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Abstract. In this work we revisit the question of basing cryptogra-
phy on imperfect randomness. Bosley and Dodis (TCC’07) showed that
if a source of randomness R is “good enough” to generate a secret
key capable of encrypting k bits, then one can deterministically ex-
tract nearly k almost uniform bits from R, suggesting that traditional
privacy notions (namely, indistinguishability of encryption) requires an
“extractable” source of randomness. Other, even stronger impossibility
results are known for achieving privacy under specific “non-extractable”
sources of randomness, such as the γ-Santha-Vazirani (SV) source, where
each next bit has fresh entropy, but is allowed to have a small bias γ < 1
(possibly depending on prior bits).

We ask whether similar negative results also hold for a more recent
notion of privacy called differential privacy (Dwork et al., TCC’06),
concentrating, in particular, on achieving differential privacy with the
Santha-Vazirani source. We show that the answer is no. Specifically, we
give a differentially private mechanism for approximating arbitrary “low
sensitivity” functions that works even with randomness coming from a
γ-Santha-Vazirani source, for any γ < 1. This provides a somewhat sur-
prising “separation” between traditional privacy and differential privacy
with respect to imperfect randomness.

Interestingly, the design of our mechanism is quite different from the
traditional “additive-noise” mechanisms (e.g., Laplace mechanism) suc-
cessfully utilized to achieve differential privacy with perfect randomness.
Indeed, we show that any (non-trivial) “SV-robust” mechanism for our
problem requires a demanding property called consistent sampling, which
is strictly stronger than differential privacy, and cannot be satisfied by
any additive-noise mechanism.

1 Introduction

Most cryptographic algorithms require randomness (for example, to generate
their keys, probabilistically encrypt messages, etc.). Usually, one assumes that
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perfect randomness is available, but in many situations this assumption is prob-
lematic, and one has to deal with more realistic, “imperfect” sources of random-
ness R. Of course, if one can (deterministically) extract nearly perfect random-
ness from R, then one can easily implement traditional cryptographic schemes
with R. Unfortunately, many natural sources are not extractable [5,21,24]. The
simplest example of such a source is the Santha-Vazirani (SV) source [21], which
produces an infinite sequence of (possibly correlated) bits x = x1, x2, . . ., with
the property that Pr[xi = 0 | x1 . . . xi−1] ∈ [ 12 (1−γ), 1

2 (1+γ)], for any setting of
the prior bits x1 . . . xi−1. Namely, each bit has almost one bit of fresh entropy,
but can have a small bias γ < 1 (possibly dependent on the prior bits). Yet,
the celebrated result of Santha and Vazirani [21] showed that there exists no
deterministic extractor Ext : {0, 1}n → {0, 1} capable of extracting even a single
bit of bias strictly less than γ from the γ-SV source, irrespective of how many
SV bits x1 . . . xn it is willing to wait for. In particular, outputting the first bit
is already optimal in terms of traditional extraction.

Despite this pessimistic result, ruling out the “black-box compiler” from per-
fect to imperfect (e.g., SV) randomness for all applications, one may still hope
that specific “non-extractable” sources, such as SV-sources, might be sufficient
for concrete applications, such as simulating probabilistic algorithms or cryp-
tography. Indeed, a series of celebrated results [1, 5, 21, 22, 24] showed that very
“weak” sources (including SV-sources and much more) are sufficient for simulat-
ing probabilistic polynomial-time algorithms; namely, for problems which do not
inherently need randomness, but which could potentially be sped up using ran-
domization. Moreover, even in the area of cryptography — where randomness is
essential (e.g., for key generation) — it turns out that many “non-extractable”
sources (again, including SV sources and more) are sufficient for authentication
applications, such as the designs of MACs [7,16] and even signature schemes [8]
(under appropriate hardness assumptions). Intuitively, the reason for the latter
“success story” is that authentication applications only require that it is hard
for the attacker to completely guess (i.e., “forge”) some long string, so having
(min-)entropy in our source R should be sufficient to achieve this goal.

Privacy with Imperfect Randomness? In contrast, the situation appears
to be much less bright when dealing with privacy applications, such as encryp-
tion, commitment, zero-knowledge, etc. First, McInnes and Pinkas [18] showed
that unconditionally secure symmetric encryption cannot be based on SV sources,
even if one is restricted to encrypting a single bit. This result was subsequently
strengthened by Dodis et al. [8], who showed that SV sources are not sufficient
for building even computationally secure encryption (again, even of a single
bit), and, if fact, essentially any other cryptographic task involving “privacy”
(e.g., commitment, zero-knowledge, secret sharing, etc.). Finally, Bosley and
Dodis [3] showed an even more general result: if a source of randomness R is
“good enough” to generate a secret key capable of encrypting k bits, then one
can deterministically extract nearly k almost uniform bits from R, suggesting
that traditional privacy requires an “extractable” source of randomness. 5



In this work we ask the question if similar pessimistic conclusions also hold for
a more recent, but already very influential variant of privacy called differential
privacy (DP), introduced by Dwork et al. [10], concentrating in particular on
achieving differential privacy with the simple Santha-Vazirani source.

Main Question: Is it possible to achieve (non-trivial) differential privacy with
SV-sources?

As our main result, we give a positive answer to this question, showing a
somewhat surprising “separation” between traditional privacy and differential
privacy. But, first, let us examine the above question more closely, gradually
explaining the path towards our solution.

Differential Privacy. Differential privacy was introduced for the purposes of
allowing the owner of a sensitive database D to securely release some “aggregate
statistics” f(D) while protecting the privacy of individual users whose data is
in D. Unfortunately, revealing f(D) by itself might violate the privacy of some
individual records, especially if the attacker has a some partial information about
D. Instead, we wish to design a randomized mechanism M(D; r) which will
approximate f(D) with relatively high accuracy, but will use its randomness r
to “add enough noise” to the true answer f(D) to protect the privacy of the
individual records of D. For simplicity, we will restrict our attention to real-
valued queries f , so that we can define the utility ρ of M as the expected value
(over uniform r, for now) of |f(D)−M(D; r)|, which we want to minimize. For
example, f might be a counting query, where f(D) is the number of records in
D satisfying som predicate π, in which case we seek to achieve utility o(|D|) or
even independent of |D|. More interestingly, we want M to satisfy the following
very strong notion called ε-differential privacy: for any neighboring databases D1

and D2 (i.e. D1 and D2 differ on a single record) and for any potential output
z, Prr[M(D1; r) = z]/ Prr[M(D2; r) = z] is between e−ε ≈ 1− ε and eε ≈ 1 + ε
(assuming ε is close to 0). This definition shows one difference between standard
privacy, which holds between all pairs of databases D1 and D2, and differential
privacy, which only holds for neighboring databases. Related to the above, one
cannot achieve any useful utility ρ if ε is required to be negligibly small (as then
one can gradually transfer any D1 to any other D2 without noticeably changing
the answers given by M). Instead, the one typically assumes that ε is a small
constant which can be pushed arbitrarily close to 0, possibly at the expense of
worse utility ρ. Motivated by these considerations, we will say that f admits a
class of non-trivial mechanisms M = {Mε | ε > 0} if there exists some fixed
function g(·) s.t., for all ε > 0, Mε is ε-DP and has utility g(ε), independent of
the size of the database D.

Additive-Noise Mechanisms. The simplest class of non-trivial differentially
private mechanisms (with perfect randomness) are the so called additive-noise

5 On the positive side, [9], [3] showed that extractable sources are not strictly neces-
sary for encrypting a “very small” number of bits. Still, for natural “non-extractable”
sources, such as SV sources, it is known that encrypting even a single bit is impos-
sible [8,21].



mechanisms [10, 12, 13], introduced in the original work of [2, 6, 10, 11]. These
mechanisms have the form M(D; r) = f(D)+X(r), where X is an appropriately
chosen “noise” distribution added to guarantee ε-DP. For example, for counting
queries (and more general “low-sensitivity” queries where |f(D1) − f(D2)| is
bounded on all neighboring databases D1 and D2), the right distribution is the
Laplace distribution with standard deviation Θ(1/ε) [10], giving the (additive-
noise) Laplace mechanism for such functions, which is private and accurate (in
fact, essentially optimal for a wide range of loss functions [12]). One perceived
advantage of additive-noise mechanisms comes from the fact that the noise is
oblivious to the input, and it is natural to ask if it is possible to design additive-
noise mechanisms which would be non-trivial even if the noise distribution is
generated using the Santha-Vazirani source. For example, perhaps one can gen-
erate a “good enough” sample of the Laplace distribution even with SV sources?
Unfortunately, we show that this is not the case. In fact, any non-trivial additive-
noise mechanism for a source R implies the existence of a randomness extractor
forR, essentially collapsing the notion of differential privacy to that of traditional
privacy, and showing the impossibility of non-trivial additive-noise mechanisms
for SV sources.

Need for Consistent Sampling. In fact, the main reason why additive-noise
mechanisms failed to handle SV sources comes from the fact that such algorithms
use disjoint sets of coins to produce the same “noisy answer” on two databases
having different “real answers”. More formally, if f(D1) 6= f(D2) and Ti(z) is
the set of coins r where M(Di; r) = z, an additive-noise mechanism must satisfy
T1(z) ∩ T2(z) = ∅. On the other hand, ε-DP requires that Pr[r ∈ T1(z)]/ Pr[r ∈
T2(z)] ≤ 1 + ε. For the uniform distribution, this simply means that |T1| ≈ |T2|.
Since T1 and T2 are disjoint, the SV adversary can try to bias the coins r so
as simultaneously increase (or, at least maintain) the odds of hitting T1, while
decreasing the odds of hitting T2. Indeed, in Lemma 2 we show that an SV
adversary can always succeed in amplifying the ratio Pr[r ∈ T1]/ Pr[r ∈ T2]
(and, hence, violate the differential privacy of our mechanism) whenever T1 and
T2 have small intersection (e.g., are disjoint).

In fact, in Lemma 6 we prove that any “SV-robust” mechanism should strive
to produce identical outputs on neighboring databases for a majority of random
tapes ; in particular, for any z, |T1(z) ∩ T2(z)| ≈ |T1(z)| ≈ |T2(z)| (see Defi-
nition 8 for the exact quantitative formulation). This general property, which
we call consistent sampling (CS), is closely related to the “consistent sampling”
methodology that has found applications in web search [4] and parallel repeti-
tion theorems [14], among others. Moreover, we show that ε-consistent sampling
implies ε-differential privacy, but the converse is false.

Our Main Result. The lower bound above suggests a path forward toward
building SV-robust mechanisms, which starts with the design of consistently
samplable mechanisms. For example, the classical Laplace mechanism for low
sensitivity functions could be viewed as sampling some noise x of expected
magnitude ρ = O(1/ε), and adding it to the exact solution y = f(D). Being
additive-noise, this mechanism is not CS. But, imagine a new mechanism which



further rounds the answer z = y + x to the nearest multiple z′ of 1/ε. Clearly,
the expected utility has gone from ρ to at most ρ′ = ρ + 1/ε = O(ρ). Yet, it
turns out that the new mechanism is now ε-CS, since, informally, the rounded
answers on neighboring databases are only distinct on an ε-fraction of coins r
(see Section 5).

Still, designing CS mechanisms was only a necessary condition for building
SV-robust, differentially private mechanisms. For example, the basic notion of
consistency ignores the binary representations of random coins r defining the
needed pre-image sets T1 and T2, which are (intuitively) very important for
handling SV sources since their randomness properties are bit-by-bit. Indeed,
we show that consistency alone is not enough for SV-robustness, and we need
an additional (fortunately, simply stated) property of our sampling to guarantee
the latter. (As expected, this property asks something quite natural about the
binary representations of the coins inside T1 and T2.) We call the resulting notion
SV-consistent sampling (SVCS; Definition 10). Building a non-trivial mechanism
satisfying this condition formed the main technical bulk of our work.

In particular, starting with the “rounded” Laplace mechanism, we show a
careful implementation of this CS mechanism, so that the resulting mechanism
is actually SVCS (with appropriate parameters guaranteeing ε-DP of the final
mechanism against γ-SV sources). The details of this technical step, which uses
properties of arithmetic coding (see [19,23]) applied to the specific Laplace dis-
tribution, are explained in Section 5. This gives us our main result (Theorem 2)
and an affirmative answer to our Main Question: a non-trivial class of SV-robust
mechanisms for counting queries and arbitrary low-sensitivity functions.

Due to space constraints, we defer all proofs to the full version.

2 Random Sources and Differential Privacy
Notation. For a positive integer n, we use the notation [n] to denote the set
{1, 2, . . . , n}. We use ⌊·⌉ to denote the nearest integer function. For a distribution
or random variable R, we write r ← R to denote the operation of sampling a
random r according to R. For a randomized function h, we write h(x ; r) to denote
the unique output of f on input x with random coins r. When the distribution of
random coins R is understood from context, we write h(x) to denote the random
variable h(x ; r) for r ← R. Finally, we denote a sequence of bits using boldface,
e.g. x = x1, x2, . . .

We use calligraphic letters to denote families of the corresponding letter. For
example, F denotes a family of functions f , R denotes a family of distributions
R. We see a distribution over {0, 1}∗ as continuously outputting (possibly corre-
lated) bits. In particular, we let U be the distribution over {0, 1}∗ that samples
each bit independently and uniformly at random. When U is truncated after
n bits, the result is the distribution Un, which is the uniform distribution over
{0, 1}n, the bit-strings of length n.

2.1 Random Sources

We call a family R of distributions over {0, 1}∗ a source. In this work, we model
perfect randomness with the uniform source and imperfect randomness with the



γ-Santha-Vazirani source [21], arguably the simplest type of a “non-extractable”

source. The uniform source U def
= {U} is the set containing only the distribution

U on {0, 1}∗ that samples each bit uniformly at random. We define γ-Santha-
Vazirani sources below.

Definition 1 (γ-Santha-Vazirani Source [21]). Let γ ∈ [0, 1]. A probability
distribution X = (X1, X2, . . .) over {0, 1}∗ is a γ-Santha-Vazirani distribution if
for all i ∈ Z

+ and x1 . . . xi−1 ∈ {0, 1}i−1, it holds that

1

2
(1− γ) ≤ Pr[Xi = 0 | X1 = x1, . . . Xi−1 = xi−1] ≤

1

2
(1 + γ).

We define the γ-Santha-Vazirani source SV(γ) to be the set of all γ-Santha-
Vazirani distributions. Finally, for a distribution SV(γ) ∈ SV(γ), we let SV(γ, n)
be the distribution SV(γ) restricted to the first n coins (X1, . . . , Xn). We let
SV(γ, n) be the set of all distributions SV(γ, n).

We now define γ-biased semi-flat sources, which were introduced by [20] (see
also [8], where they were referred to as γ-biased halfspace sources).

Definition 2 (γ-Biased Semi-Flat Source). For S ⊂ {0, 1}n of size |S| =
2n−1, and γ ∈ [0, 1], the distribution HS(γ, n) over {0, 1}n is defined as follows:
for all x ∈ S, Prx←HS(γ,n)[x] = (1+γ) ·2−n, and for all x /∈ S, Prx←HS(γ,n)[x] =
(1− γ) · 2−n. We define the γ-biased semi-flat source H(γ, n) to be the set of all
distributions HS(γ, n) for all |S| = 2n−1.

Lemma 1 ([8, 20]). For any n ∈ Z
+ and γ ∈ [0, 1], H(γ, n) ⊂ SV(γ, n).

We prove a general lemma about γ-semi-flat sources, which will be very useful
in later sections.

Lemma 2. Let G, B ⊆ {0, 1}n such that |G| ≥ |B| > 0, and let σ
def
= |B\G|

|B| ∈
[0, 1]. Then there exists S ⊆ {0, 1}n of size |S| = 2n−1 such that

Pr
r←HS(γ,n)[r ∈ G]

Pr
r←HS(γ,n)[r ∈ B]

≥ (1 + γσ) · |G||B| .

2.2 Differential Privacy and Utility

We start by briefly recalling the notion of differential privacy. Given a database
containing confidential information, we wish to allow learning of statistical in-
formation about the contents of the database without violating the privacy of
any of its individual entries. The standard cryptographic notion of privacy where
negligible information is revealed, is not appropriate in this setting as it does
not allow to learn even one bit of “global” information about the contents of
the database. Therefore, a new privacy definition is needed for this setting, in
particular, one that allows a better trade-off between privacy and utility. This
is precisely what differential privacy achieves.



The Model. We model a statistical database as an array of rows, and say that
two databases are neighboring if they differ in exactly one row. Throughout the
paper, we let D be the space of all databases. We consider the interactive setting,
in which interested parties submit queries, modeled as functions f : D → Z,
where Z is a specified range. In this paper, we are only concerned with queries
with range Z = Z, and henceforth only consider this case. A mechanism M is
a probabilistic algorithm that takes as input a database D ∈ D and a query
f : D → Z, and outputs a value z ∈ Z. We assume that M ’s random tape is in
{0, 1}∗, that is, that M has at its disposal a possibly infinite number of random
bits, but for a fixed outcome z ∈ Z, M needs only a finite number of coins
n = n(D, f, z) to determine whether M(D, f) = z. Furthermore, we assume
that if r ∈ {0, 1}n is a prefix of r′ ∈ {0, 1}n′ and M(D, f ; r) = z is already
determined from r, then M(D, f ; r′) = z also. In other words, providing M
with extra coins does not change its output.

Definitions. Informally, we wish z = M(D, f) to approximate the true answer
f(D) without revealing too much information. We say a mechanism is differen-
tially private for a class of queries F if for all queries f ∈ F , replacing a real entry
in the database with one containing fake information only changes the outcome
of the mechanism by a small amount. In other words, evaluating the mechanism
on the same query f ∈ F , on two neighboring databases, does not change the
output by much. On the other hand, we define its utility to be the expected dif-
ference between the true answer f(D) and the output of the mechanism. Since
the purpose of this work is to analyze mechanisms with respect to their sources
of randomness, the following definitions of privacy and utility explicitly take the
source of randomness R into account.

Definition 3 ((ε,R)-Differential Privacy). Let ε ≥ 0, R be a source, and
F = {f : D → Z} be a class of functions. A mechanism M is (ε,R)-differentially
private for F if for any pair D1, D2 ∈ D of neighboring databases, all f ∈ F , all
possible outputs z ∈ Z of M , and all R ∈ R:

Prr←R[M(D1, f ; r) = z]

Prr←R[M(D2, f ; r) = z]
≤ 1 + ε.

This is a very strong definition. Not only does it give a statistical guarantee,
making it independent of the computation power of any adversary, but it is
also strictly stronger than the requirement that the statistical distance between
M(D1, f) and M(D2, f) is at most ε (for example, the latter allows some low-
probability outcomes of M(D1, f) to never occur under M(D2, f)). We also
note that, traditionally, differential privacy has been defined by having the ratio
of probabilities be bounded by eε. We instead bound it by 1 + ε, since this
formulation makes some of our calculations slightly cleaner. This is fine since we
always have 1 + ε ≤ eε, and, when ε ∈ [0, 1] (which is the key range of interest),
we anyway have eε ≈ 1 + ε.

If a mechanism M is (ε,R)-differentially private for some randomness source
R, then a mechanism M ′ that runs M as a black box and then performs some



post-processing on the output, is also (ε,R)-differentially private. Intuitively,
this is because given only z = M(D, f), M ′ cannot reveal more information
about D than z itself. In our work we only consider the case where M ′ evaluates
a deterministic function h of z = M(D, f), so that M and h do not have to
“share” the random source R.

Lemma 3. Let M be a (ε,R)-differentially private mechanism, and let h be

any function. Define M ′(D, f)
def
= h(M(D, f)). Then M ′ is (ε,R)-differentially

private.

Definition 4 ((ρ,R)-Utility). Let ρ > 0, let R be a source, and let F =
{f : D → Z} be a class of functions. We say a mechanism M has (ρ,R)-utility
for F if for all databases D ∈ D, all queries f ∈ F , and all distributions R ∈ R,

Er←R[|f(D)−M(D, f ; r)|] ≤ ρ.

At the extremes, a mechanism that always outputs 0 is (0,R)-differentially
private, while a mechanism that outputs the true answer f(D) has (0,R)-utility.
Neither of these mechanisms is very interesting—the first gives no utility, while
the second provides no privacy. Instead, we wish to find mechanisms that achieve
a good trade-off between privacy and utility. This motivates the following defi-
nition.

Definition 5 (Non-Triviality). We say a function family F admits non-trivial
differentially private mechanisms w.r.t. R if there exists a function g(·) such that
for all ε > 0 there exists a mechanism Mε that is (ε,R)-differentially private and
has (g(ε),R)-utility. We callM = {Mε} a class of non-trivial mechanism for F
w.r.t. R.

We make a few remarks regarding this definition. First, we require that the
utility ρ = g(ε) is independent of |D|. Second, we note that non-triviality implies
that we can achieve (ε,R)-differential privacy for any ε > 0 (possibly at the
expense of utility). E.g., when R = SV(γ), we should be able to achieve ε≪ γ,
which is below the “extraction barrier” for SV-sources. Finally, we note that
for the purpose of satisfying this definition, we can assume w.l.o.g. that ε ≤ 1,
which is anyway the case of most interest. Moreover, we can assume that 1/ε is
an integer, since otherwise we can simply take a slightly smaller ε for which this
is the case.

Infinite-Precision Mechanisms. As we will see shortly, it is sometimes eas-
ier to describe mechanisms using samples from some continuous random variable
X, instead of using a (discrete) random tape in {0, 1}∗. Moreover, the notions of
privacy, utility, and non-triviality definitions can be analogously defined for this
case as well (which we omit for brevity). Of course, to actually “implement” such
abstract mechanisms in practice, one must specify how to approximate them us-
ing a “finite precision” random tape in {0, 1}∗, without significantly affecting
their privacy and/or utility. When perfect randomness U is available, this is
typically quite easy (and usually not spelled out in most differential privacy pa-
pers), by simply approximating a continuous sample from X within some “good



enough” finite precision. In contrast, our mechanisms will have to deal with im-
perfect randomness SV(γ), so rounding a given “continuous” mechanism into a
“discrete” mechanism will be non-trivial and require utmost care. In particular,
we will have to design quite special “infinite-precision” mechanisms which will
be “SV-friendly” toward appropriate “finite-precision rounding”.

Additive Noise Mechanisms. One type of non-trivial mechanisms follow the
following blueprint: first, they sample data-independent noise x from some (dis-
crete or continuous) distribution X, calculate the true answer f(D), and output
z = f(D)+x. We call such mechanisms, additive-noise mechanisms (examples of
additive-noises mechanisms include the Laplacian mechanism [10], the geometric
mechanism [12], and the K-norm mechanism for multiple linear queries [13]). If
E[|X|] is bounded, then the mechanism has bounded utility. However, to argue
that such bounded “noise” X is sufficient to ensure the differential privacy of
such mechanisms, we must first restrict our query class F . In particular, it turns
out that additive-noise mechanisms achieve differential privacy for a pretty large
class of useful functions, called bounded sensitivity functions.

Definition 6 (Sensitivity). For f : D → Z, the sensitivity of f is defined as

∆f
def
= max

D1,D2

‖f(D1)− f(D2)‖

for all neighboring databases D1, D2 ∈ D. For d ∈ Z
+, we define Fd = {f : D →

Z | ∆f ≤ d} to be the class of functions with sensitivity at most d.

Intuitively, low sensitivity functions do not change too much on neighboring
databases, which suggests that relatively small noise can “mask” the difference
between f(D1) and f(D2). The particular (continuous) distribution turns out
to be the Laplacian distribution, defined below.

Definition 7 (Laplacian Distribution). The Laplacian distribution with mean
µ and standard deviation

√
2b, denoted Lapµ,b, has probability density function

Lapµ,b(x) = (1/2b)·e−|x−µ|/b. The cumulative distribution function is CDF
Lap
µ,b (x) =

(1/2b) · (1 + sgn(x) · (1 − e|x−µ|/b)).
We also define the distribution obtained from sampling the Laplacian dis-

tribution Lapµ,b and rounding to the nearest integer ⌊Lapµ,b⌉. We call this the
“rounded” Laplacian distribution and denote it by RLapµ,b.

In particular, for any sensitivity bound d, Dwork et al. [10] show the following
class of (infinite-precision) additive-noise mechanisms MLap = {MLap

ε } is non-
trivial for Fd. Given a database D ∈ D, a query f ∈ Fd and the target value
of ε, the mechanism MLap

ε computes f(D) and adds noise from the Laplacian

distribution with mean 0 and standard deviation (
√

2 · d)/ε; i.e. MLap
ε (D, f)

def
=

f(D) + Lap0,d/ε. Equivalently, we can also view this mechanism as computing
y = f(D) and outputting a sample from the distribution Lapy,d/ε. Moreover, it
is easy to see that this infinite-precision mechanism achieves utility O(d/ε).



In order to ensure that the output of the mechanism of [10] is an integer,
the result can be rounded to the nearest integer. Since this is post-processing,
by Lemma 3, the result has the same privacy guarantees. Furthermore, since
f(D) ∈ Z, we have ⌊f(D) + Lap0,d/ε⌉ = y + ⌊Lap0,d/ε⌉. In particular, for queries
of integer range, the mechanism of [10] can be seen as computing y = f(D)
and outputting z = RLapy,d/ε. We denote this (still infinite-precision, but now

integer range) variant by MRLap
ε . Clearly, it still has utility O(d/ε).

Finally, we must describe how to approximate this mechanism familyMRLap

by a finite precision familyMRLap
w.r.t. U , without significantly affecting privacy

or utility. As it turns out, a good enough approximation can be accomplished by
sampling each value z ∈ Z with precision roughly proportional to Pr[z] (under
MRLap

ε ), which requires n(z) = O(|z| log(d/ε)) (truly random) coins Un(z), and
increases both ε and ρ by at most a constant factor. Since we will not use
the resulting (finite-precision) mechanism in this paper (indeed, we will see in
Lemma 5 that no additive-noise mechanism can be non-trivial w.r.t. SV(γ)), we
state the end result without further justification.

Lemma 4 ([10]). For any d ∈ Z
+, there exists a family MRLap

= {MRLap

ε } of
non-trivial mechanisms for Fd w.r.t. the uniform source U , with utility function
gRLap(ε) = O(d/ε).

Our Question. Lemma 4 shows that for all d ∈ Z
+ there exists a class of non-

trivial mechanisms for Fd w.r.t. U . The main goal of this work is to determine
if this is also true for other randomness sources, in particular, for the γ-Santha-
Vazirani sources.

Main Question (Restated): Does there exist a class M = {Mε} of non-
trivial mechanisms for Fd w.r.t. SV(γ) for all γ ∈ [0, 1)? If so, can they be
additive-noise mechanisms?

For clarity, from now we will focus on the case d = 1; however, all our results
extend to any sensitivity bound d. We will prove that non-trivial mechanisms
for F1 w.r.t. SV(γ) cannot be additive noise, answering the second question in
the negative. Despite this, however, we will answer the first question positively
by displaying a classM = {Mε} of non-trivial (non-additive-noise) mechanisms
for F1 w.r.t. SV(γ).

3 Naive Approaches and a Lower Bound

We will start by showing a few naive approaches that will explain the intuition
behind why non-trivial mechanisms for F1 w.r.t. SV(γ) cannot be additive noise.
Moreover, we will prove a general lower bound restricting the type of mechanisms
“friendly” to SV-sources, which will motivate a very special type of mechanisms
that we will introduce in Section 4.

First Attempt. A first approach to answer our main question would be to
prove that any class of non-trivial mechanisms for F1 w.r.t. U is also non-trivial
w.r.t. SV(γ). This turns out to be far too optimistic. To see this, take any



mechanism M w.r.t. U , and assume that with high probability M needs at most
n random coins, where n is odd. Define (artificial) mechanism M ′ as follows.
Whenever M needs a fresh coin b, M ′ samples n coins b1 . . . bn and simply
sets b = majn(b1, . . . , bn), where majn(·) is the majority of n bits. Clearly, M ′

has the same differential privacy and utility guarantees as M w.r.t. U , since
majority of perfectly random bits is perfectly random. On the other hand, by
biasing each bit towards 0 (resp. 1), a Santha-Vazirani adversary can fix every

n-bit majority function to 0 (resp. 1) with probability at least (1 − e−γ2n/2),
which means that he can fix all n coins of M to any desired outcome with
probability at least (1 − ne−γ2n/2) ≈ 1. Hence, the Santha-Vazirani adversary
for M ′ can effectively fix the random tape of M , making it deterministic (with
probability exponentially close to 1). On the other hand, it is easy to see that no
deterministic mechanism having non-trivial utility (i.e., giving distinct answers
on some two neighboring databases) can be differentially private.

Hence, non-trivial mechanisms w.r.t. the uniform source U are not necessarily
non-trivial w.r.t. γ-Santha-Vazirani sources SV(γ).

Second Attempt. A seemingly less naive idea would be to prove that any
class of non-trivial mechanisms for F1 w.r.t. U is also non-trivial w.r.t. SV(γ)
if we first run some extractor Ext on the randomness. More precisely, suppose
M = {Mε} is non-trivial w.r.t. U and suppose Mε uses n coins. Can we con-
struct a deterministic extractor Ext : {0, 1}m → {0, 1}n (for some sufficiently

large m ≫ n) and let M ′
ε

def
= Mε(D, f ; Ext(r)), such that M′ = {M ′

ε} is non-
trivial w.r.t. SV(γ) wheneverM = {Mε} is non-trivial w.r.t. U? More generally,
one can define an analogous “extractor conjecture” for any imperfect sourceR in
place of SV(γ). Unfortunately, we show that this naive approach does not work
for any “non-extractable” source R, such as SV(γ). To show this, we look at the
family of additive-noise mechanisms for the family F1 of sensitivity-1 functions
given by Lemma 4, and observe that applying an extractor to any additive-noise
mechanism is still an additive-noise mechanism. Then, we show a more general
statement that any non-trivial additive-noise mechanism for F1 under R implies
the existence of a bit extractor for R, which is impossible for non-extractable
R, such as SV(γ).

Lemma 5. Assume R is a source and M = {Mε} is a family of additive-noise
mechanisms for F1, where each Mε is (ε,R)-differentially private. Then, for all
ε > 0, one can deterministically extract an ε-biased bit from R. In particular, (a)
there does not exist a classM = {Mε} of non-trivial additive-noise mechanisms
for F1 w.r.t. SV(γ); and, by Lemma 4, (b) the “extractor-conjecture” is false for
any “non-extractable” R, such as SV(γ).

General Lower Bound. The failure of our naive approaches suggests that one
cannot take any non-trivial mechanism w.r.t. uniform randomness U , and apply
some simple transformation to its randomness to derive a non-trivial mechanism
w.r.t. SV(γ). Indeed, we will show that any non-trivial mechanism w.r.t. SV(γ)
must in fact satisfy a pretty restrictive condition w.r.t. to the uniform source.



In particular, this condition (later called consistent-sampling) is never satisfied
by additive-noise mechanisms.

First, we need some important notation. Consider a mechanism M with

randomness space {0, 1}∗, and let D ∈ D. We define the set T (D, f, z)
def
= {r ∈

{0, 1}n | z = M(D, f ; r)} to be the set of random coins r ∈ {0, 1}∗ such that M
outputs z when run on database D, query f , and random coins r. We remark
that since we assume that only n = n(f, z, D) coins need to be sampled to
determine if M(D, f) = z, we can assume w.l.o.g. that T (f, z, D) ⊆ {0, 1}n. In
the interest of clarity, we simply write T when f, D, and z are understood from
context.

Without loss of generality, we assume that the function family F is by itself
non-trivial, meaning that there exist two neighboring databases D1, D2 and a

query f such that f(D1) 6= f(D2). We also let T1
def
= T (D1, f, z) and T2

def
=

T (D2, f, z). Fix z ∈ Z, f ∈ F , R ∈ R. To show that M is (ε,R)-differentially
private for F w.r.t. randomness source R, we are concerned with bounding the
following ratio by 1 + ε:

Prr←R[M(D1, f ; r) = z]

Prr←R[M(D2, f ; r) = z]
=

Prr←R[r ∈ T1]

Prr←R[r ∈ T2]

As we show below, bounding the above ratio for all Santha-Vazirani sources
introduces a non-trivial constraint of M . For illustration, let us first look at any
additive-noise mechanism M and re-derive the conclusion of Lemma 5 directly.
If z = M(D1, f ; r1) = M(D2, f ; r2) then z = f(D1) + x1 = f(D2) + x2 for
x1, x2 ← X. Since we assumed f(D1) 6= f(D2) then x1 6= x2, which means
that r1 6= r2. Thus, T1 ∩ T2 = ∅. Furthermore, we can assume w.l.o.g. that
|T1| ≥ |T2| since otherwise we can switch D1 and D2. Using Lemma 2 with
G = T1 and B = T2, and the fact that H(γ, n) ⊂ SV(γ, n), we have that there
exists SV(γ) ∈ SV(γ) such that

Pr
r←SV(γ)[M(D1, f ; r) = z]

Pr
r←SV(γ)[M(D2, f ; r) = z]

≥ (1 + γ) · |T1|
|T2|
≥ 1 + γ,

which is the same conclusion as the one obtained in the proof of Lemma 5.
More generally, coming back to arbitrary mechanisms, since Lemma 2 works

even when G ∩ B 6= ∅, we get the following much stronger result. Suppose

σ
def
= |T2\T1|

|T2|
∈ [0, 1]. Then there exists SV(γ) ∈ SV(γ) such that

Pr
r←SV(γ)[M(D1, f ; r) = z]

Pr
r←SV(γ)[M(D2, f ; r) = z]

≥ 1 + γσ.

This shows that a necessary condition to achieve (ε,SV(γ))-differential privacy
is that σ ≤ ε/γ = O(ε). We summarize this in the following lemma.

Lemma 6. Assume γ > 0 and M is (ε,SV(γ))-differentially private mechanism
for some class F . Fix any z ∈ Z, f ∈ F , and any neighboring databases D1, D2 ∈
D s.t. f(D1) 6= f(D2). Let T1

def
= T (D1, f, z), T2

def
= T (D2, f, z), and assume that

|T1| ≥ |T2|. Then σ
def
= |T2\T1|

|T2|
≤ ε

γ = O(ε).



4 SV-Consistent Sampling

Recall that we defined T (D, f, z)
def
= {r ∈ {0, 1}n | z = M(D, f ; r)} to be the

set of all coins r such that M outputs z when run on database D, query f
and randomness r. Further recall that for neighboring databases D1, D2, we let

T1
def
= T (D1, f, z) and T2

def
= T (D2, f, z).

By Lemma 6 we know that in order to achieve (ε,SV(γ))-differential privacy

we must have |T2\T1|
|T2|

= O(ε). This means that for arbitrary ε > 0, it must be

that |T2\T1|
|T2|

→ 0 as ε→ 0. This motivates our definition of ε̃-consistent sampling.

Later we will define ε in terms of ε̃ such that ε→ 0 as ε̃→ 0. We remark that our
definition of ε̃-consistent sampling is similar to the definition of [14, 15], which
has already been used in the context of differential privacy [17].

Definition 8. We say M has ε̃-consistent sampling (ε̃-CS) if for all z ∈ Z, f ∈
F and neighboring databases D1, D2 ∈ D such that T2 6= ∅, we have

|T1\T2|
|T2|

≤ ε̃.

We make a few remarks about Definition 8. First, notice that w.l.o.g. we can

assume that |T1| ≥ |T2| since in this case we have |T2\T1|
|T1|

≤ |T1\T2|
|T2|

. Second, notice

that ε̃-consistent sampling also guarantees that |T2\T1|
|T2|

≤ |T1\T2|
|T2|

≤ ε̃, which

Lemma 6 tells us is a necessary condition for non-trivial differential privacy.
Finally, it is easy to see that if a mechanism has ε̃-consistent sampling, then it
is (ε̃,U)-differentially private, as

Prr←Un
[r ∈ T1]

Prr←Un
[r ∈ T2]

=
|T1|
|T2|

=
|T1 ∩ T2|
|T2|

+
|T1\T2|
|T2|

≤ 1 + ε̃.

To summarize, ε̃-consistent sampling is sufficient to achieve (ε̃,U)-differential
privacy and is essentially necessary to achieve (γε̃,SV(γ))-differential privacy.
But is it sufficient to achieve (p(ε̃),SV(γ))-differential privacy for some function
p such that p(ε̃) → 0 as ε̃ → 0? This turns out not to be the case, as it is still
possible for a Santha-Vazirani distribution to increase the probability of T1\T2

while simultaneously decreasing the probability of T2. For instance, consider the
example in Figure 1, where pictorially, we view each coin r ∈ {0, 1}∗ as defining a
path down a binary tree. In this example, T1\T2 and T2 are positioned precisely
to the left and right of 1/2, respectively. After the first coin, the SV-distribution
can focus on either targeting T1\T2 or avoiding T2. If the height of this tree
is big, then the SV distribution can greatly increase our ratio. This suggests
that in order to handle γ-Santha Vazirani distributions, we need to make more
restrictions on the mechanism.

New Observations. We make two observations that will help us guarantee
that the example described in Figure 1 does not arise, but we first define some
notation. For m ∈ Z

+ and a bit sequence x = x1, . . . , xm ∈ {0, 1}m, we define

suffix(x)
def
= {y = y1, y2, . . . ∈ {0, 1}∗ | xi = yi for all i ∈ [m]} to be the set of
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T1 T2

Fig. 1. Example of how a SV(γ) ∈ SV(γ) distribution can increase the ratio
Pr

r←SV(γ)[r∈T1]

Pr
r←SV(γ)[r∈T2]

.

all bit strings that have x as a prefix. For n ∈ Z
+ such that m ≤ n, we define

suffix(x, n)
def
= suffix(x) ∩ {0, 1}n.

Our first observation is that if we consider the longest prefix u of all elements
in T1 ∪ T2, then the ratio is the same as when the probabilities are conditioned
on r having this prefix. This is because in order for r ∈ T1\T2 or r ∈ T2, it must
be the case that r ∈ suffix(u, n).

Our second observation is that we want to ensure that suffix(u, n) is a
good approximation of T1 ∪ T2, that is, that |suffix(u, n)| ≈ |T1 ∪ T2|. This
guarantees that we never encounter the problem that arose in the example in
Figure 1. For this to be the case, however, we must first ensure that T1 ∪ T2 are
“close together”. We therefore make the following definition.

Definition 9. We say M is an interval mechanism if for all queries f ∈ F ,
databases D ∈ D, and possible outcomes z ∈ Z, the values in T constitute an
interval, that is, T 6= ∅ and the set {int(r) | r ∈ T } contains consecutive integers,

where for r = r1 . . . rn ∈ {0, 1}n, we define int(r)
def
=

∑n
i=1 ri · 2n−i.

We now formalize the requirement we described above. Let D1, D2 be two

neighboring databases, let f ∈ F , let z be a possible outcome, and let n
def
=

max(n(D1, f, z), n(D2, f, z)). We let u be the longest prefix such that T1 ∪ T2 ⊆
suffix(u, n). Formally,

u
def
= argmax{|u′| | u′ ∈ {0, 1}≤n and T1 ∪ T2 ⊆ suffix(u′, n)}

Definition 10. Let ε̃ > 0, c > 1. We say that an interval mechanism M has
(ε̃, c)-SV-consistent sampling ((ε̃, c)-SVCS) if it has ε̃-consistent sampling and
for all queries f ∈ F , all neighboring databases D1, D2 ∈ D and all possible
outcomes z ∈ Z, which define u as above, we have:

|suffix(u, n)|
|T1 ∪ T2|

≤ c

We now show that (ε̃, c)-SV-consistent sampling is sufficient to obtain (ε,SV(γ))-
differential privacy for an interesting value of ε, that is, for an ε that can be made
arbitrarily small by decreasing ε̃.



Theorem 1. If M has (ε̃, c)-SV-consistent sampling, then M is (ε,SV(γ))-
differentially private, where

ε = 2 · (8ε̃)1−log(1+γ)

(
1 + γ

1− γ

)log(8c)

In particular, for γ ∈ [0, 1) and c = O(1), we have ε→ 0 as ε̃→ 0.

As part of proving Theorem 1, we make a few additional definitions and
prove a lemma. Let D1, D2 be two neighboring databases, f ∈ F , z be a possible
outcome, and n = max(n(D1, f, z), n(D2, f, z)).

– Define v to be the longest prefix such that T1\T2 ⊆ suffix(v, n). Formally,

v = argmax{|v′| | v ∈ {0, 1}≤n and T1\T2 ⊆ suffix(v′, n)}

– Define I0
def
= suffix(v0, n) ∩ T1\T2 and I1

def
= suffix(v1, n) ∩ T1\T2. That

is, I0 ∪ I1 = T1\T2 and Ib contains all coins in T1\T2 that have vb as prefix.
• Define v0 to be the longest prefix such that I0 ⊆ suffix(v0, n). Formally,

v0 = argmax{|v′0| | v0 ∈ {0, 1}≤n and I0 ⊆ suffix(v′0, n)}

• Define v1 to be the longest prefix such that I1 ⊆ suffix(v1, n). Formally,

v1 = argmax{|v′1| | v1 ∈ {0, 1}≤n and I1 ⊆ suffix(v′1, n)}

– Define w to be the shortest prefix such that suffix(w, n) ⊆ T2. Formally,

w = argmin{|w′| | w′ ∈ {0, 1}≤n and suffix(w′, n) ⊆ T2}

We remark that w may not be unique. In this case, any of the possible values
is just as good since we will be concerned with the value |w| which is the
same across all possible values of w.

See Figure 2 for a pictorial representation of u,v,w. Note the asymmetry of
the definitions of u,v, and w. Also note that we define v and w in such a way
that suffix(v)∩ suffix(w) = ∅. Informally, max(|v0|, |v1|)−|w| is roughly the
number of coins that the Santha-Vazirani distribution needs to use to increase
the probability of landing in T1\T2 without affecting the probability of landing in
T2, while |w|− |u| is roughly the number of coins that it can use to decrease the
probability of landing in T2 without affecting the probability of landing in T1\T2.
We first prove a lemma that says that if M has (ε̃, c)-SV-consistent sampling
then max(|v0|, |v1|)− |w| = Ω(log(1/ε̃)) and |w| − |u| = O(1).

Lemma 7. If M has (ε̃, c)-SV-consistent sampling then for all neighboring databases
D1, D2 ∈ D which define u,v0,v1,w as above, we have:

max(|v0|, |v1|)− |w| ≥ log

(
1

8ε̃

)
and |w| − |u| ≤ log(8c)
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Fig. 2. Definitions of u,v,w.

5 Non-Trivial SVCS Mechanisms

In this section we show a mechanism, which we call M
SVCS

eε , that achieves (ε̃, O(1))-
SVCS for Fd – the class of functions with bounded sensitivity d ∈ Z

+. By The-
orem 1 this gives us a (ε,SV(γ))-differentially private mechanism, where ε→ 0
as ε̃ → 0. Furthermore, by our observation in Section 4, the mechanism is also
(ε̃,U)-differentially private. We highlight that for convenience, we parametrize

the mechanism M
SVCS

eε with the privacy parameter ε̃ w.r.t. U , and state the pri-
vacy and utility guarantees w.r.t. SV(γ) as a function of ε̃ (see Lemma 8). For
clarity, we focus on the case d = 1.

We start with the (ε̃,U)-differentially private mechanism of Dwork et.al. [10],

MRLap
eε (D, f) = f(D) + RLap0,1/eε. Note that since MRLap

eε is additive-noise, then
any finite-precision implementation will also be additive-noise, and by Lemma 5
we know it cannot be non-trivial for F1 w.r.t. SV(γ). This is because the set
of random coins that make the mechanism output z ∈ Z on two neighboring
databases is disjoint. We will therefore need to make several changes to ensure
not only that these sets overlap, but that their intersection is large, thus ensuring
ε̃-consistent sampling. Moreover, we must carefully implement our mechanism
with finite precision so that the resulting mechanism is (ε̃, O(1))-SV-consistent,
ensuring that pathological cases, such as the one in Figure 1, do not occur.
Finally, in performing all these changes we must also keep in mind that we want
a good bound on utility. We first describe a new infinite-precision mechanism,
which we call MSVCS

eε , and then show how to implement it with finite precision
to ensure (ε̃, O(1))-SV-consistency.

A New Infinite-Precision Mechanism. Recall that MRLap
eε (D, f) = f(D)+

RLap0,1/eε = ⌊f(D)+Lap0,1/eε⌉. For our new mechanism, which we call MSVCS
eε , we

choose to perform the rounding step differently. MSVCS
eε (D, f) computes f(D) +

Lap0,1/eε as before but then rounds the final outcome to the nearest multiple
of 1/ε̃. Recall that w.l.o.g. we can assume that 1/ε̃ ∈ Z since otherwise we
can choose a smaller ε̃ so that this is indeed the case. Formally, MSVCS

eε (D, f)

computes y
def
= f(D) and outputs z ← 1/ε̃ · ⌊ε̃ · Lapy,1/eε⌉. We let Zy denote the

induced distribution of the outcome z. We remark that MSVCS
eε is not additive-



noise, since the rounding ensures that the “noise” introduced is dependent on
y = f(D). Further, the output distribution is only defined on multiples of 1/ε̃,
i.e. for k/ε̃ where k ∈ Z.

Consistent Sampling. We now give some intuition as to why this mechanism
already satisfies ε̃-consistent sampling. Since we are considering only queries
in F1, for any two neighboring databases D1, D2, we can assume w.l.o.g. that
f(D1) = y and f(D2) = y − 1. Then for k ∈ Z,

Pr[MSVCS
eε (f, D1) = k/ε̃]

Pr[MSVCS
eε (f, D2) = k/ε̃]

=
Pr

[
k−1/2

eε ≤ Lapy,1/eε < k+1/2
eε

]

Pr
[

k−1/2
eε + 1 ≤ Lapy,1/eε < k+1/2

eε + 1
]

Notice that both the intervals defined in the numerator and denominator have
size 1/ε̃, and that the interval in the denominator is simply the interval in the
numerator, shifted by 1. Therefore, their intersection is roughly a 1−ε̃ fraction of
their size, which is precisely what is required by ε̃-consistent sampling. Of course,
we now need to implement this ε̃-consistent mechanism with finite precision, so
as to achieve a stronger form of (ε̃, O(1))-SV-consistency. For that, we will use
arithmetic coding and some specific properties of the Laplace distribution.

From Infinite to Finite Precision via Arithmetic Coding. In what fol-
lows, we use the following notation: for a sequence x = x1, x2, . . . ∈ {0, 1}∗, we

define its real representation to be the real number real(x)
def
= 0.x1x2x3 . . . ∈

[0, 1]. Arithmetic coding gives us a way to approximate any distribution X on Z

from a bit string r ∈ {0, 1}∗, as follows. Let CDFX be the cumulative distribution

of X, so that X(x) = CDFX(x) − CDFX(x − 1). Let s(x)
def
= CDFX(x). Then the

set of points {s(x)}x∈Z partitions the interval [0, 1] into infinitely many inter-

vals {IX(x)
def
= [s(x − 1), s(x))}x∈Z, where X(x) = |IX(x)|. Note that if a value

x ∈ Z has zero probability, then we can simply ignore it as its corresponding
interval will be empty. We can obtain distribution X from U by sampling a se-
quence of bits r = r1, r2, r3, . . . and outputting the unique x ∈ Z such that
real(r) ∈ IX(x). Note that arithmetic coding has the very nice property that
intervals IX(x) and IX(x + 1) are always consecutive for any x ∈ Z.

Since for some x ∈ Z we can have that s(x) has an infinite binary decimal
representation, there is no a priori bound on the number of coins to decide
whether real(r) ∈ IX(x) or real(r) ∈ IX(x+1). To avoid this, we simply round
each endpoint s(x) to its most n = n(x) significant figures, for some n > 1 which
potentially depends on x. We will need to make sure that n(x) is legal, in the sense
that rounding with respect to n(x) should not cause intervals to “disappear” or
for consecutive intervals to “overlap”. We use a bar to denote rounded values:

s(x) for the rounded endpoint, and I
X
(x) for the rounded interval.

A New Finite Precision Mechanism. We now show how to sample Zy,
the output distribution of MSVCS

eε (D, f) using arithmetic coding. This yields a

new finite precision mechanism, which we call M
SVCS

eε , and let Zy be its output
distribution which will approximate Zy. The distribution Zy is the Laplacian



distribution Lapy,1/eε where for all k ∈ Z, the probability mass in the interval[
k−1/2

eε , k+1/2
eε

)
collapses to the point k/ε̃. Let sy(k)

def
= CDFZy

(
k+1/2

eε

)
, and

let sy(k) be sy(k), rounded to its n = n(y, k) most significant figures. Then
the set of points {sy(k)}k∈Z partition the interval [0, 1] into infinitely many

intervals {Iy(k)
def
= [sy(k − 1), sy(k))}k∈Z, where Pr[Zy = k/ε̃] = |Iy(k)|. We

obtain distribution Zy from U by sampling a sequence of bits r ∈ {0, 1}∗ and
outputting k/ε̃ where k ∈ Z is the unique integer such that real(r) ∈ Iy(k). We
have not yet defined what the precision n = n(y, k) is; we will do this below, but

first we give some intuition as to why M
SVCS

eε will satisfy (ε̃, O(1))-SV-consistent
sampling for some “good-enough” precision.

SV-Consistent Sampling. Recall that since we assume f ∈ F1, for any two
neighboring databases D1, D2 we can assume that f(D1) = y and f(D2) = y−1,
so that for any k ∈ Z

Pr[M
SVCS

eε (f, D1) = k/ε̃]

Pr[M
SVCS

eε (f, D2) = k/ε̃]
=

Pr[Zy = k/ε̃]

Pr[Zy−1 = k/ε̃]
=
|Iy(k)|
|Iy−1(k)|

We thus wish to prove that the mechanism has (ε̃, c)-SV-consistent sampling
where T1 = Iy(k) ≈ Iy(k) and T2 = Iy−1(k) ≈ Iy−1(k) in Definition 10. For now,
let us assume that we use arithmetic coding with infinite precision, that is, we do
not round the endpoints. We will give intuition as to why our mechanism satisfies
an “infinite-precision analogue” of SV-consistent sampling. We can define u to

be the longest prefix of all coins in I
def
= Iy(k) ∪ Iy−1(k), and let uℓ

def
= u, 0, 0, . . .

and ur
def
= u, 1, 1, . . .. Informally, u is the longest prefix such that uℓ is to the

left of I and ur is to the right of I. Then an “infinite-precision analogue” of
(·, O(1))-SV-consistent sampling is the following:

real(ur)− real(uℓ)

|Iy(k) ∪ Iy−1(k)| = O(1) (1)

By construction, we have real(ur)−real(uℓ) ≈ 2−|u|. Furthermore, arith-
metic coding ensures that Iy(k) ∩ Iy−1(k) 6= ∅; indeed, we can view Iy−1(k)
as having “shifted” Iy(k) slightly to the right. We can therefore view I =
Iy(k)∪Iy−1(k) as one single interval that is slightly bigger. Moreover, arithmetic
coding and our use of the Laplacian distribution ensures that smaller intervals
are farther from the center than bigger ones, and in fact, the size of the interval
that contains I and everything to its right (or left, depending on whether I is to
the right or left of 1/2, respectively) is a constant factor of |I|. This means that
|Iy(k) ∪ Iy−1(k)| = |I| = c · 2−|u| for a constant c, and we thus obtain the ratio
required in Equation (1).

Defining the Precision. Now we just need to round all the points sy(k) with
enough precision so that the rounding is “legal” (i.e., preserves the relative sizes
of all intervals Iy(k) and Iy(k)\Iy−1(k) to within a constant factor), so that



our informal analysis of SV-consistency above still holds after the rounding.

Formally, we let I ′y(k)
def
= Iy(k)\Iy−1(k), be the interval containing the coins

that will make the mechanism output k/ε̃ when it is run on D1 but output
(k − 1)/ε̃ when run on D2. We then let

n(y, k) = n(D, f, z)
def
= log

(
1

|I ′y(k)|

)
+ 3

and round sy(k) to its max(n(y + 1, k + 1), n(y, k + 1)) most significant figures.

The resulting mechanism M
SVCS

eε in shown in Figure 3.

We can now state our main results about SV-consistency, SV-privacy, and
SV-utility of our mechanism:

Lemma 8. Mechanism M
SVCS

eε has (27ε̃, 57)-SV-consistent sampling. In partic-

ular, M
SVCS

eε is (27ε̃,U)-differentially private and (ε,SV(γ))-differentially private

for ε = (216ε̃)1−log(1+γ)
(

1+γ
1−γ

)9

. Mechanism M
SVCS

eε has (O(1/ε̃),U)-utility and

(ρ,SV(γ))-utility, where ρ = O
(

1
eε · 1

1−γ

)
.

Theorem 2. For all γ < 1,MSVCS
= {MSVCS

eε } is a class of non-trivial mecha-
nisms for F1 w.r.t. SV(γ).

M
SVCS

eε (D, f ; r): Compute y
def
= f(D) and output a sample from the distribution

Zy
def
= 1/eε · ⌊eε · Lapy,1/eε⌉ by using arithmetic coding as explained below.

– Let n(y, k) = n(D, f, z)
def
= log

“
1

|I′y(k)|

”
+ 3 and let r′y,k be the n(y, k) most

significant figures of r.

– Output the the unique z = k/eε such that k−1/2
eε

≤ real(r′y,k) < k+1/2
eε

.

Fig. 3. Finite precision mechanism M
SVCS

eε that has (27eε, 57)-SV-consistent sampling.
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