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Abstract. We present the first black-box construction of a secure multi-
party computation protocol that satisfies a meaningful notion of concur-
rent security in the plain model (without any set-up, and without assum-
ing an honest majority). Moreover, our protocol relies on the minimal as-
sumption of the existence of a semi-honest OT protocol, and our security
notion “UC with super-polynomial helpers” (Canetti et al, STOC’10) is
closed under universal composition, and implies super-polynomial-time
simulation security.

1 Introduction

The notion of secure multi-party computation allows m mutually distrustful par-
ties to securely compute (or, realize) a functionality f(x̄) of their corresponding
private inputs x̄ = x1, ..., xm, such that party Pi receives the ith component of
f(x̄). Loosely speaking, the security requirements are that the output of each
party is distributed according to the prescribed functionality—this is called cor-
rectness—and that even malicious parties learn nothing more from the protocol
than their prescribed output—this is called privacy. These properties should
hold even in case that an arbitrary subset of the parties maliciously deviates
from the protocol.

Soon after the concept was proposed [47], general constructions were devel-
oped that appeared to satisfy the intuitive correctness and secrecy for prac-
tically any multi-party functionality [47, 19]. These constructions require only
authenticated communication and can use any enhanced trapdoor permutation.
However, definitions that capture the security properties of secure multi-party
computation protocols (and, in fact, of secure cryptographic protocols in gen-
eral) took more time to develop. Here, the simulation paradigm emerged as a
natural approach: Originally developed for capturing the security of encryption
and then extended to Zero-Knowledge [21, 22]. The idea is to say that a pro-
tocol π securely realizes f if running π “emulates” an idealized process where
all parties secretly provide inputs to an imaginary trusted party that computes
f and returns the outputs to the parties; more precisely, any “harm” done by
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a polynomial-time adversary in the real execution of π, could have been done
even by a polynomial-time adversary (called a simulator) in the ideal process.
The simulation paradigm provides strong security guarantees: It ensures that
running the protocols is “as good as” having a trusted third party computing
the functionality for the players, and an adversary participating in the real ex-
ecution of the protocols does not gain any “computational advantage” over the
simulator in the ideal process (except from polynomial time advantage). We call
this definition basic security.

The original setting in which secure multi-party protocols were investigated,
however, only allowed the execution of a single instance of the protocol at a
time; this is the so called stand-alone setting. A more realistic setting, is one
which allows the concurrent execution of protocols. In the concurrent setting,
many protocols are executed at the same time. This setting presents a new
risk of a “coordinated attack” in which an adversary interleaves many different
executions of a protocol and chooses its messages in each instance based on other
partial executions of the protocol. To prevent coordinated attacks, we require
the following basic security guarantee:

Concurrent Security: The security properties, correctness and pri-
vacy, of the analyzed protocol should remain valid even when multiple
instance of the protocol are concurrently executed in a potentially un-
known environment.

Another natural desideratum is the capability of supporting modular design
of secure protocols.

Modular analysis: The notion of security should support designing
composite protocols in a modular way, while preserving security. That
is, there should be a way to deduce security properties of the overall
protocol from security properties of its components. This is essential for
asserting security of complex protocols.

Unfortunately, these properties are not implied by the basic security. In the
literature, the strongest and also the most realistic formalization of concurrent
security is the notion of Universal Composability (UC) [5]: It considers the con-
current execution of an unbounded number of instances of the analyzed protocol,
in an arbitrary, and adversarially controlled, network environment. It also sup-
ports modular analysis of protocols. But, these strong properties come at a price:
Many natural functionalities cannot be realized with UC security in the plain
model, where players only have access to authenticated communication channels;
some additional trusted set-up is necessary [7, 8]; furthermore, the need for addi-
tional trusted set up extends to any protocol that only guarantees a concurrent
extension of basic security [35]. A large body of works (e.g. [10, 1, 28, 11, 24, 29,
6]) have shown that indeed, with the appropriate trusted set-ups, UC-security
becomes feasible. However, in many situations, trusted set-up is hard to come
by (or at least expensive). It is thus important to have a notion of concurrent
security that can be achieved in the plain model. Several notions of concurrent
security have since been proposed.



Concurrent Security in the Plain model. Security with super-polynomial
simulators (SPS) [39] is a relaxation of UC security that allows the adversary in
the ideal execution to run in super-polynomial time. Informally, this corresponds
to guaranteeing that “any polytime attack that can be mounted against the pro-
tocol can also be mounted in the ideal execution—albeit with super-polynomial
resources.” Although SPS security is sometimes weaker than basic security, it
often provides an adequate level of security. In constrast to basic security, how-
ever, SPS directly considers security in the concurrent setting. Protocols that
realize practically any functionality with SPS security in the plain model were
shown based on sub-exponential hardness assumptions [39, 2, 33]. Very recently,
improved constructions are presented [9, 17, 34] that are based on only standard
polynomial-time hardness assumptions. Another notion of security that is closely
related to SPS security is input indistinguishability. It is shown in [38] that input
indistinguishable protocols for general functionalities can be constructed from
standard polynomial time hardness assumptions.

One drawback of SPS security that it is not closed under composition; thus
it is not a convenient basis for modular analysis of protocols. Angel-based UC
security [43] is a framework for notions of security that provides similar security
guarantees as SPS and at the same time supports modular analysis. Specifi-
cally, angel-based security considers a model where both the adversary and the
simulator have access to an oracle (an “angel”) that allows some judicious use
of super-polynomial resources. Since the angels can be implemented in super-
polynomial time, for any angel, angel-based security implies SPS security. Fur-
thermore, akin to UC security, angel-based UC security, with any angel, can be
used as a basis for modular analysis. Prabhakaran and Sahai [43] exhibited an
angle with respect to which practically all functionalities can be securely real-
ized; later another angle is given by [37]; both constructions, however, rely on
some non-standard hardness assumptions.

Recently, Canetti, Lin and Pass [9] proposed a new notion of security, called
UC with super-polynomial time helpers. This notion is very similar to the angel-
based security where both the adversary and the simulator have access to a helper
that provides some super-polynomial time help through a limited interface. Like
angel-based security, UC security with super-polynomial time helpers implies
SPS security. But, unlike angel-based security where angels are non-interactive
and stateless, the helpers are highly interactive and stateful. Canetti, Lin and
Pass [9] then constructed protocols that realize practically all functionalities
with respect to a particular super-polynomial-time interactive helper, based on
the existence of enhanced trapdoor permutations.

Summarizing the state-of-the-art, there are constructions [9, 17, 34] of proto-
cols satisfying a meaningful notion of concurrent security—SPS security—in the
plain model based on standard polynomial time hardness assumptions. Further-
more, the construction of [9] also supports modular analysis. (The constructions
of [17, 34] are better in terms of round-complexity—they only require a constant
number of communication rounds—but they only acheive “non-composable” SPS
security).



However, all these constructions are non-black-box, that is, the constructed
protocols make non-black-box use of the underlying primitives. In fact, these
constructions all follow the “Feige-Shamir” paradigm [16]: The protocols con-
tain “trapdoors” embedded into the messages of the protocol, allowing a super-
polynomial time simulator to extract the trapdoor and simulate messages in
the protocol by proving that “it knows the trapdoor”. In general, protocols fol-
lowing this approach seem hard to turn into a “practical” protocol for secure
computations; as such, there results should only be viewed as “feasibility results”
regarding concurrent secure computation without set-ups, but not candidates for
practical purposes.

In contrast, black-box constructions that only use the underlying primitives
through their input/output interfaces, are often much more efficient and are more
suitable for implementation. Therefore, a series of recent works [14, 26, 27, 36, 46,
23] have focused on constructing black-box construction of secure computation
protocols, as an important step towards bringing secure multi-party computation
closer to the practice. However, their constructions are all in either the stand-
alone setting or rely on strong trusted set-ups (e.g., trusted hardware). This
leaves open the following basic questions:

Can we obtain a black-box construction of concurrently secure protocols
in the plain model (preferrably based only standard polynomial-time as-
sumptions)?

Can we have such a black-box construction that also satisfies a notion of
security supporting composability?

1.1 Our Results

We present a black-box construction of protocols that satisfy UC security with
super-polynomial time helper for a specific helper, based on the existence of a
stand-alone semi-honest oblivious transfer (OT) protocols. The framework of UC
with super-polynomial time helper of [9] is formalized through the extended UC
(EUC) framework of [6]; it is identical to the standard UC model [4] except that
the corrupted parties (and the environement) have access to an super-polynomial
time entity H, called a helper functionality.

Main Theorem (Informally Stated): Assume the existence of stand-alone
semi-honest oblivious transfer protocols. Then there exists a sub-exponential-time
computable interactive machine H such that for any “well-formed”3 polynomial-
time functionality F , there exists a protocol that realizes F with H-EUC security,
in the plain model. Furthermore, the protocol makes only black-box calls to the
underlying oblivious transfer protocol.

As far as we know, this is the first black-box construction of secure multi-party
computation protocols that achieve any non-trivial notion of concurrent security

3 See [10] for a definition of well-formed functionalities.



in the plain model (without any trusted-set up, and without assuming an honest
majority).

The main technical tool used in our construction is a new notion of a commit-
ment that is secure against adaptive Chosen Commitment Attack (CCA secu-
rity). The notion of CCA secure commitments was previously introduced in [9].
Roughly speaking, a tag-based commitment scheme (i.e., commitment scheme
that take an identifier—called the tag—as an additional input) is said to be
CCA-secure if the value committed to using the tag id remains hidden even if
the receiver has access to a (super-polynomial time) oracle that “breaks” com-
mitments using any tag id′ 6= id, where by breaking, it means the oracle returns
a decommitment of the commitment. Thus the oracle is called a decommitment
oracle. In [9], a commitment scheme that is CCA-secure w.r.t. a decommiment
oracle is constructed based on the minimal assumption of one-way functions.
However, their construction is non-black-box. In this work, to obtain black-
box secure computation protocols, we need a new black-box construction of a
CCA-secure commitment scheme. Towards this, we weaken the notion of CCA
security w.r.t. decommitment oracle to instead consider an oracle that “breaks”
commitments by returning only the unique committed value4 (instead of the the
decommitment information); we call this the committed-value oracle. We then
provide a black-box construction of a commitment scheme that is CCA-secure
w.r.t. the committed-value oracle.

Theorem (Informally Stated): Assume the existence of one-way functions.
Then, for every ε > 0, there exists an O(nε)-round commitment scheme that is
CCA-secure w.r.t. the committed-value oracle and only relies on black-box access
to one-way functions (where n is the security parameter).

1.2 Outline

In Section 2, we define the notion of CCA-security w.r.t. the committed-value
oracle. In Section 3, we first reduce the task of achieving UC security with
super-polynomial time helpers to the task of constructing a UC-OT (with super-
polynomial time helpers); we then sketch our construction of the UC-OT pro-
tocol, using CCA-secure commitments. Finally, in Section 4, we present our
black-box robust CCA-secure commitment scheme.

2 Definition of CCA-Secure Commitments

We assume familiarity with the definition of commitment schemes and the statis-
tically/computational binding and statistically/computational hiding properties.
Unless specified otherwise, by a commitment scheme, we mean one that is sta-
tistically binding and computationally hiding. A tag-based commitment schemes
with l(n)-bit identities [40, 15] is a commitment scheme where, in addition to

4 the oracle returns ⊥ if there is no unique committed value



the security parameter 1n, the committer and the receiver also receive a “tag”—
a.k.a. the identity—id of length l(n) as common input.

2.1 CCA-Security w.r.t. Committed Value Oracle

Let 〈C,R〉 be a tag-based commitment scheme with l(n)-bit identities. A committed-
value oracle O of 〈C,R〉 acts as follows in interaction with an adversary A: It
participates with A in many sessions of the commit phase of 〈C,R〉 as an honest
receiver, using identities of length l(n), chosen adaptively by A. At the end of
each session, if the session is valid, it reveals the unique committed value of that
session to A; otherwise, it sends ⊥. (If a session has multiple committed values,
the committed-value oracle also returns ⊥. The statistically binding property
guarantees that this happens with only negligible probability.) Loosely speak-
ing, a tag-based commitment scheme 〈C,R〉 is said to be CCA-secure w.r.t. the
committed-value oracle, if the hiding property of the commitment holds even
with respect to adversaries with access to the committed-value oracle O. More
precisely, denote by AO the adversary A with access to the committed-value
oracle O. Let INDb(〈C,R〉, A, n, z), where b ∈ {0, 1}, denote the output of the
following probabilistic experiment: on common input 1n and auxiliary input z,
AO (adaptively) chooses a pair of challenge values (v0, v1) ∈ {0, 1}n—the values
to be committed to—and an identity id ∈ {0, 1}l(n), and receives a commitment
to vb using identity id. Finally, the experiment outputs the output y of AO; the
output y is replaced by ⊥ if during the execution A sends O any commitment
using identity id (that is, any execution where the adversary queries the decom-
mitment oracle on a commitment using the same identity as the commitment it
receives, is considered invalid).

Definition 1 (CCA-secure Commitments.) Let 〈C,R〉 be a tag-based com-
mitment scheme with l(n)-bit identities. We say that 〈C,R〉 is CCA-secure w.r.t.
the committed-value oracle, if for every PPT ITM A, the following ensembles
are computationally indistinguishable:

– {IND0(〈C,R〉, A, n, z)}n∈N,z∈{0,1}∗
– {IND1(〈C,R〉, A, n, z)}n∈N,z∈{0,1}∗

2.2 k-Robustness w.r.t. Committed-Value Oracle

Consider a man-in-the-middle adversary that participates in an arbitrary left
interaction with a limited number of rounds, while having access to a committed-
value oracle. Roughly speaking, 〈C,R〉 is k-robust if the (joint) output of every
k-round interaction with an adversary having access to the oracle O, can be
simulated without the oracle. In other words, having access to the oracle does
not help the adversary in participating in any k-round protocols much.

Definition 2 Let 〈C,R〉 be a tag-based commitment scheme with l(n)-bit iden-
tities. We say that 〈C,R〉 is k-robust w.r.t. the committed-value oracle, if there
exists a simulator S, such that, for every PPT adversary A, the following two
conditions hold.



Simulation: For every PPT k-round ITM B, the following two ensembles are
computationally indistinguishable.
–
{
outputB,AO [〈B(y), AO(z)〉(1n, x)]

}
n∈N,x,y,z∈({0,1}∗)3

–
{
outputB,SA [〈B(y), SA(z)〉(1n, x)]

}
n∈N,x,y,z∈({0,1}∗)3

where outputA,B [〈B(y), A(z)〉(x)] denote the joint output of A and B in an
interaction between them, on common input x and private inputs z to A and
y to B respectively, with uniformly and independently chosen random inputs
to each machine.

Efficiency: There exists a polynomial t and a negligible function µ, such that,
for every n ∈ N , z ∈ {0, 1}∗ and x ∈ {0, 1}∗, and every polynomial T , the
probability that S with oracle access to A(z) and on input 1n, x, runs for

more than T (n) steps is smaller than t(n)
T (n) + µ(n).

The following proposition shows that to construct a k-robust CCA-secure
commitment scheme for identities of length n, it suffices to construct one for
identities of length `(n) = nε. The same proposition is established in [9] for ro-
bust CCA-security w.r.t. decommitment oracles, and the proof there also applies
to CCA-security w.r.t. committed-value oracles; we omit the proof here.

Proposition 1 Let ε be any constant such that 0 < ε < 1, ` a polynomial
such that `(n) = nε, and 〈C,R〉 a γ-round k-robust CCA-secure commitment
scheme (w.r.t. the committed-value oracle) with `-bit identities. Then assuming
the existence of one-way functions, there exists a γ + 1-round k-robust CCA-
secure commitment scheme 〈Ĉ, R̂〉 (w.r.t. the committed-value oracle) with n-bit
identities.

3 BB UC-Secure Protocols with Super-Poly Helpers

We consider the model of UC with super-polynomial helper introduced in [9]. At
a very high-level, this model is essentially the same as the UC-model introduced
by [4], except that both the adversary and the environment in the real and ideal
worlds have access to a super-polynomial time functionality that acts as a helper.
See [9] for a formal definition of the model. In this section, we show:

Theorem 1 Let δ be any positive constant. Assume the existence of a T ′OT -
round stand-alone semi-honest oblivious transfer protocol. Then there exists a
super-polynomial time helper functionality H, such that, for every well-formed
functionality F , there exists a O(max(nδ, T ′OT ))-round protocol Π that H-EUC-
emulates F . Furthermore, the protocol Π only uses the underlying oblivious
transfer protocol in a black-box way.

3.1 Overview of Our Construction

Towards Theorem 1, we need to first exhibit a super-polynomial time helper
functionality H. Roughly speaking, H simply acts as the committed-value oracle



of a CCA secure commitment scheme. More precisely, consider the following
two building blocks: First, given any T ′OT (n)-round stand-alone semi-honest OT
protocol, it follows from previous works [26, 25] that there exists an TOT (n)-
round OT protocol 〈S,R〉 that is secure against a malicious sender and a semi-
honest receiver—called mS-OT protocol for short—that only relies on black-
box access to the semi-honest OT protocol; furthermore TOT = O(T ′OT (n)).
Second, we need a TOT (n)-robust CCA-secure commitment scheme 〈C,R〉, whose
committed-value oracle O can be computed in sub-exponential time.5 As we
will show in the next section such a protocol exists with O(max(TOT , n

δ)) =
O(max(T ′OT , n

δ)) rounds, relying on the underlying OWF in a black-box way.
Since OWFs can be constructed from a semi-honest OT protocol in a black-box
way. Therefore, we have that the second building block can also be based on the
semi-honest OT protocols in a black-box way.

Consider a helper functionality H that “breaks” commitments of 〈C,R〉 in
the same way as its committed-value oracle O does, subject to the condition that
player Pi can only query the functionality on commitments that uses identity Pi.
More precisely, every party Pi in a secure computation can simultaneously engage
with H in multiple sessions of the commit phase of 〈C,R〉 as a committer using
identity Pi, where the functionality simply forwards all the messages internally
to the committed-value oracle O, and forwards Pi the committed value returned
from O at the end of each session. Since the committed-value oracle O can be
computed in sub-exponential time, this functionality can also be implemented
in sub-exponential time.

We show that Theorem 1 holds w.r.t. the helper functionality defined above
in two steps. First, note that to realize any well-formed functionality in a black-
box way, it suffices to realize the ideal oblivious transfer functionality FOT. This
is because it follows from previous works [31, 3, 20, 27] that every functionality
can be UC securely implemented in the FOT -hybrid model, even w.r.t. super-
polynomial time environments. Based on previous works, [9] further shows that
by considering only dummy adversaries and treating environments with access to
a super-polynomial functionality H as sub-exponential time machines, we have
that every functionality can be H-EUC securely implemented in the FOT model.
Formally, we have the following lemma from [9].

Lemma 2 Fix any super-polynomial time functionality H. For every well-formed
functionality F , there exists a constant-round FOT -hybrid protocol that H-EUC-
emulates F .

Next we show how to implement the FOT functionality in the H-EUC model.
Then combining with Lemma 2, we conclude Theorem 1.

Lemma 3 Let δ be any positive constant. Assume the existence of a T ′OT -round
semi-honest oblivious transfer protocol. Then there exists a O(max(nδ, T ′OT ))-

5 This can be instantiated by simply using a normal TOT -robust CCA secure com-
mitment that has an exponential time committed value O, with a “scaled-down”
security parameter.



round protocol ΠOT that H-EUC-emulates FOT. Furthermore, the protocol ΠOT

only uses the underlying oblivious transfer protocol in a black-box way.

3.2 Overview of the OT Protocol ΠOT

In this section we provide an overview of our black-box construction of H-EUC
secure OT protocolΠOT. Our construction is based on the black-box construction
of an OT protocol secure against malicious players from a mS-OT protocol of [26,
25]. Roughly speaking, the protocol of [26, 25], relying on a stand-alone mS-OT
protocol 〈S,R〉, proceeds in the following four stages:

Stage 1 (Receiver’s Random Tape Generation) The sender and the re-
ceiver jointly decide the receiver’s inputs and random tapes in Stage 2 using
2n parallel “coin tossing in the well” executions.

Stage 2 (OT with Random Inputs) The sender and the receiver perform
2n parallel OT executions of 〈S,R〉 using random inputs (s0j , s

1
j ) and rj re-

spectively, where the receiver’s inputs rj ’s (and its random tapes) are decided
in Stage 1.

Stage 3 (Cut-and-Choose) A random subset Q ⊂ [2n] of n locations is cho-
sen using a 3-round coin-tossing protocol where the sender commits to a
random value first. (Thus the receiver knowing that random value can bias
the coin-tossing output.) The receiver is then required to reveal its random-
ness in Stage 1 and 2 at these locations, which allows the sender to check
whether the receiver behaved honestly in the corresponding OT executions.
The randomness of the receiver at the rest of locations remains hidden.

Stage 4 (OT Combiner) Finally, for these locations j 6∈ Q that are not open,
the receiver sends αj = u ⊕ cj where u is the receiver’s true input. The

sender replies with β0 = v0 ⊕ (
⊕

j 6∈Q s
αj

j ) and β1 = v1 ⊕ (
⊕

j 6∈Q s
1−αj

j ). The

honest receiver obtains s
cj
j ’s through the OT execution, and thus can always

recover vu.

At a very high-level, the protocol of [26, 25] augments security of the mS-OT
protocol 〈S,R〉 to handle malicious receivers, by adding the cut-and-choose (as
well as the random tape generation) stage to enforce the adversary behaving
honestly in most (Stage 2) OT executions. (This is in a similar spirit as the
non-black-box approach of requiring the receiver to prove that it has behaved
honestly.) Then the security against malicious receivers can be based on that
against semi-honest receivers of 〈S,R〉.

Wee [46] further augmented the stand-alone security of the protocol of [26,
25] to achieve parallel security, that is, obtaining a protocol that is secure against
man-in-the-middle adversaries that simultaneously acts as sender and receiver in
many parallel executions. Towards this, Wee instantiated the commitments used
in coin-tossing in Stage 3 of the above protocol, with ones that are satisfy a no-
tion of “non-malleability w.r.t. extraction”. Roughly speaking, non-malleability
w.r.t. extraction [46] is a weaker notion than non-malleability of [15, 32]; it guar-
antees that no matter what values the adversary is receiving commitments to, the



committed values extracted out of the commitments from the adversary (with
over-extraction) are indistinguishable. This guarantees that a simulator can bias
the coin-tossing output by extracting the committed values from the adversary
while the adversary cannot, as otherwise, by non-malleability w.r.t. extraction, it
could do so even if the honest player sends a commitment to 0 instead of its true
random challenge q. However, this is impossible as in this case no information of
q is revealed. In other words, the coin-tossing protocol when instantiated with a
non-malleable w.r.t. extraction commitment becomes parallel secure; Wee then
relies on the parallel security of the coin-tossing protocol to show the parallel
security of the OT protocol.

Towards H-EUC-Secure OT protocols, we need to further overcome two
problems. First, we need to go from parallel security to concurrent security. In
other words, we need a coin-tossing protocol that is concurrently secure. Infor-
mally speaking, non-malleability w.r.t. extraction guarantees that the simulator
can extract the committed values of commitments from the adversary (to bias
the output of the coin-tossing) while keeping the commitment to the adversary
hiding amid rewindings (to ensure that the adversary cannot bias the output).
However, this only holds in the parallel setting, as non-malleability only guaran-
tees hiding of a commitment when values of the commitments from the adversary
are extracted in parallel at the end of the execution. But, in the concurrent set-
ting, the simulator needs to extract the committed values from the adversary
in an on-line manner, that is, whenever the adversary successfully completes a
commitment the committed value needs to be extracted. To resolve this problem,
we resort to CCA-secure commitments, which guarantees hiding of a commit-
ment even when the committed values are extracted (via the committed-value
oracle) concurrently and immediately after each commitment. Now, instantiat-
ing the commitment scheme in the coin-tossing protocols with a CCA-secure
commitment yields a coin-tossing protocol that is concurrently secure.

The second problem is that to achieve H-EUC-security (similar to UC-
security), we need to design a protocol that admits straight-line simulation. The
simulator of a OT protocol has three tasks: It needs to simulate the messages
of the honest senders and receivers, extract a choice from the adversary when it
is acting as a receiver, and extract two inputs when it is acting as a sender. To
achieve the first two tasks, the original simulation strategy in [26, 25, 46] relies
on the capability of breaking the non-malleable commitments from the adver-
sary using rewindings. When using CCA-secure commitments, the simulator can
extract the committed values in a straight-line, by forwarding the commitment
from the adversary to the helper functionality H that breaks the CCA com-
mitments using brute force. For the last task, the original simulation strategy
uses the simulator of the mS-OT protocol 〈S,R〉 against malicious senders to
extract the adversary’s inputs sbj ’s in all the Stage 3 OT executions, which then
allows extraction of the real inputs v0 and v1 from the last message. However,
the simulator of the mS-OT protocol may use rewindings. To solve this, one way
is to simply assume a mS-OT protocol that has a straight-line simulator. We
here however, present a different solution.



In our protocol, the sender and the receiver participate in parallel “coin toss-
ing in the well” executions to decide the sender’s random inputs sbj (and random
tapes) in the parallel OT executions (besides the receiver’s inputs and random
tapes). Since the simulator can bias the coin-tossing in a straight line, it can
determine the sender’s inputs sbj ’s, which allows extraction of the sender’s true
inputs. For this to work, we need to make sure that a malicious sender would
indeed uses the outputs of coin-tossing as inputs in the OT executions. Towards
this, we again use the cut-and-choose technique: After the OT execution, the
sender is required to reveal its randomness in the coin-tossing and OT execution
at a randomly chosen subset of locations. The cut-and-choose technique guar-
antees that a malicious sender will behave consistently in most OT executions.
Therefore the simulator extracts. the inputs sbj ’s correctly at most locations.
However, in the protocol of [26, 25, 46], to recover the real inputs v0 and v1, the
simulator needs to obtain all sbj ’s correctly. To bridge the gap, we modify the

protocol to have the sender compute a random secret-sharing
{
abj
}

of each input

vb and hide each share using the appropriate sbj , that is, it sends abj ⊕ s
b⊕α
j for

every j (that is not open in the cut-and-choose procedures). Then, the simulator,
able to extract most sbj ’s correctly, can recover enough shares to decode to the
real inputs correctly. In contrast, a malicious receiver that is enforced to behave
honestly in most OT executions by the cut-and-choose procedure, cannot obtain
enough shares for both inputs and thus can only recover one of them. Finally,
we remark that as in [46], to avoid over-extraction from the secret shares, we
use the technique used in [12, 13], which adds another cut-and-choose procedure.
We defer the formal description of our OT protocol and its security proof (i.e.,
proof of Lemma 3) to the full version.

4 Black-Box Robust CCA-Secure Commitments

In this section, we present a black-box construction of a robust CCA-secure com-
mitment scheme w.r.t. committed-value oracle based on one-way functions. For
simplicity of exposition, the presentation below relies on a non-interactive sta-
tistically binding commitment scheme com; this can be replaced with a standard
2-round statistically binding commitment scheme using standard techniques6.

4.1 Building Blocks

Our construction makes use of previous black-box constructions of extractable
commitments and trapdoor commitment scheme. So let’s start by reviewing
them.

Extractable Commitments Intuitively, an extractable commitment is one
such that for any machine C∗ sending a commitment, a committed value can be

6 This can be done by sending the first message of a 2-round commitment scheme at the
beginning of the protocol, and using the second message of the 2-round commitment
scheme w.r.t. that first message as a non-interactive commitment in the rest of the
protocol.



extracted from C∗ if the commitment it sends is valid; otherwise, if the commit-
ment is invalid, then no guarantee is provided, that is, an arbitrary garbage value
may be extracted. This is known as the “over-extraction” problem. As shown
in [41], the following protocol used in the works of [15, 42, 45] (also [30]) yields
a black-box extractable commitment scheme ExtCom: To commit to a value
v ∈ {0, 1}m, the committer and receiver on common input a security parameter
1n, proceed as follows:

Commit: The committer finds n pairs of random shares
{
vi0, v

i
1

}
i∈[n] that sum

up to v, (i.e., vi0 ⊕ vi1 = v for all i ∈ [n]) and commits to them in parallel
using the non-interactive statistically binding commitment scheme com. Let
cib be the commitment to vib.

Challenge: The receiver sends a n-bit string ch ∈ {0, 1}n sampled at random.
Reply: The committer opens commitments cichi

for every i ∈ [n].

To decommit, the sender sends v and opens the commitments to all n pairs of
strings. The receiver checks whether all the openings are valid and also v = vi0⊕vi1
for all i.

It is proved in [41] that ExtCom is extractable. Furthermore, the commitment
scheme has the property that from any two accepting transcripts of the commit
stage that has the same commit message but different challenge messages, the
committed value can be extracted. This property is similar to the notion of
special-soundness for interactive proof/argument systems; here we overload this
notion, and refer to this special extractability property of ExtCom as special-
soundness.

In our construction, we will actually need an extractable commitment scheme
to a string σ ∈ {0, 1}m for which we can open any subset of the bits in σ without
compromising the security (i.e. hiding) of the remaining bits. As shown in [41],
we may obtain such a scheme PExtCom by running ExtCom to commit to each bit
of σ in parallel. It is easy to see that PExtCom is also special-sound in the sense
that, given two accepting transcripts of PExtCom that have the same commit
message and two challenge messages that contain a pair of different challenges
for every ExtCom commitment, the committed string σ can be extracted. We
call such two transcripts a pair of admissible transcripts for PExtCom.

Trapdoor Commitments Roughly speaking, a trapdoor commitment scheme
is a computationally biding and computationally hiding commitment scheme,
such that, there exists a simulator that can generate a simulated commitment,
and later open it to any value. (See [41] for a formal definition.) Pass and Wee [41]
presented a black-box trapdoor bit commitment scheme TrapCom. To commit
to a bit σ, the committer and the receiver on common input 1n do:

Stage 1: The receiver picks a random string challenge e = (e1, . . . , en) and
commits to e using the non-interactive statistically binding commitment
scheme com.

Stage 2: The committer prepares v1, . . . , vn. Each vi is a 2 × 2 0,1-matrix

given by vi =
[
vb1,b2i

]
2×2

where v0,bi = ηi, v
1,b
i = σ⊕ ηi, with ηi is a random



bit. The sender commits to v1, . . . , vn using PExtCom. In addition, the sender
prepares (a01, a

1
1), . . . , (a0n, a

1
n) where aβi is the opening to vβ0i , vβ1i (i.e., either

the top or bottom row of vi).
Stage 3: The receiver opens to the challenge e = (e1, . . . , en); the sender re-

sponds with ae11 , . . . , a
en
n .

To decommit, the sender sends σ. In addition, it chooses a random γ ∈ {0, 1},
and sends the openings to values v0γi , v1γi for i = 1, 2, . . . , n (i.e., either the left
columns or the right columns of all the matrices). The receiver checks that all
the openings are valid, and also that σ = v0γ1 ⊕ v

1γ
1 = · · · = v0γn ⊕ v1γn .

As shown in [41], the protocol TrapCom is trapdoor, following a Goldreich-
Kahan [18] style proof; moreover, by running TrapCom in parallel, we obtain a
trapdoor commitment scheme PTrapCom for multiple bits. Furthermore, since
Stage 2 of the protocol TrapCom is simply an execution of PExtCom, given any
two admissible transcripts of Stage 2, the matrices v1, . . . , vn prepared in Stage
2 can be extracted; it is easy to see that from these matrices, the actual bit
committed in the TrapCom commitment can be extracted, provided that the
commitment is valid and has a unique committed value. We call this, again,
the special-soundness of TrapCom. Again, the notion of special soundness (and
admissible transcripts) can be easily extended for PTrapCom.

4.2 Overview of Our Construction

Towards a black-box construction of robust CCA secure commitment scheme, we
start with the non-black-box construction of [9] (CLP), and tries to replace the
non-black-box components in the CLP construction with “equivalent” black-box
ones.
The CLP Construction: At a very high level, the CLP construction proceeds
by having the committer first commit to the value v using a normal statistically
binding commitment com, followed by a sequence of poly(n) WISSP proofs of
the committed value. The WISSP proofs are the non-black-box component of
the CLP construction, but are crucial for achieving CCA-security. Recall that
proving CCA-security w.r.t. O amounts to showing that the views of A in ex-
periments IND0 and IND1 are indistinguishable (when A has oracle access to O).
Let us refer to the adversary’s interaction with C as the left interaction, and
its interactions with O as the right interactions. The main hurdle in showing
the indistinguishability of IND0 and IND1 is that the oracle O is not efficiently
computable; if it were, indistinguishability would directly follow from the hiding
property of the left interaction. The main idea of the security proof of [9] is then
to implement the oracle O by extracting the committed values from the ad-
versary, via “rewinding” the special-sound proofs in the right interactions. The
following tow main technical challenges arise in simulating oracle O.

First, once the simulation starts rewinding the right interactions, A might
send new messages also in the left interaction. So, if done naively, this would
rewind the left interaction, which could violate its hiding property. To solve this
problem, the CLP protocol schedules messages in the special-sound proofs using



a special message scheduling (according to the identity of the commitment),
called the CLP scheduling, which is a variant of the message scheduling technique
of [15, 32]. The special message scheduling ensures that for every accepting right
interaction with an identity that is different from the left interaction, there exists
many points—called safe-points—in the interaction, from which one can rewind
the right interaction without requesting any new message in the left interaction.

Second, in the experiment INDb, the adversary A expects to receive the com-
mitted value at the very moment it completes a commitment to its oracle. If
the adversary “nests” its oracle calls, these rewindings become recursive and
the running-time of the extraction quickly becomes exponential. To avoid the
extraction time from exploding, the simulation strategy in CLP rewinds from
safe-points using a concurrent extraction strategy that is similar to that used in
the context of concurrent ZK by Richardson and Killian [44].

New Approach: To obtain a black-box construction, our main goal is to re-
place the WISSP proofs with an “equivalent” black-box component. The key
property that the CLP proof relies on is that the protocol contains many 3-round
constructs satisfying that rewinding the last two messages reveals the committed
value, but rewinding three messages reveals nothing. It seems that the 3-round
commitment scheme PExtCom is a good replacement of WISSP proofs as one
such 3-round construct: The special-soundness property of PExtCom ensures
that rewinding the last two messages reveals the committed value, and the hid-
ing property ensures that rewinding three messages reveals nothings. It is thus
tempting to consider a commitment scheme in which the committer commits
to value v using poly(n) invocations of PExtCom, arranged according to the
CLP scheduling; the CLP extraction strategy guarantees that for every accept-
ing right interaction, (the last two messages of) one PExtCom commitment is
rewound and a committed value is extracted. Indeed, if a commitment of this
scheme is valid, meaning that all the PExtCom commitments contained in it are
valid commitments to the same value, the CLP extraction strategy returns the
unique committed value. However, if the commitment is invalid, there arises the
over-extraction problem: The CLP extraction strategy may extract a garbage
value from an invalid PExtCom commitment or from a valid commitment that
is inconsistent with the other commitments.

To solve the over-extraction problem, we use the cut-and-choose technique
to enforce the committer to give valid and consistent PExtCom commitments.
Instead of having the committer commit to v directly, let it commit to a (n+1)-
out-of-10n Shamir’s secret sharing s1, . . . , s10n of v using many PExtCom in-
vocations, still arranged according to the CLP scheduling; we refer to all the
commitments to the jth share sj the jth column. After all the PExtCom com-
mitments, the receiver requests the committer to open all the commitments in
n randomly chosen columns; the receiver accepts only if each column contains
valid commitments to the same value. It follows from the cut-and-choose tech-
nique that except with negligible probability, at most n columns may contain
invalid or inconsistent commitments. Therefore, when applying the CLP extrac-
tion strategy on a commitment of this scheme, it guarantees to extract out a



secret-sharing that is .9-close to all the secret-sharing committed to in this com-
mitment. Then by relying on the error-correcting property of the secret sharing,
a valid committed value can be reconstructed. The formal analysis is actually
more subtle; to avoid over-extraction, we employ the technique used in [12, 13,
46], which involves setting the validity condition of the commitment scheme
carefully so that invalid commitment can be identified.

Unfortunately, our use of the cut-and-choose technique brings another prob-
lem: The above commitment scheme may not be hiding. This is because, in
the last stage, the receiver may request the committer to open an adaptively
chosen subset of commitments of PExtCom, and thus the remaining unopened
commitments may not be hiding, unless PExtCom were secure against selec-
tive opening attack. To resolve this problem, we use the trapdoor commitment
scheme PTrapCom to replace PExtCom. Since PTrapCom is trapdoor, it is secure
against selective opening attack, and thus the hiding property holds. Further-
more, since Stage 2 of PTrapCom is simply a commitment of PExtCom, we can
use Stage 2 of PTrapCom as an implementation of the 3-round construct needed
for the CLP scheduling and extraction strategy. More precisely, the commitment
scheme proceeds as follow: The committer commits to a (n+1)-out-of-10n secret
sharing of the value v using many invocations of PTrapCom, where all the invo-
cations share the same Stage 1 message sent at the beginning, followed by all
the 3-round Stage 2 executions arranged according to the CLP scheduling, and
then all the Stage 3 executions performed in parallel; finally, the committer and
the receiver conducts a cut-and-choose consistency check as described above. A
formal description of our CCA secure protocol 〈C,R〉 in Figure 2.

It seems that the security proof of our CCA-secure commitment should follow
from that of the non-black-box construction of [9]. Unfortunately, due to the fact
that the “rewinding slots” of our protocol, that is the commitment of ExtCom,
may have over-extraction, whereas the WISSP proofs in the CLP protocol
never has this problem, the technical proof of [9] does not go through. In the full
version, we rely on a different analysis to show the security of our protocol.

design0 design1

γ2

β2

β1

α1

γ1, α2

γ2

β2

γ1

β1

α1, α2

Fig. 1. Description of the schedules used in Stage 2 of the protocol. (α1, β1, γ1) and
(α2, β2, γ2) are respectively the transcripts of a pair of rows in Stage 2 of 〈C,R〉.



The robust CCA-secure protocol 〈C,R〉

Let κ be an arbitrary polynomial, `, η two polynomials such that `(n) = nν

and η(n) = nε for ν, ε > 0, and L a polynomial such that L(n) = max(κ(n) +
η(n), 4`(n)η(n)). To commit to a value v, the committer C and the receiver R, on
common input 1n and the identity id ∈ {0, 1}`(n) of the committer C do:

Stage 1: The receiver sends the Stage 1 message of a commitment of PTrapCom.
That is, a commitment of com to a randomly chosen string challenge e =
(e1, . . . , en).

Stage 2: The committer C prepares a (n + 1)-out-of-10n Shamir’s secret sharing
s1, . . . , s10n of the value v, and commits to these shares using Stage 2 of the pro-
tocol PTrapCom in parallel, for L(n) times; we call the ith parallel commitment
the ith row, and all the commitments to the ith share si the ith column.
Messages in the first 4`(n)η(n) rows are scheduled based on the identity id and
relies on scheduling pairs of rows according to schedules design0 and design1
depicted in Figure 1. More precisely, Stage 2 consist of `(n) phases. In phase i,
the committer provides η(n) sequential designidi pairs of rows, followed by η(n)
sequential design1−idi

pairs of rows. Messages in the rest of the rows are simply
arranged sequentially.

Stage 3: The receiver opens the Stage 1 commitment to the challenge e. The com-
mitter completes the 10nL(n) executions of PTrapCom w.r.t. challenge e in par-
allel.

Stage 4 (cut-and-choose): The receiver sends a randomly chosen subset Γ ∈ [10n]
of size n. For every j ∈ Γ , the committer opens all the commitments in the jth

column of Stage 3. The receiver checks that all the openings are valid, and reveal
the same committed values sj .

Decommitment Message: To decommit, the committer sends v, and opens all the
commitments in the first row of Stage 2 to s1, . . . , s10n. The receiver checks all
the openings to s1, . . . , s10n are valid; furthermore, it checks that s1, . . . , s10n is
0.9-close to a valid codeword w = (w1, · · · , w10n), and for every j ∈ Γ , wj equals
to the share sj revealed in Stage 4.
In other words, a commitment of 〈C,R〉 is valid if and only if the first row in
Stage 2 of the commitment contains valid commitments to shares s1, . . . , s10n,
such that, s1, . . . , s10n is 0.9 close to a valid codeword w, and w agrees with all
the shares revealed in Stage 4 (i.e., for every j ∈ Γ , wj = sj).

Fig. 2. The formal description of the κ(n)-robust CCA-secure protocol 〈C,R〉
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