
Tamper and Leakage Resilience in the
Split-State Model

Feng-Hao Liu and Anna Lysyanskaya

Brown University
{fenghao, anna}@cs.brown.edu

Abstract. It is notoriously difficult to create hardware that is immune
from side channel and tampering attacks. A lot of recent literature, there-
fore, has instead considered algorithmic defenses from such attacks. In
this paper, we show how to algorithmically secure any cryptographic
functionality from continual split-state leakage and tampering attacks.
A split-state attack on cryptographic hardware is one that targets sepa-
rate parts of the hardware separately. Our construction does not require
the hardware to have access to randomness. In contrast, prior work on
protecting from continual combined leakage and tampering [23] required
true randomness for each update. Our construction is in the common
reference string (CRS) model; the CRS must be hard-wired into the de-
vice. We note that prior negative results show that it is impossible to
algorithmically secure a cryptographic functionality against a combina-
tion of arbitrary continual leakage and tampering attacks without true
randomness; therefore restricting our attention to the split-state model
is justified. Our construction is simple and modular, and relies on a new
construction, in the CRS model, of non-malleable codes with respect to
split-state tampering functions, which may be of independent interest.

1 Introduction

Recently, the cryptographic community has been extensively studying
various flavors of the following general problem. Suppose that we have
a device that implements some cryptographic functionality (for exam-
ple, a signature scheme or a cryptosystem). Further, suppose that an
adversary can, in addition to input/output access to the device, get some
side-channel information about its secret state, potentially on a contin-
ual basis; for example, an adversary can measure the power consumption
of the device, timing of operations, or even read part of the secret di-
rectly [25,18]. Additionally, suppose that the adversary can, also possibly
on a continual basis, somehow alter the secret state of the device through
an additional physical attack such as microwaving the device or exposing
to heat or EM radiation [4,1]. What can be done about protecting the
security of the functionality of the device?

Unfortunately, strong negative results exist even for highly restricted
versions of this general problem. For example, if the device does not have

access to randomness, but is subject to arbitrary continual leakage, and
so, in each round i, can leak to the adversary just one bit bi(si) for a
predicate bi of the adversary’s choice, eventually it will leak its entire
secret state. Moreover, even in a very restricted leakage model where the
adversary can continually learn a physical bit of the secret state si, if
the adversary is also allowed to tamper with the device and the device
does not have access to randomness, Liu and Lysyanskaya [28] showed
that the adversary will eventually learn the entire secret state. Further,
even with tampering alone, Gennaro et al. [16] show that security from
arbitrary tampering cannot be achieved unless the device can overwrite
its memory; further, they show that security can only be achieved in the
common reference string model.

For the leakage-only case, positive results are known for continual
attacks assuming an on-device source or randomness [5,8,27,26]. The one-
time leakage case has also been studied [2,30,3,24]. For the tampering-only
case, positive results are known as well for different setup and tampering
models [16,13,6].

Finally, there are positive results for signature and encryption de-
vices when both continual tampering and leakage are possible, and the
device has access to a protected source of true randomness [23]. One
may be tempted to infer from this positive result that it can be “deran-
domized” by replacing true randomness with the continuous output of
a pseudorandom generator, but this approach is ruled out by Liu and
Lysyanskaya [28]. Yet, how does a device, while under a physical attack,
access true randomness? True randomness is a scarce resource even when
a device is not under attack; for example, the GPG implementations of
public-key cryptography ask the user to supply random keystrokes when-
ever true randomness is needed, which leads to non-random bits should
a device fall into the adversary’s hands.

In this paper, we investigate general techniques for protecting cryp-
tographic devices from continual leakage and tampering attacks without
requiring access to true randomness after initialization. Since, as we ex-
plained above, this is impossible for general classes of leakage and tam-
pering functions, we can only solve this problem for restricted classes of
leakage and tampering functions. Which restrictions are reasonable? Sup-
pose that a device is designed such that its memory M is split into two
compartments, M1 and M2, that are physically separated. For example,
a laptop may have more than one hard drive. Then it is reasonable to
imagine that the adversary’s side channel that leaks information about
M1 does not have access to M2, and vice versa. Similarly, the adver-
sary’s tampering function tampers with M1 without access to M2, and

vice versa. This is known as the split-state model, and it has been consid-
ered before in the context of leakage-only [12,9] and tampering-only [13]
attacks.

Our main result. Let G(·, ·) be any deterministic cryptographic func-
tionality that, on input some secret state s and user-provided input x,
outputs to the user the value y, and possibly updates its secret state to a
new value s′; formally, (y, s′) = G(s, x). For example, G can be a stateful
pseudorandom generator that, on input an integer m and a seed s, gen-
erates m+ |s| pseudorandom bits, and lets y be the first m of these bits,
and updates its state to be the next |s| bits. A signature scheme and a
decryption functionality can also be modeled this way. A participant in
an interactive protocol, such as a zero-knowledge proof, or an MPC pro-
tocol, can also be modeled as a stateful cryptographic functionality; the
initial state s would represent its input and random tape; while the sup-
plied input x would represent a message received by this participant. A
construction that secures such a general stateful functionality G against
tampering and leakage is therefore the most general possible result. This
is what we achieve: our construction works for any efficient deterministic
cryptographic functionality G and secures it against tampering and leak-
age attacks in the split-state model, without access to any randomness
after initialization, but with access to a trusted common reference string
(CRS). Any randomized functionality G can be securely derandomized
using a pseudorandom generator whose seed is chosen in the initializa-
tion phase; our construction also applies to such a derandomized version
of G. Quantitatively, our construction tolerates continual leakage of as
many as (1− o(1))n bits of the secret memory, where n is the size of the
secret memory.

Our construction assumes the existence of a one-time leakage resilient
public-key cryptosystem that allows leakage of any poly-time computable
g(sk) of length c|sk| for some constant c, for example one due to Naor and
Segev [30]. Further, we need robust non-interactive zero-knowledge proof
systems [7] for an appropriate NP language. See the full version of this
paper for further detailed discussions.

Prior work. Here we give a table summarizing the state of the art in
tolerating continual leakage and tampering attacks; specific attacks we
consider are split-state attacks (abbreviated as “SS”), attacks on physi-
cal bits (abbreviated as “bits”), attacks on small blocks (abbreviated as
“blocks”), and attacks by any polynomial-sized circuits (abbreviated as
“any”).

Type of Type of Local Known results about
leakage tampering coins continual attacks
None Any No Signature and decryption in the CRS model [16]
Any None No Trivially impossible
Bits Any No Impossible [28]
Any None Yes Signature and encryption in the plain model [5,8,27,26]
None Bits Yes All functionalities in the plain model [13]
None SS Yes All functionalities in the RO model [13]
None Blocks Yes All functionalities in the plain model [6]
Any Any Yes Signature and encryption in the CRS model [23]

SS SS No All functionalities in the CRS model [This work]

We remark that all the results referenced above apply to attacks on
the memory of the device, rather than its computation (with one excep-
tion). The exception [26] is the work that constructed the first encryption
and signature schemes that can leak more than logarithmic number of bits
during their update procedure (but cannot be tampered with). Thus, all
these works assume computation to be somewhat secure. In this work,
for simplicity, we also assume that computation is secure, and remark
that there is a line of work on protecting computation from leakage or
tampering [21,29,20,12,31,10,15,17,22,14]. This is orthogonal to the study
of protecting memory leakage and tampering. In particular, we can com-
bine our work with that of Goldwasser and Rothblum [17], or Juma and
Vahlis [22] to obtain a construction where computation is protected as
well; however, this comes at a cost of needing fresh local randomness.
All known cryptographic constructions that allow an adversary to issue
leakage queries while the computation is going on rely on fresh local ran-
domness.

A decryption device produced by our compiler will have stronger leak-
age resilience properties than most previous work [5,27,26,23] on leak-
age resilient encryption: it will tolerate after-the-fact leakage defined by
Halevi and Lin [19]; since this will be guaranteed on a continual basis,
our results solve a problem left explicitly open by Halevi and Lin.

Our building block: non-malleable codes We use non-malleable codes, de-
fined by Dziembowski et al. [13], as our building block.

Let Enc be an encoding procedure and Dec be the corresponding de-
coding procedure. Consider the following tampering experiment [13]: (1)
A string s is encoded yielding a codeword c = Enc(s). (2) The codeword
c is mauled by some function f to some c∗ = f(c). (3) The resulting
codeword is decoded, resulting in s∗ = Dec(c∗). (Enc,Dec) constitutes
a non-malleable code if tampering with c can produce only two possible
outcomes: (1) f leaves c unchanged; (2) the decoded string s∗ is unrelated

to the original string s. Intuitively, this means that one cannot learn any-
thing about the original string s by tampering with the codeword c.

It is clear [13] that, without any restrictions on f , this notion of se-
curity is unattainable. For example, f could, on input c, decode it to
s, and then compute s∗ = s + 1 and then output Enc(s∗). Such an f
demonstrates that no (Enc,Dec) can satisfy this definition. However, for
restricted classes of functions, this definition can be instantiated.

Dziembowski et al. constructed non-malleable codes with respect to
bit-wise tampering functions in the plain model, and with respect to split-
state tampering functions in the random oracle model. They also show a
compiler that uses non-malleable codes to secure any functionality against
tampering attacks. In this paper, we improve their result in four ways:
first, we construct a non-malleable code with respect to split-state tam-
pering, in the CRS model (which is a significant improvement over the
RO model). Second, our code has an additional property: it is leakage re-
silient. Third, we prove that plugging in a leakage-resilient non-malleable
code in the Dziembowski et al. compiler secures any functionality against
both tampering and leakage attacks. Fourth, we derandomize the com-
piled construction such that it no longer requires a trusted source of
randomness for updates.

Our continual tampering and leakage model. We consider the same tam-
pering and leakage attacks as those of Liu and Lysyanskaya[28] and Kalai
et al. [23], which generalized the model of tampering-only [16,13] and
leakage-only [5,8,27,26] attacks. (However, in this attack model we achieve
stronger security, as discussed above.)

Let M be the memory of the device under attack. We view time as
divided into discrete time periods, or rounds. In each round, the adversary
A makes a leakage query g or a tampering query f ; as a result, A obtains
g(M) or modifies the memory: M := f(M). In this work, we consider both
g, f to be split-state functions. We consider a simulation-based definition
of security against such attacks.

Our approach. Let G(s, x) be the functionality we want to secure, where
s is some secret state and x is the user input. Our compiler takes the
leakage-resilient non-malleable code andG as input, outputsG′(Enc(s), x),
where G′ gets an encoded version of the state s, emulates G(s, x) and re-
encodes the new state at the end of each round. Then we will argue that
even if the adversary can get partial information or tamper with the en-
coded state in every round, the compiled construction is still secure.

2 Our Model

Definition 1. Define the following three function classes Gt,Fhalf ,Ghalft1,t2:

– Let t ∈ N. By Gt we denote the set of poly-sized circuits with output
length t.

– Let Fhalf denote the set of functions of the following form: f : {0, 1}2m →
{0, 1}2m ∈ Fhalf if there exist two poly-sized circuits f1, f2 : {0, 1}m →
{0, 1}m, such that for all x, y ∈ {0, 1}m, f(x, y) = f1(x) ◦ f2(y).

– Let t1, t2 ∈ N, and Ghalft1,t2 be the set of all poly-sized leakage functions
that leak independently on each half of their inputs, t1 bits on the first
half and t2 bits on the second half.
We further denote Ghalft1,all

as the case where g1(x) leaks t1 bits, and
g2(y) can leak all its input y.

Next, let us define an adversary’s access to a functionality under tam-
pering and leakage attacks. In addition to queries to the functionality
itself (called Execute queries) an attacker has two more operations: he
can cause the memory of the device to get tampered according to some
function f , or he can learn some function g of the memory. Formally:

Definition 2 (Interactive Functionality Subject to Tampering
and Leakage Attacks). Let 〈G, s〉 be an interactive stateful system
consisting of a public (perhaps randomized) functionality G : {0, 1}u ×
{0, 1}k → {0, 1}v × {0, 1}k and a secret initial state s ∈ {0, 1}k. We
consider the following ways of interacting with the system:

– Execute(x): For x ∈ {0, 1}u, the system will compute (y, snew) ←
G(s, x), privately update state to snew, and output y.

– Tamper(f): the state s is replaced by f(s).
– Leak(g): the adversary can obtain the information g(s).

Next, we define a compiler that compiles a functionality 〈G, s〉 into a
hardware implementation 〈G′, s′〉 that can withstand leakage and tamper-
ing attacks. A compiler will consist of two algorithms, one for compiling
the circuit for G into another circuit, G′; the other algorithm is for com-
piling the memory, s, into s′. This compiler will be correct, that is to say,
the resulting circuit and memory will provide input/output functionality
identical to the original circuit; it will also be tamper- and leakage-resilient
in the following strong sense: there exists a simulator that, with oracle
access to the original 〈G, s〉, will simulate the behavior of 〈G′, s′〉 under
tampering and leakage attacks. The following definitions formalize this:

Definition 3. Let CRS be an algorithm that generates a common refer-
ence string, on input the security parameter 1k. The algorithms (CircuitCompile,
MemCompile) constitute a correct and efficiency-preserving compiler in
the CRS(1k) model if for all Σ ∈ CRS(1k), for any Execute query x,
〈G′, s′〉’s answer is distributed identically to 〈G, s〉’s answer, where G′ =
CircuitCompile(Σ,G) and s′ ∈ MemCompile(Σ, s); moreover, CircuitCompile
and MemCompile run in polynomial time and output G′ and s′ of size
polynomial in the original circuit G and secret s.

Note that this definition of the compiler ensures that the compiled
functionality G′ inherits all the security properties of the original func-
tionality G. Also the compiler defined here works separately on the func-
tionality G and on the secret s, which means that it can be combined with
another compiler that strengthens G′ is some other way (for example, it
can be combined with the compiler of Goldwasser and Rothblum [17]).
This definition allows for both randomized and deterministic G′; as we
discussed in the introduction, in general a deterministic circuit is more
desirable.

Remark 1. Recall that G, and therefore G′, are modeled as stateful func-
tionalities. By convention, running Execute(ε) will cause them to update
their states.

As defined above, in the face of the adversary’s Execute queries, the
compiled G′ behaves identically to the original G. Next, we want to for-
malize the important property that whatever the adversary can learn from
the compiled functionality G′ using Execute, Tamper and Leak queries, can
be learned just from the Execute queries of the original functionality G.

We want the real experiment where the adversary interacts with the
compiled functionality 〈G′, s′〉 and issues Execute, Tamper and Leak queries,
to be indistinguishable from an experiment in which a simulator Sim only
has black-box access to the original functionality G with the secret state s
(i.e. 〈G, s〉). More precisely, in every round, Sim will get some tampering
function f or leakage function g from A and then respond to them. In the
end, the adversary halts and outputs its view. The simulator then may
(potentially) output this view. Whatever view Sim outputs needs to be
indistinguishable from the view A obtained in the real experiment. This
captures the fact that the adversary’s tampering and leakage attacks in
the real experiment can be simulated by only accessing the functionality
in a black-box way. Thus, these additional physical attacks do not give
the adversary any additional power.

Definition 4 (Security Against F Tampering and G Leakage).
A compiler (CircuitCompile,MemCompile) yields an F-G resilient hard-
ened functionality in the CRS model if there exists a simulator Sim such
that for every efficient functionality G ∈ PPT with k-bit state, and non-
uniform PPT adversary A, and any state s ∈ {0, 1}k, the output of the
following real experiment is indistinguishable from that of the following
ideal experiment:

Real Experiment Real(A, s): Let Σ ← CRS(1k) be a common refer-
ence string given to all parties. Let G′ ← CircuitCompile(Σ,G), s′ ←
MemCompile(Σ, s). The adversary A(Σ) interacts with the compiled func-
tionality 〈G′, s′〉 for arbitrarily many rounds where in each round:

– A runs Execute(x) for some x ∈ {0, 1}u, and receives the output y.
– A runs Tamper(f) for some f ∈ F , and then the encoded state is

replaced with f(s′).
– A runs Leak(g), and receives some ` = g(s′) for some g ∈ G, where s′

is the current state. Then the system updates its memory by running
Execute(ε), which will update the memory with a re-encoded version
of the current state.

Let viewA = (stateA, x1, y1, `1, x2, y2, `2, . . . ,) denote the adversary’s
view where xi’s are the execute input queries, yi’s are their corresponding
outputs, `i’s are the leakage at each round i. In the end, the experiment
outputs (Σ, viewA).

Ideal Experiment Ideal(Sim,A, s): Sim first sets up a common reference
string Σ, and SimA(Σ),〈G,s〉 outputs (Σ, viewSim) = (Σ, (stateSim, x1, y1,
`1, x2, y2, `2, . . .)), where (xi, yi, `i) is the input/output/leakage tuple sim-
ulated by Sim with oracle access to A, 〈G, s〉.

Note that we require that, in the real experiment, after each leakage
query the device updates its memory. This is necessary, because otherwise
the adversary could just keep issuing Leak query on the same memory
content and, over time, could learn the memory bit by bit.

Also, note that, following Dziembowski et al. [13] we require that
each experiment faithfully record all the Execute queries. This is a way to
capture the idea that the simulator cannot make more queries than the
adversary; as a result, an adversary in the real experiment (where he can
tamper with the secret and get side information about it) learns the same
amount about the secret as the simulator who makes the same queries
(but does NOT get the additional tampering and leakage ability) in the
ideal experiment.

3 Leakage Resilient Non-malleable Codes

In this section, we present the definition of leakage resilient non-malleable
codes (LR-NM codes), and our construction. We also extend the definition
of Dziembowski et al. [13] in two directions: we define a coding scheme
in the CRS model, and we consider leakage resilience of a scheme. Also,
our construction achieves the stronger version of non-malleability, so we
present this version. For the normal non-malleability and the comparison,
we refer curious readers to the paper [13].

Definition 5 (Coding Scheme in the Common Reference String
Model). Let k be the security parameter, and Init(1k) be an efficient
randomized algorithm that outputs a common reference string (CRS) Σ ∈
{0, 1}poly(k). We say C = (Init, Enc,Dec) is a coding scheme in the CRS
model if for every k, (Enc(1k, Σ, ·),Dec(1k, Σ, ·)) is a (k, n(k)) coding
scheme for some polynomial n(k): i.e. for each s ∈ {0, 1}k, Σ,
Pr[Dec(Σ, Enc(Σ, s)) = s] = 1. For simplicity, we will omit the security
parameter.

Now we define the two properties of coding schemes: non-malleability
and leakage resilience. We extend the definition of the strong non-malleability
by Dziembowski et al. [13] to the CRS model.

Definition 6 (Strong Non-malleability in the CRS Model). Let
F be some family of functions. For each function f ∈ F , and s ∈ {0, 1}k,
define the tampering experiment in the common reference string model.
For any CRS Σ, we define

Tamperf,Σs
def
=

{
c← Enc(Σ, s), c̃ = fΣ(c), s̃ = Dec(Σ, c̃)
Output : same∗ if c̃ = c, and s̃ otherwise.

}
,

where the randomness of this experiment comes from the randomness of
the encoding and decoding algorithms.

We say the coding scheme (Init, Enc,Dec) is strong non-malleable if
we have {(Σ,Tamperf,Σs0)}k∈N ≈ {(Σ,Tamperf,Σs1)}k∈N where Σ ← Init(1k),
any s0, s1 ∈ {0, 1}k, and f ∈ F , and ≈ can refer to statistical or compu-
tational indistinguishability.

Definition 7 (Leakage Resilience). Let G be some family of functions.
A coding scheme (Init, Enc,Dec) is leakage resilient with respect to G if
for every function g ∈ G, every two states s0, s1 ∈ {0, 1}k, and every
efficient adversary A, we have Pr[A(Σ, g(Σ, Enc(Σ, sb)) = b] ≤ 1/2 +
ngl(k), where b is a random bit, and Σ ← Init(1k).

How do we realize this definition? Consider a technique reminiscent of
non-malleable encryption [11,32]: setM1 = sk,M2 = (pk, ŝ = Encryptpk(s), π)

where π is a proof of consistency (i.e. it proves that there exists a secret
key corresponding to pk and that ŝ can be decrypted using this secret
key). Does this work? If the underlying proof system is malleable, then
it could be possible to modify both parts at the same time, so that the
attacker could obtain an encoding of a string that is related to the origi-
nal s. So we require that the proof system be non-malleable; specifically
we use the notion of robust NIZK given by de Santis et al. [7], in which,
informally, the adversary can only output new proofs for which he knows
the corresponding witnesses, even when given black-box access to a simu-
lator that produces simulated proofs on demand; there exists an extractor
that can extract these witnesses.

Now let us try to give a high-level proof of security. Given a public key
pk, and a ciphertext c, it is the reduction’s job to determine whether c is an
encryption of s0 or s1, with the help of the adversary that distinguishes
Tamperfs0 and Tamperfs1 . A natural way for the reduction is to pretend
that M1 = sk, and put the public key pk and the ciphertext ŝ = c with a
simulated proof into M2, setting M2 = (pk, ŝ, πSim). Then the reduction
simulates Tamperfs . Clearly, irrespective of f1 the reduction can compute
f2(M2) = (pk′, ŝ′, πSim), and intuitively, the non-malleability of the proof
assures that the adversary can only generate valid (pk′, ŝ′) if he knows
sk′ and s′. So at first glance, the outcome of the tampering experiment
(i.e. the decoding of the tampered codeword) should be s′, which can be
simulated by the reduction. Thus, the reduction can use A to distinguish
the two different experiments.

However, there are several subtle missing links in the above argument.
The reduction above does not use any property of f1, which might cause
a problem. Suppose f1(sk) = sk′, then the decoding of the tampered
codeword is really s′, so the reduction above simulates the tampering
experiment faithfully. However, if not, then the decoding should be ⊥
instead. Thus, the reduction crucially needs one bit of information: sk′

?
=

f1(sk). If the reduction could get leakage f1(sk) directly, then it could
compute this bit. However, the length of f1(sk) is the same as that of
sk itself, and therefore no leakage-resilient cryptosystem can tolerate this
much leakage.

Our novel observation here is that actually a small amount of leaked
information about the secret key sk is sufficient for the reduction to tell
the two cases apart. Let h be a hash function that maps input strings to
strings of length `. Then, to check whether f1(sk) = sk′, it is very likely
(assuming proper collision-resistance properties of h) sufficient to check
if h(f1(sk)) = h(sk′). So if given a cryptosystem that can tolerate ` bits
of leakage, we can build a reduction that asks that h(f1(sk)) be leaked,

and this (in addition to a few other technicalities that we do not highlight
here) enables us to show that the above construction is non-malleable.

Besides non-malleability, the above code is also leakage-resilient in the
sense that getting partial information about a codeword does not reveal
any information about the encoded string. Intuitively, this is because the
NIZK proof hides the witness, i.e. the message, and partial leakage of the
secret key does not reveal anything about the message, either. Thus, this
construction achieves non-malleability and leakage resilience at the same
time.

The Construction. Let t be a polynomial, E = (KeyGen,Encrypt,Decrypt)
be an encryption scheme that is semantically secure against one-time leak-
age Gt, and Π = (`,P,V,S) be a robust NIZK proof system (we defer
the formal definitions to the full version of this paper). The encryption
scheme and robust NIZK need to have some additional properties, and we
briefly summarize them here: (1) given a secret key sk, one can efficiently
derive it corresponding public key pk; (2) given a key pair (pk, sk), it is
infeasible to find another valid (pk, sk′) where sk 6= sk′; (3) different state-
ments of the proof system must have different proofs. In the full version
of this paper, we give formal definitions of these additional properties
and show that simple modifications of leakage-resilient crypto systems
and robust NIZK proof systems satisfy them. We define a coding scheme
(Init, Enc,Dec) in Figure 1.

The coding scheme:

– Init(1k): sample a CRS: Σ ← {0, 1}`(k).
– Enc(Σ, s): on input s ∈ {0, 1}k, sample (pk, sk) ← KeyGen(1k). Let L be the

following language, and W be its natural witness relation:

L
def
=

{
(pk, m̂) : ∃w = (sk,m) s.t.

(pk, sk) forms a key pair for E and
m = Decryptsk(m̂).

}

Compute π ← P((pk, ŝ), (sk, s, r), Σ), an NIZK proof of the statement that
(pk, ŝ) ∈ L. Output the encoding c = (sk; pk, ŝ = Encryptpk(s), π).

– Dec(Σ, c): If (1) V((pk, ŝ), π,Σ) accepts and (2) (pk, sk) form a valid key pair,
output Decryptsk(ŝ). Otherwise, output ⊥.

Fig. 1. The coding scheme

Let n = n(k) be the polynomial that is equal to the length of sk◦pk◦ŝ◦
π. Without loss of generality, we assume that n is even, and |sk| = n/2,
and |pk ◦ ŝ ◦ π| = n/2 (these properties can be easily guaranteed by

padding the shorter side with 0’s). Thus, a split-state device where n(k)-
bit memory M is partitioned into M1 and M2 could store sk in M1 and
(pk, ŝ, π) in M2.

Remark 2. Note that the decoding algorithm Dec is deterministic if the
verifier V and the decryption algorithm Decrypt are both deterministic;
as almost all known instantiations are. In the rest of the paper, we will
assume that the decoding algorithm is deterministic.

Then we are able to achieve the following theorem:

Theorem 1. Let t : N → N be some non-decreasing polynomial, and
Gt,Fhalf ,Ghalft,all be as defined above. Suppose the encryption scheme E is
semantically secure against one-time leakage Gt; the system Π is a robust
NIZK as stated above; and Hk : {hz : {0, 1}poly(k) → {0, 1}k}z∈{0,1}k is a
family of universal one-way hash functions.

Then the coding scheme is strong non-malleable (Def 6) with respect
to Fhalf , and leakage resilient (Def 7) with respect to Ghalft,all.

Proof (Sketch). The proof contains two parts: showing that the code is
non-malleable and that it is leakage resilient. The second part is easy so
we only give the intuition. First let us look at M2 = (pk, ŝ, π). Since π is
a NIZK proof, it reveals no information about the witness (sk, s). For the
memory M1 = sk, since the encryption scheme is leakage resilient, getting
partial information about sk does not hurt the semantic security. Thus,
for any g ∈ Ghalft,all, g(M1,M2) hides the original input string. We omit the
formal details of the reduction, since they are straightforward.

Now we focus on the proof of non-malleability. In particular, we need
to argue that for any s0, s1 ∈ {0, 1}k, and f ∈ Fhalf , we have (Σ,Tamperf,Σs0)

≈c (Σ,Tamperf,Σs1) where Σ ← Init(1k). We show this by contradiction:

suppose there exist f = (f1, f2) ∈ Fhalf , s0, s1, some ε = 1/poly(k), and a
distinguisherD such that Pr[D(Σ,Tamperf,Σs0) = 1]−Pr[D(Σ,Tamperf,Σs1) =
1] > ε, then we are going to construct a reduction that breaks the en-
cryption scheme E .

The reduction will work as discussed in the overview. Before describ-
ing it, we first make an observation: D still distinguishes the two cases of
the Tamper experiments even if we change all the real proofs to the sim-
ulated ones. More formally, let (Σ, τ) ← S1(1k), and define Tamperf,Σ,τs

be the same game as Tamperf,Σs except proofs in the encoding algorithm
Enc(Σ, ·) are computed by the simulator S2(·, Σ, τ) instead of the real
prover. We denote this distribution as Tamperf∗s . We claim that D also
distinguishes Tamperf∗s0 from Tamperf∗s1 .

Suppose not, i.e.D, who distinguishes Tamperf,Σs0 from Tamperf,Σs1 does

not distinguish Tamperf∗s0 from Tamperf∗s1 . Then one can use D, f, s0, s1 to
distinguish real proofs and simulated ones using standard proof tech-
niques. This violates the multi-theorem zero-knowledge property of the
NIZK system Π. Thus, we have:

Pr[D(Σ,Tamperf∗s0) = 1]− Pr[D(Σ,Tamperf∗s1) = 1] > ε/2.

In the following, we are going to define a reduction Red to break the
leakage resilient encryption scheme E . The reduction Red consists of an
adversary A = (A1, A2, A3) and a distinguisher D′ defined below.

The reduction (with the part A) plays the leakage-resilience game
LEb(E , A, k,F) with the challenger, and with the help of the distinguisher
D and the tampering function f = (f1, f2). Informally speaking of the
game, the adversary first sends a leakage function in g ∈ F (using A1), and
the challenger replies g(sk). Then A2 chooses two messages m0,m1, and
the challenger encrypts either of them, and sends a challenge ciphertext.
Finally, A3 determines which message the challenge was generated from.
We defer the formal definition of the game to the full version of this paper.
Now we describe the reduction:

– First A1 samples z ∈ {0, 1}t−1 (this means A1 samples a universal
one-way hash function hz ← Ht−1), and sets up a simulated CRS
with a corresponding trapdoor (Σ, τ)← S(1k).

– A1 sets g : {0, 1}n/2 → {0, 1}t to be the following function, and sends

this leakage query to the challenger: g(sk) =

{
0t if f1(sk) = sk,

1 ◦ hz(f1(sk)) otherwise.
This leakage value tells A1 if the tampering function f1 alters sk.

– A2 chooses m0,m1 to be s0, and s1 respectively. Then the challenger
samples (pk, sk) and sets m̂ = Encryptpk(mb) to be the ciphertext,
and sends pk, g(sk), m̂ to the adversary.

– Then A3 computes the simulated proof π = S2(pk, m̂, Σ, τ), and sets
(pk′, m̂′, π′) = f2(pk, m̂, π). Then A3 computes a bit b using one of the
algorithms in figure 2, depending on the outcome of g(sk).

– Finally,A3 outputs d, which is the output of the game LEb(E , A, k,Fhalf).

Define the distinguisher D′ on input d outputs D(Σ, d). Then we
need to show that A,D′ break the scheme E by the following lemma.
In particular, we will show that the above A’s strategy simulates the
distributions Tamperf∗sb , so that the distinguisher D’s advantage can be
used by D′ to break E .

To analyze the reduction, we are going to establish the following claim.
We defer the formal proof to the full version of this paper.

If g(sk) = 0t:
1. pk′ 6= pk, set d = ⊥.
2. Else (pk′ = pk),

(a) if (m̂′, π′) = (m̂, π), set d = same∗.
(b) if m̂′ 6= m̂, π′ = π, set d = ⊥.
(c) else (π′ 6= π), check whether
V((pk′, m̂′), π′, Σ) accepts.

i. If no, set d = ⊥.
ii. If yes, use the extractor Ext

to compute (sk′′,m′′) ←
Ext(Σ, τ, x′ = (pk′, m̂′), π′),
where the list Q =
((pk, m̂), π). If the extrac-
tion fails, then set d = ⊥;
otherwise d = m′′.

Else if g(sk) = 1 ◦ hz(f1(sk))
def
= 1 ◦

hint :
1. if π′ = π, then set d = ⊥.
2. else, check if V(pk′, π′, crs) veri-

fies, if not set d = ⊥. Else, com-
pute (sk′′,m′′)← Ext(Σ, τ, x′ =
(pk′, m̂′), π′), where the list Q =
((pk, m̂), π). If the extraction
fails, then set d = ⊥; otherwise
consider the following two cases:
(a) If hz(sk′′) 6= hint , then set

d = ⊥.
(b) Else, set d = m′′.

Fig. 2. The two cases for the reduction

Claim. Given the above A and D′, we have

Pr[D′(LE0(E , A, k,Fhalf)) = 1]−Pr[D′(LE1(E , A, k,Fhalf)) = 1] > ε/2−ngl(k).

4 Our Compilers

In this section, we present two compilers that use our LR-NM code to se-
cure any functionality G from split-state tampering and leakage attacks.
The first compiler, as an intermediate result, outputs a compiled function-
ality G′ that has access to fresh random coins. The second one outputs
a deterministic functionality by derandomizing G′ using a pseudorandom
generator.

Randomized Implementation. Let G(s, x) be an interactive functionality
with a k-bit state s that we want to protect, and let C = (Init, Enc,Dec)
be the LR-NM coding scheme we constructed in the previous section.
Our compiler works as follows: first it generates the common parame-
ters Σ ← Init(1k). Then MemCompile(Σ, s) outputs an encoding of s,
(M1,M2) ← Enc(Σ, s); and CircuitCompile(G, C, Σ) outputs a random-
ized functionality G′ such that 〈G′, Enc(Σ, s)〉 works in the following
way: on user input x, first G′ decodes the memory using the decod-
ing algorithm Dec. If the outcome is ⊥, then G′ will always output ⊥
(equivalently, self-destruct); otherwise it obtains s. Then G′ computes
(snew, y) ← G(s, x) and outputs y. Finally G′ re-encodes its memory:
(M1,M2)← Enc(Σ, snew). There are two places where G′ uses fresh ran-
domness: the functionality G itself and the re-encoding step.

We denote this randomized hardware implementation of the compiler

as Hardwarerand(C, G)
def
= 〈G′, Enc(s)〉. Obviously the compiler is correct,

i.e. the implementation’s input/output behavior is the same as that of the
original functionality. Then we are able to achieve the following theorem:

Theorem 2. Let t : N → N be some non-decreasing polynomial, and
Gt,Fhalf ,Ghalft,all be as defined above.

Suppose we are given a cryptosystem E = (KeyGen,Encrypt,Decrypt)
that is semantically secure against one-time leakage Gt; a robust NIZK
Π = (`,P,V,S); and Hk : {hz : {0, 1}poly(k) → {0, 1}k}z∈{0,1}k , a family
of universal one-way hash functions. Then the randomized hardware im-
plementation presented above is secure against Fhalf tampering and Ghalft,all
leakage.

Let us explain our proof approach. In the previous section, we have
shown that the coding scheme is leakage-resilient and non-malleable. This
intuitively means that one-time attacks on the hardware implementation
Hardwarerand(C, G) are useless. Therefore, what we need to show is that
these two types of attacks are still useless even when the adversary has
launched a continuous attack.

Recall that, by definition, to prove tamper and leakage resilience, we
need to exhibit a simulator that simulates the adversary’s view of in-
teraction with Hardwarerand(C, G) based solely on black-box access to
〈G, s〉. The simulator computes M1 and M2 almost correctly, except it
uses s0 = 0k instead of the correct s (which, of course, it cannot know).
The technically involved part of the proof is to show that the resulting
simulation is indistinguishable from the real view; this is done via a hy-
brid argument in which an adversary that detects that, in round i, the
secret changed from s0 to the real secret s, can be used to break the
LR-NM code, since this adversary will be able to distinguish Tamperf,Σs0
from Tamperf,Σs or break the leakage resilience of the code. In doing this
hybrid argument, care must be taken: by the time we even get to round
i, the adversary may have overwritten the state of the device; also, there
are several different ways in which the security may be broken and our
reduction relies on a careful case analysis to rule out each way. The formal
proof appears in the full version of this paper.

Deterministic Implementation. In the previous section, we showed that
the hardware implementation Hardwarerand with the LR-NM code is leakage-
tampering-resilient. In this section, we show how to construct a deter-
ministic implementation by derandomizing the construction. Our main
observation is that, since the coding scheme also hides its input string

(like an encryption scheme), we can store an encoding of a random seed,
and then use a pseudorandom generator to obtain more (pseudo) random
bits. Since this seed is protected, the output of the PRG will be pseu-
dorandom, and can be used to update the encoding and the seed. Thus,
we have pseudorandom strings for an arbitrary (polynomially bounded)
number of rounds. The intuition is straitforward yet the reduction is sub-
tle: we need to be careful to avoid a circular argument in which we rely
on the fact that the seed is hidden in order to show that it is hidden.

To get a deterministic implementation for any given functionality
G(·, ·), we use the coding scheme C = (Init, Enc,Dec) defined in the pre-
vious section, and a pseudorandom generator g : {0, 1}k → {0, 1}k+2`,
where ` will be defined later. Let s ∈ {0, 1}k be the secret state of
G(·, ·), and seed ∈ {0, 1}k be a random k-bit string that will serve as
a seed for the PRG. Now we define the compiler. The compiler first
generates the common parameters Σ ← Init(1k). Then on input s ∈
{0, 1}k, MemCompile(s) first samples a random seed seed ∈ {0, 1}k and
outputs (M1,M2) ← Enc(Σ, s ◦ seed) where ◦ denotes concatenation.

CircuitCompile(G) outputs a deterministic implementation Hardwaredet(C, G)
def
=

〈G∗,Σ,Enc,Dec, Enc(Σ, s ◦ r)〉 that works as follows:

G∗ on input x does the followings:

– Decode Enc(Σ, s ◦ seed) to obtain s ◦ seed. Recall that Dec is deterministic.
– Compute seed′ ◦ r1 ◦ r2 ← g(seed), where seed′ ∈ {0, 1}k, r1, r2 ∈ {0, 1}`.
– Calculate (snew, y)← G(s, x) (using the string r1 as a random tape if G is random-

ized), then outputs y, and updates the state to be snew.
– Calculate the encoding of s′ ◦ seed′ using the string r2 as a random tape. Then it

stores the new encoding Enc(Σ, snew ◦ seed′).

Fig. 3. The deterministic implementation

In this implementation Hardwaredet, we only use truly random coins
when initializing the device, and then we update it deterministically af-
terwards. Let us show that the implementation Hardwaredet(C, G) is also
secure against Fhalf tampering and Ghalft,all leakage. We achieve the following
theorem.

Theorem 3. Let t : N → N be some non-decreasing polynomial, and
Gt,Fhalf ,Ghalft,all be as defined in the previous section.

Suppose we are given a crypto system E = (KeyGen,Encrypt,Decrypt)
that is semantically secure against one-time leakage Gt; a robust NIZK
Π = (`,P,V,S); and Hk : {hz : {0, 1}poly(k) → {0, 1}k}z∈{0,1}k , a family

of universal one-way hash functions. Then the deterministic hardware im-
plementation presented above is secure against Fhalf tampering and Ghalft,all
leakage.

Combining the above theorem and the Naor-Segev Leakage-resilient
encryption scheme [30], we are obtain the following corollary.

Corollary 1. Under the decisional Diffie-Hellman assumption and the
existence of robust NIZK, for any polynomial t(·), there exists a coding
scheme with the deterministic hardware implementation presented above
that is secure against Fhalf tampering and Ghalft,all leakage.

The formal proof appears in the full version of this paper.

Acknowledgement. We thank Yevgeniy Dodis for useful discussions. This
work was supported by NSF grants 1012060, 0964379, 0831293.

References

1. D. Agrawal, B. Archambeault, J. R. Rao, and P. Rohatgi. The em side-channel(s).
In CHES, volume 2523, pages 29–45. LNCS, 2002.

2. A. Akavia, S. Goldwasser, and V. Vaikuntanathan. Simultaneous hardcore bits
and cryptography against memory attacks. In TCC, volume 5444, pages 474–495.
LNCS, 2009.

3. J. Alwen, Y. Dodis, and D. Wichs. Leakage-resilient public-key cryptography in
the bounded-retrieval model. In 5677, editor, CRYPTO, pages 36–54. LNCS, 2009.

4. E. Biham and A. Shamir. Differential fault analysis of secret key cryptosystems.
In CRYPTO, volume 1294, pages 513–525. LNCS, 1997.

5. Z. Brakerski, Y. T. Kalai, J. Katz, and V. Vaikuntanathan. Overcoming the hole
in the bucket: Public-key cryptography resilient to continual memory leakage. In
FOCS, pages 501–510. IEEE, 2010.

6. S. G. Choi, A. Kiayias, and T. Malkin. Bitr: Built-in tamper resilience. In ASI-
ACRYPT, volume 7073, pages 740–758. LNCS, 2011.

7. A. De Santis, G. Di Crescenzo, R. Ostrovsky, G. Persiano, and A. Sahai. Robust
non-interactive zero knowledge. In CRYPTO, volume 2139, pages 566–598. LNCS,
2001.

8. Y. Dodis, K. Haralambiev, A. López-Alt, and D. Wichs. Cryptography against
continuous memory attacks. In FOCS, pages 511–520, 2010.

9. Y. Dodis, A. B. Lewko, B. Waters, and D. Wichs. Storing secrets on continually
leaky devices. In FOCS, pages 688–697, 2011.

10. Y. Dodis and K. Pietrzak. Leakage-resilient pseudorandom functions and side-
channel attacks on Feistel networks. In CRYPTO, volume 6223, pages 21–40.
LNCS, 2010.

11. D. Dolev, C. Dwork, and M. Naor. Nonmalleable cryptography. SIAM J. Comput.,
30(2):391–437, 2000.

12. S. Dziembowski and K. Pietrzak. Leakage-resilient cryptography. In FOCS, pages
293–302. IEEE, 2008.

13. S. Dziembowski, K. Pietrzak, and D. Wichs. Non-malleable codes. In ICS, pages
434–452, 2010.

14. S. Faust, K. Pietrzak, and D. Venturi. Tamper-proof circuits: How to trade leakage
for tamper-resilience. In ICALP (1), volume 6755, pages 391–402. LNCS, 2011.

15. S. Faust, T. Rabin, L. Reyzin, E. Tromer, and V. Vaikuntanathan. Protecting
circuits from leakage: the computationally-bounded and noisy cases. In EURO-
CRYPT, volume 6110, pages 135–156. LNCS, 2010.

16. R. Gennaro, A. Lysyanskaya, T. Malkin, S. Micali, and T. Rabin. Algorithmic
tamper-proof (atp) security: Theoretical foundations for security against hardware
tampering. In TCC, volume 2951, pages 258–277. LNCS, 2004.

17. S. Goldwasser and G. N. Rothblum. Securing computation against continuous
leakage. In CRYPTO, volume 6223, pages 59–79. LNCS, 2010.

18. J. A. Halderman, S. D. Schoen, N. Heninger, W. Clarkson, W. Paul, J. A. Calan-
drino, A. J. Feldman, J. Appelbaum, and E. W. Felten. Lest we remember: Cold
boot attacks on encryption keys. In USENIX Security Symposium, pages 45–60,
2008.

19. S. Halevi and H. Lin. After-the-fact leakage in public-key encryption. In TCC,
volume 6597, pages 107–124. LNCS, 2011.

20. Y. Ishai, M. Prabhakaran, A. Sahai, and D. Wagner. Private circuits ii: Keeping
secrets in tamperable circuits. In EUROCRYPT, volume 4004, pages 308–327.
LNCS, 2006.

21. Y. Ishai, A. Sahai, and D. Wagner. Private circuits: Securing hardware against
probing attacks. In CRYPTO, volume 2729, pages 463–481. LNCS, 2003.

22. A. Juma and Y. Vahlis. Protecting cryptographic keys against continual leakage.
In CRYPTO, volume 6223, pages 41–58. LNCS, 2010.

23. Y. T. Kalai, B. Kanukurthi, and A. Sahai. Cryptography with tamperable and
leaky memory. In CRYPTO, volume 6841, pages 373–390. LNCS, 2011.

24. J. Katz and V. Vaikuntanathan. Signature schemes with bounded leakage re-
silience. In ASIACRYPT, volume 5912, pages 703–720. LNCS, 2009.

25. P. C. Kocher. Timing attacks on implementations of diffie-hellman, rsa, dss, and
other systems. In CRYPTO, volume 1109, pages 104–113. LNCS, 1996.

26. A. B. Lewko, M. Lewko, and B. Waters. How to leak on key updates. In STOC,
pages 725–734. ACM, 2011.

27. A. B. Lewko, Y. Rouselakis, and B. Waters. Achieving leakage resilience through
dual system encryption. In TCC, volume 6597, pages 70–88. LNCS, 2011.

28. F.-H. Liu and A. Lysyanskaya. Algorithmic tamper-proof security under probing
attacks. In SCN, volume 6280, pages 106–120. LNCS, 2010.

29. S. Micali and L. Reyzin. Physically observable cryptography (extended abstract).
In TCC, volume 2951, pages 278–296. LNCS, 2004.

30. M. Naor and G. Segev. Public-key cryptosystems resilient to key leakage. In
CRYPTO, volume 5677, pages 18–35. LNCS, 2009.

31. K. Pietrzak. A leakage-resilient mode of operation. In EUROCRYPT, volume
5479, pages 462–482. LNCS, 2009.

32. A. Sahai. Non-malleable non-interactive zero knowledge and adaptive chosen-
ciphertext security. In FOCS, pages 543–553. IEEE, 1999.

	Tamper and Leakage Resilience in the Split-State Model
	Feng-Hao Liu and Anna Lysyanskaya

