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Abstract. We present a compiler that converts any circuit into one that remains
secure even if a constant fraction of its wires are tampered with. Following the
seminal work of Ishai et. al. (Eurocrypt 2006), we consider adversaries who may
choose an arbitrary set of wires to corrupt, and may set each such wire to 0 or
to 1, or may toggle with the wire. We prove that such adversaries, who contin-
uously tamper with the circuit, can learn at most logarithmically many bits of
secret information (in addition to black-box access to the circuit). Our results are
information theoretic.
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1 Introduction

In recent years, there has been a proliferation of physical attacks on cryptographic
schemes. Such attacks exploit the implementation (rather than the functionality) of the
scheme. For instance, Kocher et al. [46] demonstrated how one can possibly learn the
secret key of an encryption scheme by measuring the power consumed during an en-
cryption operation, or by measuring the time it takes for the operation to complete [45].
Other types of physical attacks include: inducing faults to the computation [5, 7, 46],
using electromagnetic radiation [30, 55, 54], and several others [54, 43, 47, 35]. These
physical attacks have proven to be a significant threat to the practical security of cryp-
tographic devices.

Traditional cryptographic models do not take such attacks into account since they
idealize the parties’ interaction and implicitly assume that an adversary may only ob-
serve an honest party’s input-output behavior. Recently, a large and growing body of
research has sought to introduce more realistic models and to secure cryptographic sys-
tems against such physical attacks. The vast majority of these works focus on securing
cryptographic schemes against various leakage attacks (e.g. [10, 38, 49, 31, 37, 20, 51,
1, 50, 42, 18, 17, 24, 39, 34]). In these attacks an adversary plays a passive role, learning
information about the honest party through side-channels but not attempting to interfere
with the honest party’s computation. However, as mentioned above, physical attacks are
not limited to leakage, and include active tampering attacks, where an adversary may
actively modify the honest party’s memory or circuit. The focus of this work is to con-
struct schemes that are secure even in the presence of tampering (we elaborate on related
work in Section 1.3).



1.1 Our Results

We show a general compiler that converts any circuit into one that is resilient to (a cer-
tain form of) tampering. We consider the tampering model of Ishai et al. [37]. Namely,
we consider adversarial faults, where during each run the computationally unbounded
adversary can tamper with any (bounded) set of wires of his choice.

We note that we cannot hope to get correctness, since the adversary may simply
tamper with the final output wire. Thus, following [37], we do not attempt to guarantee
correctness, but instead devote our efforts to ensuring privacy. More specifically, we
consider circuits that are associated with a secret state (such as a cryptographic key).
We model such circuits as standard circuits (with AND, OR, and NOT gates), with
additional secret memory that contains the secret state. The circuit itself is thought of
as being public and known to the adversary, whereas the memory content is secret.
Following the terminology of [37], we refer to such circuits as private circuits. Our
goal is to protect the secret state of the circuit even when an adversary may run the
circuit on arbitrary inputs while continuously tampering with the circuit.

Unlike the leakage regime, where we build cryptographic schemes that are secure
against arbitrary (bounded) leakage, in the tampering regime, we focus on limited types
of adversarial tampering attacks. Indeed, it is not hard to see that it is impossible to
construct private circuits resilient to arbitrary tampering attacks, since an adversary may
modify the circuit so that it simply outputs the entire secret state in memory. As in [37],
we only allow the adversary to tamper with individual wires [37, 25] and individual
memory gates [13, 31, 21]. More specifically, in each run of the circuit we allow the
adversary to specify a set of tampering instructions, where each instruction is of the
form: Set a wire (or a memory gate) to 0 or 1, or toggle with the value on a wire (or a
memory gate). However, in contrast to [37], we allow the adversary to tamper with any
constant fraction of wires and memory gates in the circuit. We note that the tampering
allowed in [37] is very local: To be resilient against tampering with t wires per run, they
blow up the size of the circuit by a factor of at least t; thus their overall tampering rate
is very small compared to the size of the circuit.

As noted by [31], it is impossible to construct private circuits resilient against tam-
pering on wires without allowing feedback into memory, i.e. without allowing the cir-
cuit to overwrite its own memory. Otherwise, an adversary may simply set to 0 or 1 one
memory gate at a time and observe whether the final output is modified or not. Thus,
the adversary may often learn the entire internal state of the circuit by setting one wire
at a time.

Even if we allow feedback, and place limitations on the type of tampering we allow,
it is not a priori clear how to build tamper-resilient circuits. As pointed out in [37], the
fundamental problem is that the part of the circuit which is supposed to detect tampering
and overwrite the memory, may itself be tampered with. Indeed, this “self-destruct”
mechanism itself needs to be resilient to tampering.

As in [37], we prove security using a simulation based definition, where we require
that for any adversary who continually tampers with the circuit (as described above),
there exists a simulator who simulates the adversary’s view. However, whereas [37] give
the simulator only black-box access to the circuit, we also give the simulator logarithmic
number of leakage bits on the secret state. We note that for many applications, leakage



of only logarithmically many bits of the secret key does not break the security of the
primitive. This is because an adversary may simply guess these bits of leakage on his
own.

We also note that our compiler is deterministic, and for deterministic constructions
such leakage is necessary. Loosely speaking, this is the case since an adversary can
always leak a memory gate of its choice, by checking whether setting that memory gate
to 0 affects the functionality of the circuit. We note that if the compiler is deterministic
then many of the memory gates contain “sensitive” information. This is not necessarily
the case if the compiler is randomized since then the secret state can be secret-shared in
memory, in which case each memory gate on its own may contain a truly random bit.

Our Results More Formally We present a general compiler T that converts a circuitC
with a secret state s (denoted by Cs) into a circuit C̃S̃ with a secret state S̃. We consider
computationally unbounded adversaries A who receive access to C̃S̃ and behave in
the following way: A runs the circuit many times with arbitrary and adaptively chosen
inputs. In addition, during each run of the circuit the adversaryAmay specify tampering
instructions of the form “set wire w to 1”,“set wire w to 0”, “flip value of wire w”, as
well as “set memory gate g to 1”, “set memory gate g to 0”, “flip value of memory gate
g”, for any wire w or memory gate g. We restrict the number of tampering instructions
A may specify per run to be at most λ · σ, where λ > 0 is some constant and σ is the
size of the circuit C̃S̃ . Thus, in each run,Amay tamper with a constant fraction of wires
and memory gates. Again, we emphasize that our result does not rely on computational
assumptions and is completely information theoretic. Moreover, our result does not rely
on any source of randomness and our compiler is deterministic.

Theorem 1 (Main Theorem, Informal). There exists a universal constant λ > 0 and
an efficient transformation T which takes as input any circuit Cs with private state s
and outputs a circuit C̃S̃ with private state S̃ such that the following two conditions
hold:

Correctness: For every input x, Cs(x) = C̃S̃(x).
Tamper-Resilience: For every adversary A, which may tamper with a λ-fraction of

wires and memory gates in C̃S̃ per run, there exists a simulator Sim, which can
simulate the view ofA given only black-box access toCs and log(T ) bits of leakage
on s, where T is an upper bound on the number of times thatA runs the (tampered)
circuit.1 Moreover, the runtime of Sim is polynomial in the runtime of A and Cs.

Intuitively, the theorem asserts that adversaries who may observe the input-output be-
havior of the circuit while tampering with at most a λ-fraction of wires and memory
gates in each run, do not get too much extra knowledge over what they could learn from
just input-output access to the circuit. More specifically, running the (tampered) circuit
poly(|s|) times leaks at most O(log |s|) bits.

We remark that this relaxation of allowing O(log |s|) bits of leakage was first con-
sidered by Faust et. al. [25]. We additionally mention, as we argued previously, that
leaking at most O(log |s|) bits does not compromise security of many applications.

1 The reader can think of T as polynomial in the security parameter.



This is because an adversary receiving only input-output access to the circuit may sim-
ply guess the O(log |s|) bits of leakage, and his guess will be correct with probability
1/2O(log |s|) = 1/poly(|s|). Thus, we don’t lose much by leaking O(log |s|) bits of the
secret key.

1.2 Comparison with Ishai et al. [37]

Our work is inspired by the work of [37]. As in our work, they too consider circuits
with memory gates, and consider the same type of faults as we do. Similarly to us, they
construct a general compiler that converts any private circuit into a tamper resilient one.
However our work differs from their work in several ways.

– The tamper resilient circuits in [37] require the use of “randomness gates”, which
output a fresh random bit in each run of the circuit. Alternatively, [37] can get rid of
these randomness gates at the cost of relying on a computational assumption. Their
computational result, which does not require randomness gates, relies on the exis-
tence of one-way functions and considers only polynomially bounded adversaries.
In contrast, our compiler and the resulting tamper-resilient circuits are determinis-
tic, and provide information theoretical security.

– As mentioned previously, [37] constructs tamper resilient circuits that are resilient
only to local tampering. More specifically, in order to be resilient to tampering
with t wires per run, they blow up the circuit size by a factor of at least t. In con-
trast, our tamper-resilient circuits are resilient to a constant fraction of tampering
anywhere in the circuit, and thus are robust to global tampering.

– In the tamper resilient circuits of [37], there is one gate G that has a large fan-out.
In practice, however, large fan-out gates do not exist, and instead they are imple-
mented using a splitter, which takes as input the output wire of a gate and duplicates
the wire many times. Unfortunately, such an implementation is not resilient to tam-
pering with the output wire ofG (which is the input wire to the splitter), since if this
wire is tampered with, then it causes an immediate tampering with all the output
wires of the splitter. In contrast, in our work all the gates of the tamper resilient cir-
cuits have constant fan-out (and some gates use splitters). However, due to lack of
space, in this extended abstract we focus on the initial constructions that do assume
the existence of a gate with large fan-out. We refer the reader to the full version
[14] for details on how we remove this large fan-out gate.

– One advantage of the tampering model of [37] over our model, is that their model
allows for“persistent faults”, e.g, if a value of some wire is fixed during one run, it
remains set to that value in subsequent runs. We note that in our case, we cannot
in general allow persistent faults across runs of the circuit. However, we allow
“persistent faults” on memory gates so if a memory value is modified during one
run, it remains modified for all subsequent runs.

– Another advantage of [37] is that their security definition is slightly stronger than
ours. They guarantee that any adversary that continually tampers with the circuit
(as described above) can be simulated given only black-box access to the circuit,
whereas in our security definition, we give the simulator in addition logarithmically
many bits of information.



Extending our result to allow for both Leakage and Tampering. Note that so far,
we considered adversaries who only tamper with the wires and the memory of the cir-
cuit. Our result can be extended to consider adversaries who both tamper and leak.
More specifically, we show a general compiler that converts any circuit into one that is
resilient against both tampering (in the model described above) and leakage. The leak-
age model that we consider is OCL (“only computation leaks”) leakage, as defined by
Micali and Reyzin [49].

Unfortunately, being resilient to leakage (in addition to tampering) comes at a price:
First, the resulting circuit no longer tolerates a constant-fraction of tampering, but rather
security is ensured as long as 1/ poly(k)-fraction of the wires (or memory gates) can be
tampered with. In addition, the result is no longer information theoretical, and relies on
cryptographic assumptions. Specifically it relies on the existence of a non-committing
encryption scheme [11] (which can be instantiated from hardness of factoring Blum
integers, CDH and LWE [11, 15, 12]), and on the existence of a fully homomorphic
encryption scheme (which can be instantiated from LWE [32, 9, 8]). Due to lack of
space, we defer our result in the leakage setting to the full version.

1.3 Related Work

The problem of constructing error resilient circuits dates back to the work of Von Neu-
mann from 1956 [56]. Von Neumann studied a model of random errors, where each
gate has an (arbitrary) error independently with small fixed probability, and his goal
was to obtain correctness (as opposed to privacy). There have been numerous follow up
papers to this seminal work, including [16, 53, 52, 27, 23, 36, 28, 22], who considered
the same noise model, ultimately showing that any circuit of size σ can be encoded into
a circuit of size O(σ log σ) that tolerates a fixed constant noise rate, and that any such
encoding must have size Ω(σ log σ).

There has been little work on constructing circuits resilient to adversarial faults,
while guaranteeing correctness. The main works in this arena are those of Kalai et al. [41],
Kleitnam et al. [44], and Gál and Szegedy [29]. The works of [44] and [41] consider a
different model where the only type of faults allowed are short-circuiting gates. [29]
consider a model that allows arbitrary faults on gates, and show how to construct
tamper-resilient circuits for symmetric Boolean functions. We note that [29] allow a
constant fraction δ of adversarial faults per level of the circuit. Moreover, if there are
less than 1/δ gates on some level, they allow no tampering at all on that level. [29] also
give a more general construction for any efficiently computable function which relies
on PCP’s. However, in order for their construction to work, they require an entire PCP
proof π of correctness of the output to be precomputed and handed along with the input
to the tamper-resilient circuit. Thus, they assume that the input to the circuit is already
encoded via an encoding which depends on the output value of that very circuit. We
also use the PCP methodology in our result, but do not require any precomputations or
that the input be encoded in some special format.

Recently, the problem of physical attacks has come to the forefront in the cryptog-
raphy community. From the viewpoint of cryptography, the main focus is no longer to
ensure correctness, but to ensure privacy. Namely, we would like to protect the hon-
est party’s secret information from being compromised through the physical attacks



of an adversary. There has been much work on protecting circuits against leakage at-
tacks [38, 49, 20, 51, 19, 26, 39, 34]. However, there has not been much previous work
on constructing circuits resilient to tampering attacks. In this arena, there have been two
categories of works. The works of [31, 21, 13, 48, 40] allow the adversary to only tam-
per with and/or leak on the memory of the circuit in between runs of the circuit, but do
not allow the adversary to tamper with the circuit itself. Due to lack of space we do not
elaborate on these related works in this extended abstract, and refer the reader to the full
version for details. We note that this model of allowing tampering only with memory is
very similar to the problem of ”related key attacks” (see [3, 2] and references therein).
In contrast, in our work, as well as in the works of [37, 25], the focus is on constructing
circuits resilient to tampering with both the memory as well as the wires of the circuit.

Faust et al. [25] consider a model that is reminiscent to the model of [37] and to the
model we consider here. They consider adversarial faults where the adversary may ac-
tually tamper with all wires of the circuit but each tampering attack fails independently
with some probability δ. As in our case, they also allow the adversary to learn a loga-
rithmic number of bits of information on the secret key. However, their result requires
the use of small tamper-proof hardware components.

1.4 Our Techniques

Our conceptual approach is similar to [37]: The tamper-resilient circuit has an “error-
detection” mechanism, and if an error is detected then the circuit self-destructs (i.e. the
memory is zeroed out). However, our techniques for achieving this are very different.

Recall that our goal is to guarantee security against an adversary who may tamper
with a constant fraction of the wires and memory gates. We begin with the simple
observation that circuits in NC0 are inherently tamper-resilient. In particular, since
each output bit of an NC0 circuit is computed by a constant-size circuit (say of size σ̃),
if we allow α · 1/σ̃-fraction of tampering for some constant α < 1, then we ensure that
at least (1− α)-fraction of the output bits are exactly correct.

In order to construct a good error-detection mechanism for our tamper-resilient cir-
cuit, we need to construct a mechanism that detects errors and is itself resilient to a
constant-fraction of tampering. More specifically, we would like to construct a “robust”
verifier in NC0 for the computation of the original circuit, such that if an error is de-
tected in the computation, then most of the circuit’s output are set to 0. Fortunately, the
PCPP (PCP of Proximity) Theorem [4] provides us with exactly such a verifier. Infor-
mally, in a PCPP for an NP language L, the verifier is given oracle access to a PCP π
and is also given oracle access to an instance z. The verifier tosses logarithmically many
random coins and it queries a constant number of bits of π and z. It accepts if z ∈ L
and if the PCP π was generated honestly, and it rejects (with probability 1/2) if z is far
from being in the language (even if π was generated maliciously). We refer the reader
to Section 2 for details.

Note that for any fixed setting of the random coins, the corresponding verifier is of
constant size since it has only a constant number of input bits. Thus, by constructing
a separate verifier corresponding to each possible outcome of the random coins and
outputting the output bits of all verifiers, we obtain a single (larger) verifier in NC0

with the property that if z is far from L then at least a 1/2-fraction of the verifier’s



outputs are 0. Note that the soundness property only holds when z is ”far” from every
string in L. Thus, our transformed circuit has the following basic paradigm: We encode
the secret state s and the input x using an error-correcting code to obtain S = ECC(s)
and X = ECC(x). We compute b = Cs(x), and we compute a PCPP proof π that
(b, S ◦ X) ∈ L where L = {(b, S ◦ X) | ∃s, x : S = ECC(s), X = ECC(x), b =
Cs(x)}. Then we verify the proof and self-destruct (i.e. erase all memory) if any of
the output bits of the verifier are 0. Additional work is required to go from tolerating
a constant-fraction of tampering in the error-detection stage to tolerating a constant-
fraction of tampering overall. We elaborate on these in Section 4.2.

We mention that the resulting tamper-resilient circuit has one gate with large fan-
out. Additional ideas are needed in order to remove the need of such a large fan-out
gate. Due to lack of space we elaborate on these in the full version.

We note that the techniques mentioned so far are used to get resilience only against
tampering attacks (and not leakage attacks). In order to get security against both (con-
tinual) leakage and tampering, we rely on techniques in the leakage regime, and in par-
ticular rely on recent results in the OCL model [49, 39, 34, 33].2 Due to lack of space
we defer the details to the full version.

2 PCP of Proximity

In this section, we present necessary preliminaries on PCP of proximities (denoted by
PCPP), and state the efficient PCPP theorem of [4]. A PCP of proximity is a relaxation
of a standard PCP, that only verifies that the input is close to an element of the language.
The advantage of this relaxation is that it allows the possibility that the verifier may read
only a small number of bits from the input. For greater generality, the input is divided
into two parts (a, z), where a is given explicitly to the verifier, and z is given only as
an oracle. Thus PCPs of proximity consider languages which consist of pairs of strings,
and therefore are referred to as pair languages.

Definition 1 (Pair language). A pair language L is simply a subset of the set of string
pairs L ⊆ {0, 1}∗ × {0, 1}∗. For every a ∈ {0, 1}∗, we denote La = {z ∈ {0, 1}∗ :
(a, z) ∈ L}. We usually denote ` = |a| and K = |z|.

Definition 2 (Relative Hamming distance). Let z, z′ ∈ {0, 1}K be two strings. The
relative Hamming distance between z and z′ is defined as

∆(z, z′) , |{i ∈ [K] : zi 6= z′i}|/K.

We say that z is δ-far from z′ if ∆(z, z′) ≥ δ. More generally, let S ⊆ {0, 1}K; we say
z is δ-far from S if ∆(z, z′) ≥ δ for every z′ ∈ S.

Definition 3 (PCP Verifiers). A verifier is a probabilistic polynomial time algorithm V
that, on an input x, tosses r = r(|x|) random coins and generates a sequence of q =

2 We actually rely on the recently constructed LDS compiler [6], which in turn is based on OCL
compilers.



q(|x|) queries I = (i1, . . . , iq) and a circuit D : {0, 1}q → {0, 1} of size at most
d(|x|).3

We think of V as representing a probabilistic oracle machine that queries its ora-
cle π at positions I , receives the q answer bits π|I , (πi1 , . . . , πiq ), and accepts if and
only ifD(πI) = 1. We write (I,D)← V (x) to denote the queries and circuit generated
by V on input x (and random coin tosses). We call r the randomness complexity, q the
query complexity, and d the decision complexity of V .

Definition 4 (PCPP verifier for a pair language [4]). For functions s, δ : N→ [0, 1],
a verifier V is a probabilistically checkable proof of proximity (PCPP) system for a
pair language L with proximity parameter δ and soundness error s, if the following two
conditions hold for every pair of strings (a, z):

Completeness: If (a, z) ∈ L then there exists π such that V (a) accepts oracle z ◦ π
with probability 1. Formally

∃π Pr
(I,D)←V (a)

[D((z, π)|I) = 1] = 1.

Soundness: If z is δ(|a|)-far from L(a), then for every π, the verifier V (a) accepts
oracle z ◦ π with probability strictly less than s(|a|). Formally,

∀π Pr
(I,D)←V (a)

[D((z ◦ π)|I) = 1] < s(|a|).

Theorem 2 (Efficient PCPP for Pair-language (Theorem 3.3 of [4])). Let T : N →
N be a non-decreasing function, and let L be a pair language. If L can be decided in
time T ,4 then for every constant ρ ∈ (0, 1) there exists a PCP of proximity for L with
randomness complexityO(log T ), query complexity q = O(1/ρ), perfect completeness,
soundness error 1/2, and proximity parameter ρ.

We mention that [4] does not discuss the complexity of constructing the PCPP
proof, but the efficiency follows by a close inspection of their construction.

3 The Tampering Model
3.1 Circuits with Memory Gates

Similarly to [37], we consider a circuit model that includes memory gates. Namely, a
circuit consists of (the usual) AND, OR, and NOT gates, connected to each other via
wires, as well as input wires and output wires. In addition, a circuit may have memory
gates. Each memory gate has one (or more) input wires and one (or more) output wires.
Each memory gate is initialized with a bit value 0 or 1. This value can be updated during
each run of the circuit.

3 For the sake of simplicity we consider only bit queries.
4 L can be decided in time T if there exists a Turing machine M such that for every input
(a, b) ∈ {0, 1}∗ × {0, 1}∗, M(a, b) = 1 if and only if (a, b) ∈ L, and M(a, b) runs in time
T (|a|+ |b|).



Each time the circuit is run with some input x, all the wires obtain a 0/1 value. The
values of the input wires to the memory gates define the way the memory is updated.
We allow only two types of updates: delete or unchange. Specifically, if an input wire
to a memory gate has the value 0, then the memory gate is overwritten with the value 0.
If an input wire to a memory gate has the value 1, then the value of the memory gate
remains unchanged. We denote a circuit C initialized with memory s by Cs.

3.2 Tampering Attacks

We consider adversaries, that can carry out the following attack: The adversary has
black-box access to the circuit, and thus can repeatedly run the circuit on inputs of his
choice. Each time the adversary runs the circuit with some input x, he can tamper with
the wires and the memory gates. We consider the following type of faults: Setting a wire
(or a memory gate) to 0 or 1, or toggling with the value on a wire (or a memory gate).

More specifically, the adversary can adaptively choose an input xi and a set of
tampering instructions (as above), and he receives the output of the tampered circuit on
input xi. He can do this adaptively as many times as he wishes. We emphasize that once
the memory has been updated, say from s to s′, the adversary no longer has access to
the original circuit Cs, and now only has access to Cs′ . Namely, the memory errors are
persistent, while the wire errors are not persistent.

We denote by TAMPA(Cs) the output of an adversary A that carries out the above
tampering attack on a circuitCs. We say that an adversaryA is a λ-tampering adversary
if during each run of the circuit he tampers with at most a λ-fraction of the circuit.
Namely, A can make at most λ · |Cs| tampering instructions for each run, where each
instruction corresponds either to a wire tampering or to a memory gate tampering.
Remark. In this work, we define the size of a circuit C, denoted by |C|, as the number
of wires in C plus the number of memory gates in C. Note that this is not the common
definition (where usually the size includes also the gates); however, it is equivalent to
the common definition up to constant factors.

To define security of a circuit against tampering attacks we use a simulation-based
definition, where we compare the real world, where an adversary A (repeatedly) tam-
pers with a circuit Cs as above, to a simulated world, where a simulator Sim tries to
simulate the output ofA, while given only black-box access to the circuit Cs, and with-
out tampering with the circuit at all.

In this work, we give the simulator Sim, in addition to black box access to the cir-
cuit Cs, the privilege to request log T bits of information about s, where T is the num-
ber of timesA runs the tampered circuit. More specifically, the simulator, in addition to
black-box access to the circuit Cs, is also given oracle access to a leakage oracle that
takes as input any leakage request, represented as a boolean circuitL : {0, 1}k → {0, 1}
and returns L(s). The simulator Sim may query the leakage oracle at most log T times.
We denote the output of Sim by LeakBBSim,log T (Cs). As noted in the Introduction, this
leakage is necessary if we restrict ourselves to deterministic constructions.

Definition 5. We say that a circuit Cs is secure against λ-tampering adversaries, if
for every λ-tampering adversary A there exists a simulator Sim, that runs in time



poly(|A|, |Cs|), such that

{TAMPA(Cs)}k∈N ≡ {LeakBBSim,log T (Cs)}k∈N,

where T is an upper bound on the number of times that A runs the (tampered) circuit.

We give an efficient method for constructing circuits that remain secure against
adversaries that tamper with a constant fraction of the wires in the circuit. Namely, we
prove that there exists a constant λ > 0 such that the resulting circuit is secure against
λ-tampering adversaries.

4 The Compiler

In this section, we present our efficient compiler T , which takes a circuit Cs, with
memory containing a secret s ∈ {0, 1}k, and transforms it into a tamper-resilient circuit.

We describe our compiler in stages:

– First, we present a compiler that takes as input a circuit Cs and outputs a circuit
C

(1)
S , which we partition into four segments. We prove that C(1)

S is secure against
adversaries that tamper with at most a constant fraction of the memory gates, and
tamper with at most a constant fraction of the wires in Segment 2, Segment 3, and
Segment 4 of the circuit (and may tamper arbitrarily with Segment 1 of the circuit).
We refer to such security as security against local tampering.

– Then, we show how to make the size of the memory, and the size of Segments 2-4,
large enough so that the resulting circuit, denoted by C(2)

S̃
, is secure against adver-

saries who tamper with at most a constant fraction of the circuit overall. Namely,
we prove that there is a constant λ > 0 such that the resulting circuit, C(2)

S̃
, is se-

cure against any adversary that for each run of the circuit sends at most λ · |C(2)

S̃
|

tampering instructions, where each tampering instruction is either a wire tampering
or a memory tampering.

We note that both constructions have an AND gate (denoted by Gcas) which has a
large fan-out. In the full version we show how using some additional ideas, one can
bypass the need for such a gate.

4.1 The Compiler: First Construction

Let ECC(·) be a binary error correcting code which can efficiently correct a constant
fraction of errors δ > 0. We denote the (efficient) decoding procedure by Dec.

In what follows we present a compiler that takes as input a circuit Cs and outputs
a circuit C(1)

S . The circuit C(1)
S takes as input a string x ∈ {0, 1}n and outputs a bit b.

In the case of no tampering, we show the correctness property: C(1)
S (x) = Cs(x).

Moreover, we prove that the circuit C(1)
S is resilient to local tampering.

Remark. For simplicity we assume that s = 0k is “illegal.” We note that this assump-
tion is not necessary, and is made to simplify the construction and the analysis.

We next describe the circuit C(1)
S , which we partition into four segments:



Memory: Encoding Secret s. The encoding S = ECC(s) is placed in the memory of
C(1).

Segment 1: This segment consists of three sub-segments.
1. Encoding Input x. The first sub-computation encodes the public input x using

ECC. Namely, it takes as input x and outputs ECC(x).
We assume without loss of generality that |ECC(x)| = |ECC(s)|. This is with-
out loss of generality since if, for example, |x| < |s| then the encoding proce-
dure will first artificially increase x by appending zeros to it, and then encode;
and similarly if |s| < |x|.

2. Circuit Computation. The second sub-computation computes the output bit b =
Cs(x). Namely, it takes as input x and S and outputs b = Cs(x), where
s = Dec(S).

3. PCPP Computation. The third sub-computation computes a PCPP for the fol-
lowing pair language:

L = {(b,X◦S) | ∃x ∈ {0, 1}n, s ∈ {0, 1}k\{0k} : X = ECC(x), S = ECC(s), b = Cs(x)}

Namely, it takes as input the pair (b,X ◦ S) and outputs π, which is a PCP of
proximity for the statement (b,X ◦ S) ∈ L.
The PCPP we use is one with randomness complexity r = O(log |Cs|), query
complexity q = O(1/ρ) for ρ = δ

6 ,5 perfect completeness, and soundness 1/2,
where the verifier rejects with probability at least 1/2 statements (b,X ◦ S),
for which X ◦ S is ρ-far from the language Lb. The existence of such a PCPP
follows from Theorem 2 (see Section 2).

We note that the outputs of each of the above sub-computations are used by many
other subcomputations. Thus, each output wire of each of the above sub-computations
is split into many output wires. These output wires all belong to Segment 2, except
one output wire (which computes the bit b = Cs(x), and belongs to Segment 4).

Segment 2: PCPP Verification. This segment consists of τ , 2r = poly(|Cs|) cir-
cuits, Cvi , one for every possible PCPP verifier. Note that each verifier circuit has
constant size, which we denote by σ̃v.6 Each verifier circuit Cvi takes as input q bits
from (X ◦ S, b, π), and outputs a single bit βi. All the output wires of the circuits
Cvi are fed as input to a single AND gate Gcas with fan-in τ . Thus, the output of
Gcas is

∧
1≤i≤τ βi.

Let K be the number of bits in S, the encoding of the secret input s. The AND
gate Gcas (from Segment 2) has fan-out 2K, where the first K of the output wires
belong to Segment 3 and the other K output wires belong to Segment 4. We denote
the values of the output wires of Gcas by {γj}2Kj=1.

Segment 3: Error Cascade. This segment contains only the first K output wires of
Gcas, which have values {γj}Kj=1. For every j ∈ [K], the j’th output wire of Gcas

is fed as input to memory gate j. Thus, if γj = 0, memory position j is overwritten
with a 0. If γj = 1, memory position j is unchanged.

Segment 4: The Output. This segment consists of the rest of the circuit: The other K
output wires of Gcas, which have values {γj}2Kj=K+1, and a single AND gate Gout

5 Recall that δ is the fraction of errors that the error-correcting code ECC can correct.
6 We note that the amount of tampering we ultimately tolerate depends on σ̃v.



which has fan-inK+1 and outputs a single bit.Gout takes as input
(
b, {γj}2Kj=K+1

)
(all these input wires are part of this segment), and outputs b̃ = b∧

(∧
K+1≤j≤2K γj

)
.

We note that Segment 4 also includes the output wire ofGout, which is the final out-
put of the circuit C(1)

S (x).

The compiled circuit C(1)
S is depicted in Figure 1.

Fig. 1. The compiled circuitC(1)
S . We show here the Memory and the 4 segments of the compiled

circuit. Note that the encoding S and the input x are fed into the Circuit Computation Stage of
Segment 1. Additionally, the encodings S and X are fed into the PCPP Computation Stage of
Segment 1, and are fed to Segment 2 (the PCPP Verification Stage) along with the bit b, the output
of the Circuit Computation Stage. The outputs ofGcas feed back into memory (this is Segment 3–
Error Cascade) and to the final output gate Gout (in Segment 4) along with the output bit b of the
Circuit Computation Stage. The final output of the circuit is b̃.

The circuit C(1)
S is secure against an adversary A who may tamper as follows:

– A can tamper with any number of wires in Segment 1 of the circuit (which consists
of the encoding computation of the input x, the circuit computation Cs(x), and the
PCPP computation).

– A can tamper with at most λ-fraction of the wires in Segment 2 (PCPP verifica-
tion), λ-fraction of the wires in Segment 3 (error cascade), λ-fraction of the wires
in Segment 4 (output segment) and with at most λ-fraction of the memory gates,
where λ = min{ 1

3σ̃V
, δ6}.

We call such an adversary λ-locally tampering, and we denote the output of any
such adversary by LocalTAMPA(C

(1)
S ).



Lemma 1. Let λ = min{ 1
3σ̃V

, δ6}. Then for any λ-locally tampering adversaryA there
exists a simulator Sim, that runs in time poly(|A|, |Cs|), such that

{LocalTAMPA(C
(1)
S )}k∈N ≡ {LeakBBSim,log T (Cs)}k∈N,

where T is an upper bound on the number of times that A runs the (tampered) circuit.

We give the proof idea of Lemma 1, and defer the formal proof to the full version.

Proof idea. Fix any λ-locally tampering adversary A. Let T be an upper bound on the
number of times the adversary A runs a possibly tampered version of the circuit C(1)

s .
We construct a simulator Sim with black-box access to Cs, which is allowed to request
log T bits of leakage on the secret s, and simulates the view of A.

Sim chooses the leakage function to be the function L : {0, 1}k → {0, 1}log T ,
which has the adversaryA hard-wired into it, and on input a secret s, outputs the largest
index i∗, such that in the first i∗ − 1 runs of the (possibly tampered) circuit by A, all
the (possibly tampered) input wires to the gate Gcas have the value 1.

After querying this leakage function and receiving an output i∗, Sim internally emu-
latesA, by emulating the output of each run of the circuit. Each timeA calls the circuit
with input xi and a set of tampering instructions, the simulator Sim simulates the run
of the (possibly tampered) circuit as follows:

– Simulate the output X ′i of the (possibly tampered) Encoding Input Segment. Effi-
ciently decode X ′i to obtain x′i = Dec(X ′i).
Note that X ′i may be far from a codeword, in which case x′i may be ⊥. Also, note
that the simulator Sim is indeed able to carry out the above computation exactly as
in the real computation, since this part of the computation does not use the secret s,
and since Sim knows A’s tampering instructions.

– If i < i∗, set all the input wires of Gcas to be 1, and set the output of the Circuit
Computation Segment to be b′i = Cs(x

′
i). As we prove in the full version, the fact

that i < i∗ implies that it must be the case that x′i 6= ⊥, and that the output of the
Circuit Computation Segment is indeed Cs(x′i).
Simulate the output bout of Gout, using the tampering instructions of A, assum-
ing that the values of the K + 1 incoming wires (before applying the tampering
instructions to these wires) are (1K , b′i). Return bout.
Note that it is not necessarily the case that bout = b′i since the adversary A may
tamper with some of the incoming wires of Gout and may tamper with the output
wire.

– If i ≥ i∗, return bout = 0, unless A tampers with the output wire, in which case
Sim returns b if the tamper is “set to b”, and returns 1 if the tamper is “toggle”.
We will argue that in this case, even if A tampers with the input wires to Gout, the
output of Gout is always going to be 0, since he cannot tamper with all the input
wires (recall that he can tamper with at most a λ-fraction of the wires). Thus, the
output wire is always 0, unless the output wire itself is tampered with.

We defer to the full version the proof that this simulator indeed simulates the view ofA
correctly.



4.2 The Compiler: Final Construction

Note thatC(1)
S is secure against any adversary that tampers with only a constant fraction

of the memory, and a constant fraction of the wires in Segments 2, 3 and 4. We would
like to construct a circuit that is secure against adversaries that tamper with a constant
fraction of the circuit overall. Namely, we would like our circuit, which will be denoted
by C(2)

S̃
, to have the property that there is a constant λ > 0 such that C(2)

S̃
is secure

against any adversary that for each run of the circuit sends at most λ · |C(2)

S̃
| tampering

instructions, where each tampering instruction is either a wire tampering or a memory
tampering.

We do this by adding enough memory gates, and enough wires to the critical seg-
ments: the PCPP Verification Segment, the Error Cascade Segment and the Output Seg-
ment, so that the following two conditions hold.

1. Each of these segments, as well as the memory, remains resilient to a constant
fraction of tampering.

2. The total number of wires in each of these segments, and the size of the memory,
is a constant fraction of the total number of wires in the entire circuit.

More specifically, let σcomp = σcomp(k) be the size of Segment 1 of the circuit C(1)
S .

We transform the circuit C(1)
S , to ensure that the size K = K(k) of the encoding of s in

memory, the size σv = σv(k) of Segment 2 (the PCPP Verification Segment), the size
σcas = σcas(k) of Segment 3 (the Error Cascade Segment), and the size σout = σout(k)
of Segment 4 (the Output Segment), satisfy

Θ(K(k)) = Θ(σv(k)) = Θ(σcas(k)) = Θ(σout(k)) = Ω(σcomp(k)),

without changing the size σcomp of Segment 1, and while keeping each of the above
segments (Segments 2, 3, and 4), and the memory gates, resilient to constant fraction of
tampering.

This transformation will allow us to prove security against adversaries who tamper
with a constant fraction of the circuit overall. We proceed with the formal construction.

Let
M =M(k) = max{σv(k),K(k), σcomp(k)}.

Let p1(k) ,M/σv(k), and let σ′v(k) , p1(k)·σv(k). Similarly, let p2(k) ,M(k)/K(k),
and let K ′(k) , p2(k) ·K(k). For the sake of simplicity we assume that p1 and p2 are
integers.7 Note that under this simplifying assumption K ′ = σ′v =M .

Memory: Encoding Secret s. Let ẼCC(s) = ECC(s)p2(k), where by ECC(s)p2(k) we
denote p2(k) concatenated copies of ECC(s). Note that ẼCC is an error-correcting
code which has the same distance as ECC, which is at least 2δ. (The reason the
distant of ECC is at least 2δ follows from the fact that it can correct up to δ-fraction
of errors.) Let S̃ = ẼCC(s). We denote by S̃(i, j) the j-th bit of the i-th copy of S.

7 This simplifying assumption makes the analysis somewhat cleaner. Without this assumption,
we would need to define p1(k) , dM/σv(k)e and p2(k) , dM(k)/K(k)e.



We denote by S the first row of the encoding S̃: (S̃(1, j))j∈[K]. The encoding S̃ is
placed in the memory of C(2).

Segment 1. This segment, which includes the encoding of the input x, the circuit
computation, and the PCPP computation, remains exactly the same as Segment 1
of C(1)

S . In order to keep this segment the same, instead of using the entire new

memory ẼCC(S), this segment only uses the first row of ẼCC(s), which is exactly
S = ECC(s), the memory content of C(1).

Segment 2: PCPP Verification. This stage consists of τ ′ , p1(k) · τ number of
circuits {Cvi,j}i∈[τ ],j∈[p1(k)], where each PCPP verifier from C

(1)
S is simply copied

p1(k) times. Namely, for each i ∈ [τ ] and each j ∈ [p1(k)], the circuit Cvi,j

is simply a copy of Cvi . We note that each Cvi,j only accesses the first row of
memory S = (S̃1,j)j∈[k], and as before, each verifier circuit Cvi,j takes as input a
constant number of bits from (X ◦ S, b, π) and outputs a single bit βi,j . Note that
each verifier circuit still has constant size σ̃v.
All these τ ′ output wires of the circuits Cvi,j are inputs to the AND gate Gcas. This
gate hasK ′ additional input wires that belong to Segment 3 below (whereK ′ is the
number of bits in S̃). The gateGcas has 2K ′ output wires, and we denote the values
on these wires by {γ`,m}i∈[p2(k)],j∈[2K]. The first K ′ output wires (with values
{γ`,m}i∈[p2(k)],j∈[K]) belong to Segment 3, and the other K ′ output wires belong
to Segment 4.

Segment 3: Error Cascade. This segment has two parts:

– A circuit Ccodei,j of constant size σcode for each bit S̃i,j of S̃: 1 ≤ i ≤ p2(k),
1 ≤ j ≤ K:
Input: S̃(1, j), S̃(i, j).
Output: ψi,j =q(S̃(1, j)⊕ S̃(i, j)).
All these output wires with values ψi,j are inputs to Gcas. Thus, in total, Gcas

has K ′ + τ ′ input wires (τ ′ from Segment 2 and K ′ from Segment 3), and it
outputs  ∧

i∈[τ ],j∈[p1(k)]

βi,j

 ∧
 ∧
i∈[ps(k)],j∈[K]

ψi,j


– The first K ′ output wires of Gcas, denoted by (γ`,m)`∈[p2(k)],m∈[K], are fed

to the memory gates. More specifically, for every ` ∈ [p2(k)] and m ∈ [K],
the (`,m)-th output γ`,m of Gcas is the input to memory gate (`,m). Thus,
if γ`,m = 0, memory position (`,m) is overwritten with a 0. If γ`,m = 1,
memory position (`,m) is unchanged.

Segment 4: The Output. This segment of the circuit consists of K ′ output wires of
Gcas, which have the values {γ`,m}`∈[p2(k)],m∈[K+1,2K]. This segment has a single
AND gateGout which has fan-inK ′+1. This segment contains all theK ′+1 input
wires toGout: The firstK ′ input wires are exactly theK ′ output wires ofGcas (with
values {γ`,m}`∈[p2(k)],m∈[K+1,2K]), and the other input wire of Gout is an output
wire of the Circuit Computation in Segment 1, which computes the bit b = Cs(x).



The AND gate Gout has a single output wire which is

b̃ = b ∧

 ∧
`∈[p2(k)],m∈[K′+1,2K′]

γ`,m

 .

The final output of the circuit C(2)

S̃
(x) is b̃.

Recall that we denote by σ′v = σ′v(k) the size of the PCPP Verification Segment in
C

(2)

S̃
, and we denote by K ′ the number of memory gates in C(2)

S̃
. We also denote by

σ′cas = σ′cas(k) the size of the Error Cascade Segment in C(2)

S̃
and denote by σ′out =

σ′out(k) be the size of the Output Segment in C(2)

S̃
. It follows by construction that

Θ(σ′v(k)) = Θ(σ′cas(k)) = Θ(σ′out(k)) = Θ(K ′(k)) = Ω(σcomp(k)).

In what follows, we denote by σ′ the total size of the circuit C(2)

S̃
. Let

α = α(k) = min

{
σ′v(k)

σ′(k)
,
σ′cas(k)

σ′(k)
,
σ′out(k)

σ′(k)

}
.

Note that α(k) = Θ(1).
Theorem 3. Let λ′ = min{α 1

3σ̃v
, α δ

6σcode
}. Then C(2)

S̃
is secure against λ′-tampering

adversaries (as defined in Definition 5).

We defer the proof of Theorem 3 to the full version. We note that there we use the
fact that every λ′-globally tampering adversary in C(2)

S̃
is also a λ = min{ 1

3σ̃v
, δ
6σcode

}-
locally tampering adversary in C(2)

S̃
.
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