge of
leakage-resilience compilation for a rich class of leakage functions without using
secure hardware. In fact, we use the “ciphertext bank” machinery introduced in
[GR12] for handling this challenge.

Our high-level approach is to build on the construction of [FRR+10] and
remove the secure hardware using the techniques of [GR10]. Unfortunately, this
is far from straightforward. In a nutshell, the main technical challenge is con-
structing an AC0 and length-preserving security reduction from the problem
of compressing inner product instances (or rather from the IPPP problem), to
distinguishing real and simulated leakage on repeated executions of the trans-
formed circuit. The problem is that the [GR10] machinery relies (extensively)
on computations that cannot be performed in AC0 (e.g. matrix multiplication).
We elaborate in Section 1.1.

1.1 Overview of the Construction and Security Reduction

At a high level, one central difficulty in leakage-resilience compilation without
secure hardware is that it requires simulating a complete view of multiple exe-
cutions in their entirety. The simulated view needs to be indistinguishable from
the real execution under a wide family of leakage functions. Intuitively, secure
hardware makes the simulation task considerably easier because some regions
of the computation are opaque to the leakage, and their internals need not
be simulated. Work on specific leakage-resilient cryptographic primitives (e.g.
[AGV09,DP08,BKKV10]) avoids this difficulty because the security definitions
do not require simulation. We follow [GR12] in tackling on this simulation chal-
lenge.

The simulator has no knowledge of the computation’s internals (beyond its in-
put and output). Moreover, the entire computation in the simulated view should
be consistent with the initial state and the choice of random coins; otherwise, an
AC0 leakage function that checks consistency of the internal computations will
distinguish the real and simulated views. This means that the simulator has to
generate a self-consistent view of the computation, and cannot make any “ille-
gal” computational steps. Presumably, however, the simulator is still acting very
differently from the real execution. Note that this is a crucial difference from
the setting where secure hardware is used: the simulated outputs of the secure

hardware can essentially be an “illegal” output that would never be generated in
a real execution (but the leakage functions cannot tell the difference).2 Indeed,
this is what the [FRR+10] simulator does (see more below).

In our setting, without secure hardware, the simulator cannot make any “il-
legal” steps. Its only freedom to diverge from a “real” execution is in generating
the initial state (where there is no leakage), and in choosing the random coins.
Our simulator generates (only once) a “trapdoor” initial state, and this gives it
extensive freedom in shaping the simulated view, even under repeated leakage
from multiple executions and state updates.

Against this backdrop, we recall the approach of [FRR+10]. They proved se-
curity by showing a reduction from compressing an instance of the inner product
problem (or rather the problem of computing a vector’s parity) to distinguishing
the real and simulated views (or rather various hybrids of these views). They
showed that the security reduction can be computed using length-bounded AC0

access to the inner product instance, and so the real and simulated views are
statistically close. Our high-level approach is to build on the construction of
[FRR+10], and remove the secure hardware using the techniques of [GR10]. As
hinted above, this is far from straightforward, mainly because running the [GR10]
machinery requires computations, such as matrix multiplication, that cannot be
implemented in AC0. This creates (multiple) difficulties in implementing a re-
duction from compressing inner product instances to distinguishing the real and
simulated views (or hybrids thereof) that only uses length-bounded AC0 access
to the inner product instance. We relax the requirement from the security reduc-
tion: we reduce from the IPPP problem, rather than the full-blown inner product
problem without pre-processing. We use the additional power of pre-processing
to implement a reduction from the IPPP problem to distinguishing (hybrids of)
the real and simulated views. This is our main technical contribution.

We proceed with an overview of our construction and security proof. In what
follows we restrict our attention to transforming stateless computations to be
leakage resilient, but the results all hold also for stateful circuits (as considered
say in [FRR+10]). We note that the transformed computations will be stateful
circuits (even if the original computation is stateless), and their state is updated
(under leakage) between executions.

Overview of [FRR+10] In the Faust et al. construction, every wire i in the
original circuit, say carrying value ai (on a certain input), was replaced by a
bundle of κ wires carrying a uniformly random vector of bits whose parity/XOR
is ai. Intuitively, an adversary with bounded-length AC0 leakage access to all
of an execution’s wire-bundles cannot distinguish the true value on any wire
(i.e. the parity of any wire-bundle), and so the adversary learns nothing about
the internals of the original computation. The main challenge is for the trans-
formed circuit to emulate the computation of each gate in the original circuit,
while maintaining the invariant that the bundle corresponding to each wire is a
uniformly random vector with the correct parity, and without leaking anything
about the parity. For example, to emulate an AND gate, the transformed circuit

2 This difficulty is avoided in [ISW03] as their leakage functions are too weak to check
consistency of the computation.

needs to take two wire bundles and output a wire bundle carrying a uniformly
random vector whose parity is the AND of the parities of the input wire bundles.

The gate computations of the original circuits are emulated using “gate gad-
gets”, one for every gate in the original circuit. In their elegant security proof,
[FRR+10] separate the wires of the transformed circuit into the “external wires”
described above, where each wire in the original circuit corresponds to the κ “ex-
ternal wires” in the transformed circuit. In each execution (on a certain input),
these κ wires carry a bundle whose parity equals the wire’s value in the original
circuit (on that input). Each gate in the original circuit is replaced by a “gate
gadget” in the transformed circuit. We call the wires in these gate gadgets “in-
ternal wires”. In their security proof, [FRR+10] show that: (i) the external wire
distributions (the distributions of values on the external wires) in the real and
simulated executions are indistinguishable using bounded length AC0 leakage. As
sketched above, this follows from the hardness of compressing parity instances
in AC0. Then (ii) they show that the values on the internal wires of each gate
gadget can be simulated in AC0 given only the gate gadget’s input and output
external wires. In fact, the simulation for gate gadgets is not perfect, but rather
indistinguishable under bounded length AC0 leakage. The AC0 simulators for
gate gadgets are called reconstruction procedures, and their existence guarantees
that indistinguishability of the external wire distributions in the real and simu-
lated executions implies indistinguishability of the complete view (including the
internal wires of the gate gadgets).

Given this framework, the main challenge is implementing the gate gadgets
and their AC0 reconstruction procedures. This is where the secure hardware de-
vices come into play. The secure hardware outputs a uniformly random bundle of
κ values with parity 0. The simulator can simulate the secure hardware’s output
to be a vector with any desired parity, and the leakage cannot tell the difference.
As an example of how such a device is used, consider the (relatively simple) case
of addition: the gadget gets two input wire bundles, di and dj and computes the
pairwise XORs of their bits (call this bundle q). Rather than simply output this
q (which already has the correct XOR), the gadget calls the secure hardware to
compute a bundle o whose XOR is 0, and finally outputs the pairwise XOR of
q and this “masking” bundle o. This is not the only way in which the secure
hardware is used (e.g. it is called more extensively for multiplication gates), but
it is instructive. Intuitively, masking the gadget’s output with the output o of
the secure hardware helps secure simulation: the gate gadget’s reconstruction
procedure has some freedom in choosing a bundle (with arbitrary XOR) as the
output of the secure hardware. Another important point here is that using the
secure hardware “erases” any accumulated leakage on the input bundles: the
gadget’s output bundle is statistically independent (given its XOR) from the
input bundles. In particular, for any given values for the gate gadget’s input
and output bundles, we can (in AC0) compute an output of the secure hardware
(i.e. a “secure hardware” bundle) for which the gate gadget, on the given input
bundles, outputs the given output bundle.

Construction. The secure hardware in [FRR+10] generates a random bundle
whose parity is 0, but can be simulated as having generated bundles whose parity
is 0 or 1 (as needed by the simulator). An initial idea is simply to pre-compute

all the needed 0-bundles as part of the initial state (i.e. without leakage). The
simulator can then choose whatever bundles it wants (0 or 1) to put in the initial
state. The main drawback to this approach, of course, is that we can only pre-
compute a finite and bounded number of these bundles, and so this construction
cannot support repeated executions (alternatively, the initial state grows linearly
with the number of executions).

This recalls the situation in [GR12]. They suggested using a “ciphertext
bank”. Translating that idea to our setting, our construction can use a small
number of pre-computed 0-bundles, a “bundle bank”, to generate an essentially
unbounded (polynomial) number of new 0-bundles. The simulator can generate
an (illegally formed) initial bundle bank, and then control each subsequent gen-
eration arbitrarily to create a 0-bundle or a 1-bundle. All of this is done in a
way that is indistinguishable, even under repeated AC0 leakage, from the real
execution.

We implement the bundle banks as follows. Recall that each bundle encodes
a bit b ∈ {0, 1} as a vector in {0, 1}κ with parity b. The initial bundle bank
includes 2κ such bundles, whose parities (in the real execution) are all 0. Within
each execution of the circuit we generate 0-bundles as needed by taking random
linear combinations of the bundle bank (a random linear combination of vectors
whose parities are all 0 also has parity 0). Between executions we “regenerate”
or update the entire bundle bank by taking 2κ new random linear combinations,
and then we erase the old bundle bank. In the simulation, the initial bundle
bank is generated so that each bundle is a uniformly random vector encoding a
uniformly random bit. Now when we generate a new bundle, some linear combi-
nations of the bundles in the bank give a new bundle encoding 0, and some give
a new bundle encoding 1. The simulator chooses a uniformly random linear com-
bination yielding an encoding of whatever value it wants. Between executions,
as in the real view, the bundle bank is refreshed by taking 2κ new random linear
combination, giving a new bank of uniformly random bit encodings (independent
of the old bank). The full construction is in Section 3.

We note that our implementation of the bundle bank is considerably simpler
than the ciphertext banks of [GR12]. In particular, there is no need for their
“piecemeal matrix multiplication” procedure, and we compute matrix multipli-
cation using the straightforward naive procedure (in time κ3). We also remark
that proving the security properties of the bundle bank in our setting requires
completely different arguments (due to the completely different nature of the
leakage attack).

Security. The intuition for indistinguishability of the real and simulated views
is that an adversary cannot distinguish (under bounded length AC0 leakage)
whether the bundles in the bank encode 0’s (real execution) or are uniformly
random (simulated execution). Nor can the adversary distinguish whether the
linear combinations are uniformly random (real execution) or chosen from a
(κ− 1)-dimensional subspace so as to fix the value of the resulting bundle to 0
or 1 (simulation).

Transforming this intuition into a reduction from compressing parity/inner-
product instances to distinguishing the real and simulated views, however, is
far from straightforward. The major source of difficulty is that neither the real

construction nor the simulator are actually AC0 algorithms, and neither are the
computations in the “gate gadgets” used to emulate each gate in the original
circuit.3 In particular, if we want to use the bundle bank machinery, the gate
gadgets need to compute linear combinations of bundles in the bank. More-
over, this difficulty is compounded by the fact that, unlike [FRR+10], we cannot
use leakage-free hardware to make the bundles used between gates and across
executions statistically independent of each other. Even within a single circuit
execution, this is already a serious concern. Each bundle is dependant on the
bank, and through it on all other bundles. If (as seems natural) we want to use
hybrid arguments to focus on differences in the distribution of a single bundle or
gate emulation, we need to generate the rest of the view (on which both hybrids
agree). This generation, however, is both not in AC0 and is not independent
of the hybrid bundle. We now give intuition for how these two difficulties are
overcome, further details are in Section 3.

Step I: AC0 reconstruction via “beefed up” external wire distributions.
Our first step towards resolving these difficulties is to add more information to
the external wire distribution so that we can reconstruct the internal view of each
gate-gadget in AC0. For example, adapting the addition gate gadget of [FRR+10]
to our setting, we take the bundle bank to be a matrix G ∈ {0, 1}κ×2κ. Our
addition gate gadget takes as input two bundles di and dj , generates a “masking”
0-bundle o = G × r using the bundle bank and a random linear combination
r ∈R {0, 1}2κ. It then computes an output bundle dk = ((di + dj) + o). The
reconstruction procedure gets the input and output bundles di,dj ,dk, as well
as the bundle bank G (a κ × 2κ matrix), and needs to generate the internal
view of the computation. This requires finding a vector r s.t. G × r = (dk −
(di + dk)) and generating the wire values of the matrix-vector multiplication
G × r. For arbitrary di,dj ,dk and G this cannot be done in AC0. To resolve
this, we give the reconstruction some additional “advice”; We “beef up” the
external wire distribution with vectors ri, rj , rk s.t. di = G × ri, dj = G × rj ,
and dk = G × rk, and with all the wire values for computing these matrix-
vector multiplications. The reconstruction procedure (for addition gates) can
now compute in AC0 the vector ro = (rk− (ri−rj)) and (by linearity of matrix
multiplication) the wire values for the matrix-vector multiplication o = G× ro
to output a consistent view of the addition gate gadget’s internal wires. We
show that when the external wire distribution is distributed as in the real or
simulated execution, our reconstruction procedures generate an indistinguishable
view for the internal wires of each gate gadget. We note that reconstructing
the multiplication gadget is significantly more complicated, and requires further
“beefing up” of the external wire distribution.

3 We note that a similar difficulty also arose in [FRR+10], where in the real view (but
not the simulated one) the emulation of multiplication gates required computing
parities. In their work this difficulty was solved using the secure hardware (essen-
tially replacing each real emulation of a multiplication gate with an indistinguishable
emulation that could be computed in AC0). We, on the other hand, want to avoid
the use of secure hardware.

Step II: indistinguishability of “beefed up” external wire distribu-
tions. Given the AC0 reconstruction procedures, it remains to argue that the
“beefed up” external wire distributions of the real and simulated executions are
indistinguishable under bounded-length AC0 leakage. The external wire distri-
bution now includes a lot of information about the bundles, and in particular the
bundles are no longer independent of each other because they are tied together
via the bundle bank G and, for each bundle d, the vector r for which d = G×r.
We will argue indistinguishability using a hybrid argument, replacing the bundle
bank from real (i.e. 0 parities) to simulated (i.e. uniform), and replacing the par-
ities of bundles on the external wires one-by-one from real to simulated values.
As noted above, using a hybrid argument over the bundles one-by-one creates a
challenge because the bundles (which all depend on the same bundle bank) are
not independent of each other.

To use a hybrid argument over bundles, we decompose the execution’s view
into two parts: the first part depends on the bundle bank, but not on the hybrid
bundle, and contains essentially all the information needed to generate the parts
of the computation that do not involve the hybrid bundle. The second part
depends only on the randomness used to form the hybrid bundle. I.e., if d is
the hybrid bundle then we take r to be the linear combination of the bundle
bank that yields d. We use r to pre-compute non-AC0 information that helps
in generating the part of the view involving the hybrid bundle. The key point
is that we give an AC0 procedure for combining these two separate parts and
generating the entire view of one of the hybrid distributions. Of the two hybrids,
which one is generated is determined by the inner product of r with a vector x
that depends only on the bundle bank. Now, by the IPPP assumption (assuming
we can use x to generate the bundle bank), we know that even given these two
“pre-processed” parts of the view (computed from x and r separately), we can
combine them in AC0 to get one of the hybrid external wire distributions, and
thus no AC0 leakage on the hybrid can be statistically correlated with the inner
product of x and r. Thus, under the IPPP Assumption, AC0 leakage should not
be able to distinguish the hybrids.

In summary, we construct (hybrids of) the real and simulated external wire
distributions using “pre-processing”, where two pre-computed pieces are com-
bined in AC0 to give the appropriate external wire distribution. We get a reduc-
tion from the IPPP Problem to distinguishing the real and simulated external
wire distributions.

2 Model and Definitions

Preliminaries. For a vector or string x we denote by |x| the length of the vector,
and by xi or x[i] the i’th item in the vector. We denote by x|i the restriction
of a vector x to its first i items. For a vector x in {0, 1}n we say that x is
an encoding of b ∈ {0, 1} if the XOR (or sum over GF[2]) of x’s entries equals
b. For vectors x,y ∈ {0, 1}κ, we use x + y to denote bitwise addition over
GF[2] (i.e. XOR) of the vectors’ entries. We use e1, e2, . . . , en to denote the unit
vectors over {0, 1}n (n will be clear from the context), and we use Un to denote
the uniform distribution over {0, 1}n. For a finite set S we denote by y ∈R S

that y is a uniformly distributed sample from S. For a distribution D we use
y ∼ D to denote the experiment of sampling y by D. We use ∆(D,F) to denote
the statistical (L1) distance between distributions D and F . For a circuit (or
function) C and an oracle PPTM M we use MC(x) to denote M run on input
x with oracle access to C.

2.1 Leakage Attacks and Security

Definition 1 (AC0-Leakage Attack Aλ[C,Update](1κ)). A continual λ-bit
AC0-leakage attack of adversary A on C with update procedure Update pro-
ceeds in rounds. In each round t = 1, 2, . . ., there is a circuit Ct computed
in the previous round (where C1 = C). The AC0 adversary A chooses an in-
put xt for Ct and an AC0 and λ-bit output leakage function ℓt(·), which takes
as input: (i) the entire computation of Ct on input xt (including all circuit
wire values and all random coins), (ii) the entire computation of the update
procedure Update run on Ct and outputting Ct+1 (including all circuit wire
values and all random coins of Update). The adversary’s view in round t is
view t = (xt, Ct(xt), ℓt(entire computation of C(x) and Update(Ct))). The ad-
versary’s choices of the input xt and the leakage ℓt are adaptive can depend
on the views in all previous rounds.

The attack proceeds for T rounds (where T is chosen by the adversary). The
attack’s output (or adversary view in the attack) is view = (view1, view2, . . . , viewT).
The running time of A is its total running time in the attack, i.e. a polynomial-
time adversary can only run for poly(κ) rounds.

Remark 2. Throughout this work when any of our algorithms compute matrix
multiplication (or matrix-vector/vector-vector multiplication), this is done in the
straightforward (if inefficient) way. The partial sums are the sub-computations
in the multiplication, e.g. in computing the inner product ⟨x, y⟩, the partial sums
are (⟨x|1, y|1⟩, ⟨x|2, y|2⟩, . . . , ⟨x, y⟩). The leakage on the computation takes all of
these partial sums as a part of its input.

Definition 2 (λ(·)-Secure Compiler for AC0 leakage). Let Init and Update
be two PPTMs that take as input a circuit C and security parameter κ. We say
that (Init ,Update) is a λ(·)-secure compiler for AC0 leakage, for any circuit C
the following two requirements hold:

– Functionality: the circuits C1 = Init(C, κ), C2 = Update(C1, κ), C3 = Update(C2, κ), . . .
are each with all but negligible probability functionally equivalent to the orig-
inal circuit C. For all i ≥ 1 the circuits Ci are of the same size.

– Security: for any PPTM adversary A there exists a PPTM simulator S such
that the view Aλ(κ)[Init(C, κ),Update(·, κ)](1κ) of the adversary in an AC0

leakage attack is indistinguishable from the view SC(1κ) generated by the
simulator from black-box access to C. Note that there is no leakage on the
Init procedure.

Remark 3. Note we may consider many relaxations and strengthenings of this
definition. For example, we could relax functionality to require only that each Ci

is functionally equivalent to C w.h.p. on each input over the coins of the Init and
Update procedures and/or the coins of Ci. We could also strengthen security to
restrict the simulator S to only have oracle access to the inputs queried by the
adversary (and in fact our construction meets this more stringent requirement).
The choices in the definition above were made mainly for the sake of simplicity.

2.2 The IPPP Problem and Assumption

We give formal definitions of the IPPP Problem and Assumption, see also the
discussion in the introduction. See the full version for further details and discus-
sion, including connections to problems in complexity theory, as well as further
properties such as a worst-case to average-case hardness reduction.

Problem 1 ((λ(·), s(·), ε(·))-Inner Product with Pre-Processing (IPPP)). A triplet
(C, C1, C2) of circuits ensembles solves the (λ(·), s(·), ε(·))-Inner Product with
Pre-Processing Problem (IPPP) if:

1. there exists a polynomial p(·) : N → N, such that ∀κ ∈ N:
(a) C1

κ and C2
κ are of size at most p(κ), with input length κ (and output

length at most p(κ)). These are both randomized circuits with a common
random input. We call C1 and C2 the pre-processing circuits ensembles
(or circuits for short)

(b) Cκ is of size at most s(κ), with input length at most p(κ) and output
length λ(κ).
We call C the output circuit ensemble (or circuit for short).

(c) the combined output lengths of C1
κ and C2

κ equal the input length of Cκ
2. for infinitely many κ ∈ N:

∆({Cκ(C
1
κ(x), C

2
κ(y)) : x, y ∈R {0, 1}κ s.t. ⟨x, y⟩ = 0},

{Cκ(C
1
κ(x), C

2
κ(y)) : x, y ∈R {0, 1}κ s.t. ⟨x, y⟩ = 1}) ≥ ε(κ)

randomness in both distributions is over the choice of x, y and the (shared)
coins of C1, C2.

Assumption 2 (λ(·)-IPPP Assumption) For any polynomial s(·) and in-
verse polynomial ε(·), no triplet of circuit ensembles (C, C1, C2) with C in AC0

can solve the (λ(·), s(·), ε(·))-IPPP problem.

3 Transformation Against AC0 Leakage

In this section we detail a secure compiler for AC0 leakage and give more details
on the proof of Theorem 1. For ease of exposition we consider throughout this
section a circuit C(·, ·) that is known to the adversary and takes two inputs x
and y. The input x is the one chosen adaptively by the adversary in each round,
whereas the input y is secret and protected by the compiler. In particular this
gives a compiler a la Definition 2 by viewing C as a universal circuit and y as

the description of a particular circuit to be compiler. This is similar to what is
done in the secure multi-party computation literature.

The compiler transforms y into a secret state for an emulation of the universal
computation. This secret state includes a wire bundle for each y-input wire of
the circuit. The XOR of this bundle is the value of its y-input wire. The secret
state also includes a “bundle bank” of bundles encoding 0 (see the overview in
the introduction). Given bundles for the input wires, the transformed circuit’s
computation then proceeds gate by gate, using the bundles computed for that
gate’s input wires and the bundles in the bank to compute an output bundle. In
the construction below, we present Init and Update as procedures for initializing
and updating the secret state — a collection Y (viewed as a matrix whose
columns are the bundles) of bundles for the y input wires, and the bundle bank
G (also a matrix). We call the “bundle bank” in round t the “generating matrix”
for that round (as it is used to generate fresh 0-bundles).

In Figure 3 we present the procedures for emulating the computation of each
gate in the original circuit. Given this view of the compiler’s operation (slightly
modified from the one in Definition2), we view the Init and Update procedure’s
outputs as secret states that are later plugged into the gate-by-gate emulator of
(public) circuit’s computation. They are in Figures 1 and 2. The secret states
can be transformed into a full-blown circuit a la Definition 2 by augmenting
them with the (publicly and known to all parties) emulation of the circuit C.

Initialization Init(1κ, y)

1. for every input wire i, corresponding to bit j of the input y, generate a new
encoding: di ∈ {0, 1}κ, a uniformly random vector whose XOR is yj .
Let Y be the matrix whose columns are these encodings.

2. generate a new uniformly random κ× 2κ matrix G whose columns are all encod-
ings of 0.

3. output state1 ← (Y,G).

Fig. 1. Init procedure, to be run in an offline stage on circuit C and secret y.

State Update Update(1κ, statet = (Y,G))

1. for each column Yi of Y : Y ′
i ← Yi +G× r, where r ∼ U2κ

2. pick a uniformly random 2κ× 2κ matrix R. G′ ← G×R.
3. output statet+1 ← (Y ′, G′).

Fig. 2. Update procedure, to be run under leakage between evaluations.

Security Proof: Further Details and Organization. The simulator is spec-
ified in Figure 4. We want to prove that the view it generates is indistinguishable
from the real view, under bounded length AC0 leakage in each round. See the

Gate Computations (with bundle-bank/generating matrix G)

Addition (di,dj):

1. q ← di + dj

2. o← G× r, where r ∼ U2κ

3. output dk ← q + o

Multiplication (di,dj):

1. B ← di × dT
j ,

i.e. the κ× κ matrix where entry [ℓ,m] equals di[ℓ] · dj [m]
2. S ← G×R,

where R is a {0, 1} uniformly random 2κ× κ matrix
3. U ← B + S
4. for each row ℓ of U , compute q[ℓ] = ⊕m∈[κ]U [ℓ,m]
5. output dk ← q

Constant Gate (bi):

1. q ← [bi, 0, 0, . . . , 0]
2. o← G× r, where r ∼ U2κ

3. output dk ← q + o

Duplication (di):

1. o← G× r, where r ∼ U2κ

2. o′ ← G× r′, where r′ ∼ U2κ

3. output dj ← di + o and dk ← di + o′

Output Gate (doutput):

1. o← G× r, where r ∼ U2κ

2. d← doutput + o
3. output ⊕m∈[κ]d[m]

Fig. 3. Gate computations during evaluation, all run under leakage.

introduction for the high-level intuition behind the security proof. The formal
argument used in the reduction is more involved. We consider the real and sim-
ulated views, Real and Simulated (respectively). We want to use a distinguisher
between the real and simulated view to build an AC0 circuit for solving the IPPP
problem, leading to a contradiction. This requires care, and in particular we will
use several hybrid views and seek methods for generating them in AC0 (with
some pre-processing, see below).

One important difference between the Real and Simulated views is in the
generating matrices they use (whose columns all encode 0 in Real , but are uni-
formly random in Simulated). In both views we want to use each generating
matrix G to generate encodings of 0’s (or 1’s in Simulated) upon request. The
immediate way of doing this is choosing randomness r from the proper distri-
bution and computing G × r together with all of the partial sums (the partial

Simulator

Initialize G0 as a uniformly random κ × 2κ matrix, and Y0 as a uniformly random
κ× n matrix (where n is the bit length of y).
For rounds t← 1, 2, . . ., on input xt, generate the view for that round gate by gate:

1. For addition, multiplication, constant and duplication gates, operate exactly as
the real gate computations in Figure 3 (albeit here G is uniformly random).

2. For the output gate, on encoding doutput , retrieve the output bit C(xt, y).
Generate o as a uniform linear combination of the columns of G s.t.
⊕m∈[κ](doutput + o)[m] = C(xt, y).

3. For the state update, operate as in the real state update in Figure 2. I.e. generate
Yt+1 by adding random linear combinations of Gt to the columns of Yt.
To generate Gt+1, multiply Gt by a random invertible 2κ× 2κ matrix.

Fig. 4. Simulator S.

sums are needed for generating the entire view of each wire in the matrix-vector
multiplication). Unfortunately, this is not an AC0 computation. See the discus-
sion in Section 1.1 for intuition regarding this obstacle and the high-level ideas
for overcoming it.

We will use several hybrid views, and set up the views (real, simulated or
hybrid) as follows. For every round t we will have a generating matrix Gt (either
uniformly random, or random s.t. all columns encode 0). We generate an external
wire distribution which specifies the encoding/bundle on each of the circuit wires
together with additional information about it and global information about this
round. This recalls the high-level structure of the security proof in [FRR+10],
though here even the simulated view cannot be generated in AC0 and so we
need a “‘beefed up” external wire distribution (as discussed in Section 1.1). In
particular, for each wire encoding we also include its decomposition into a linear
combination of G’s columns (the bundle bank) XORed with a 0 or a 1 bit. See
the full version for a full specification of the external wire distribution.

We argue that distinguishing the external wire distributions for any pair of
adjacent views (simulated, hybrid, real) is hard given only bounded length AC0

leakage from each round (this usually involves another hybrid argument over the
rounds and/or wires).

To finish the argument and show the complete views in their entirety are
also indistinguishable we need to generate the actual views, including also the
internal gate wires. As discussed in Section 1.1, we give reconstruction procedures
for completing the view and setting values for all of the internal gate wires in
both the Real and Simulated views. The reconstruction procedures are in AC0,
and so indistinguishability of the views follows immediately from the indistin-
guishability of their external wire distributions.

The full security proof has been omitted for lack of space. See the full version
for details.

4 Acknowledgements

Much of this research is joint work with Shafi Goldwasser. I am grateful for her
countless insights, suggestions and contributions. Thanks also to Vinod Vaikun-
tanathan for suggesting that the main result implies obfuscation secure against
AC0 adversaries.

References

[AGV09] Adi Akavia, Shafi Goldwasser, and Vinod Vaikuntanathan. Simultaneous
hardcore bits and cryptography against memory attacks. In TCC, pages
474–495, 2009.

[Ajt11] Miklós Ajtai. Secure computation with information leaking to an adversary.
In STOC, pages 715–724, 2011.

[BFS86] László Babai, Peter Frankl, and Janos Simon. Complexity classes in com-
munication complexity theory (preliminary version). In FOCS, pages 337–
347, 1986.

[BGI+01] Boaz Barak, Oded Goldreich, Russell Impagliazzo, Steven Rudich, Amit
Sahai, Salil P. Vadhan, and Ke Yang. On the (im)possibility of obfuscating
programs. In CRYPTO, pages 1–18, 2001.

[BKKV10] Zvika Brakerski, Yael Tauman Kalai, Jonathan Katz, and Vinod Vaikun-
tanathan. Overcoming the hole in the bucket: Public-key cryptography
resilient to continual memory leakage. In FOCS, pages 501–510, 2010.

[DI06] Bella Dubrov and Yuval Ishai. On the randomness complexity of efficient
sampling. In STOC, pages 711–720, 2006.

[DP08] Stefan Dziembowski and Krzysztof Pietrzak. Leakage-resilient cryptogra-
phy. In FOCS, pages 293–302, 2008.

[FRR+10] Sebastian Faust, Tal Rabin, Leonid Reyzin, Eran Tromer, and Vinod
Vaikuntanathan. Protecting circuits from leakage: the computationally-
bounded and noisy cases. In EUROCRYPT, pages 135–156, 2010.

[GK05] Shafi Goldwasser and Yael Tauman Kalai. On the impossibility of obfus-
cation with auxiliary input. In FOCS, pages 553–562, 2005.

[GR10] Shafi Goldwasser and Guy N. Rothblum. Securing computation against
continuous leakage. In CRYPTO, pages 59–79, 2010.

[GR12] Shafi Goldwasser and Guy N. Rothblum. How to compute in the presence
of leakage. Electronic Colloquium on Computational Complexity (ECCC),
(010), 2012.

[HN10] Danny Harnik and Moni Naor. On the compressibility of np instances and
cryptographic applications. SIAM J. Comput., 39(5):1667–1713, 2010.

[ISW03] Yuval Ishai, Amit Sahai, and David Wagner. Private circuits: Securing
hardware against probing attacks. In CRYPTO, pages 463–481, 2003.

[JV10] Ali Juma and Yevgeniy Vahlis. Protecting cryptographic keys against con-
tinual leakage. In CRYPTO, pages 41–58, 2010.

[KJJ99] Paul Kocher, Joshua Jaffe, and Benjamin Jun. Differential power analysis.
In Wiener, editor, CRYPTO99, pages 388–397, 1999.

[MR04] Silvio Micali and Leonid Reyzin. Physically observable cryptography (ex-
tended abstract). In TCC, pages 278–296, 2004.

[Raz87] Alexander Razborov. Lower bounds for the size of circuits of bounded
depth with basis and, xor. Math. Notes of the Academy of Science of the
USSR 41, 1987.

[RCL] Boston University Reliable Computing Laboratory. Side channel attacks
database. http://www.sidechannelattacks.com.

[RSVC+11] Mathieu Renauld, François-Xavier Standaert, Nicolas Veyrat-Charvillon,
Dina Kamel, and Denis Flandre. A formal study of power variability issues
and side-channel attacks for nanoscale devices. In EUROCRYPT, pages
109–128, 2011.

[Smo87] Roman Smolensky. Algebraic methods in the theory of lower bounds for
boolean circuit complexity. In STOC, pages 77–82, 1987.

