
Impossibility Results for Static Input Secure
Computation

Sanjam Garg1, Abishek Kumarasubramanian1, Rafail Ostrovsky1, and Ivan
Visconti2

1 UCLA, Los Angeles, CA
{sanjamg,abishekk,rafail}@cs.ucla.edu,

2 University of Salerno, Italy
visconti@dia.unisa.it

Abstract. Consider a setting of two mutually distrustful parties Alice
and Bob who want to securely evaluate some function on pre-specified
inputs. The well studied notion of two-party secure computation allows
them to do so in the stand-alone setting. Consider a deterministic func-
tion (e.g., 1-out-of-2 bit OT) that Alice and Bob can not evaluate trivially
and which allows only Bob to receive the output. We show that Alice
and Bob can not securely compute any such function in the concurrent
setting even when their inputs are pre-specified. Our impossibility re-
sult also extends to all deterministic functions in which both Alice and
Bob get the same output. Our results have implications in the bounded-
concurrent setting as well.

1 Introduction

Consider a setting of two mutually distrustful parties Alice and Bob who want
to securely evaluate a function f . The well studied notion of two-party secure
computation [1, 2] allows them to do so. However this notion is only relevant
to the stand-alone setting where security holds only if a single protocol session
is executed in isolation. Additionally these secure computation protocols are
interactive and Alice and Bob are expected to preserve state information during
the protocol execution.

What if Alice and Bob want to evaluate multiple functions concurrently? This
problem has drawn a lot of attention in the literature. A large number of secure
protocols (in fact under an even stronger notion of security called UC secu-
rity) based [3–12] on various trusted setup assumptions have been proposed.
To address the problem of concurrent security for secure computation in the
plain model, a few candidate definitions have been proposed, including input-
indistinguishable security [13, 14] and super-polynomial simulation [15–17, 9, 18].
Both of these notion, although very useful in specialized settings, do not suffice
in general. Additionally other models that limit the level of concurrency have
also been considered [19, 20] or allow simulation using additional outputs from

the ideal functionality [21]. Among these models the model of m-bounded con-
currency [22, 19] which allows for m different protocol executions to overlap has
received a lot of attention in the literature [22, 19, 23, 24]. Unbounded concur-
rent oblivious transfer in the restricted model where all the inputs in all the
executions are assumed to be independent has been constructed [25].

At the same time, impossibility results ruling out the existence of secure
protocols in the concurrent setting have been shown. UC secure protocols for
most functionalities of interest have been ruled out in [3, 26]. Concurrent self-
composability [23] for a large class of interesting functionalities (i.e., bit trans-
mitting functionalities) has been ruled out however only in a setting in which the
honest parties choose their inputs adaptively (i.e., “on the fly”). Unfortunately,
in the very natural setting of static (pre-specified) inputs only the FZK+OT

functionality (i.e., a mix of the zero-knowledge and the oblivious transfer func-
tionalities) and the functionality that evaluates a pseudorandom function on a
committed key [20] have been ruled out.

This leaves a large gap between the very few functionalities (e.g., ZK+OT)
for which the impossibility [27, 20] has been proved, and the achieved results on
concurrent ZK [28–31, 27]. In this paper, we ask the following basic question:

What functions can Alice and Bob concurrently securely compute in the plain
model in the natural setting of static (i.e., pre-specified) inputs?

1.1 Our Results

In this paper we give the following two results.

Impossibility results for concurrent self computation. We show (assum-
ing one-way functions) that no two-party protocol concurrent securely real-
izes any symmetric (where both parties get the same output) or asymmetric
(only one party gets the output) deterministic functionality [32–34] that is
complete3 in the stand-alone setting. Our impossibility results hold even in
the very restricted setting of static inputs (inputs of honest parties are pre-
specified) and fixed roles (i.e, the adversary can corrupt only one party who
plays the same role across all executions).

We additionally show that an m-bounded concurrently secure protocol for
any symmetric deterministic functionality must have a communication com-
plexity of at least m

kc bits where c ≥ 0 (depending on the functionality) is a
constant and k is the security parameter. This bound corresponds to m bits
for the case of string OT.

Independent of our work, exciting results concerning the impossibility of
concurrently secure computation have been obtained recently by Agrawal
et. al. We refer the reader to [35], in these proceedings, for more details.

3 A functionality is said to be complete if it can be used to securely realize any other
functionality.

Impossibility results for stateless two-party secure computation. The
question of general secure computation with stateless parties has been stud-
ied in [36, 37]. It might seem that secure computation with stateless par-
ties should imply secure computation in the concurrent but stateful setting.
However interestingly, this is not true as the definition of secure computa-
tion among stateless parties only requires the existence of a simulator that
can additionally benefit from the stateless nature of honest parties (tech-
nically speaking, the ideal-world adversary can rewind the functionality).
Goyal and Maji [37] showed a positive result for stateless secure computa-
tion for a large class of (in particular for all functionalities except the ones
which behave as a weak form of pseudorandom generators) functionalities.
In this work, we show unconditionally that there exists a functionality that
can not be securely realized between two stateless parties. Similar results
have been obtained concurrently and independently by Goyal and Maji [38].

1.2 Technical Overview - Impossibility of Concurrent Self
Composition

Consider two parties Alice and Bob executing a two-party secure computation
protocol. Now consider a real-world adversary that corrupts either Alice or Bob
and is allowed to participate in any arbitrary (still polynomial) number of exe-
cutions of the protocol. In this setting we construct a real-world adversary that
interacts with the honest party in an execution of the protocol, referred to as
the main execution that can not be simulated in the ideal world. The starting
point for realizing such an adversary is the idea that the adversary has secure
computation at its disposal and it can use it to its advantage. More specifically,
an adversary can at will interact with the honest party in multiple additional
executions of the secure computation protocol and use the “information” ob-
tained in these additional executions to complete the main execution. In order
to realize the impossibility we need to establish what this “information” is and
how can this be obtained. Looking ahead this “information” is going to be the
very messages that the adversary needs to send in the main execution and it is
going to be obtained via secure computation with the honest party. In this paper
we extend this intuition to show impossibility of concurrent secure computation
for a very general class of functionalities. However, in order to build intuition
we start by considering the impossibility for the special case of 1-out-of-2 string
oblivious transfer (OT).

String OT. Consider two parties Alice and Bob executing an instance of the
string OT protocol in which Alice plays the role of the sender and Bob plays the
role of the receiver. We refer to this execution as the main execution. Now in
order to complete the main execution adversary needs to execute some function
securely with Alice.

First we begin by addressing the issue of providing Bob with the ability
to execute some function exactly once. Observe that providing malicious Bob
with a garbled circuit allows him to evaluate (once) any function securely as

long as he can obtain the right secret keys for evaluating the garbled circuit.
However obtaining such keys is not a problem as malicious Bob has access to
a string OT channel with Alice. More specifically, if we set garbled circuit keys
as the inputs of Alice then malicious Bob can obtain the keys of his choice and
evaluate any function securely. Very roughly we have established that malicious
Bob can evaluate any function securely allowing it with an access to a source of
“information” of its choice.

The next question to ask is “What is the right information?” Observe that
malicious Bob needs to send messages as the receiver in the main execution
of the protocol.4 Now note that the “information” that malicious Bob receives
may very well be the very messages that it needs to send to Alice in the main
execution. Bob obtains the messages it sends to Alice using secure evaluation.
This allows us to argue that no ideal-world simulator can simulate the view
of this “virtual” receiver. In arguing this we crucially rely of the fact that the
ideal-world simulator is limited and can obtain only one key corresponding to
each input wire of the garbled circuit. Additionally, we would like to stress two
points:

- Observe that malicious Bob obtains the keys from Alice in a very straight-
forward and well specified manner. On the other hand a simulator trying
to simulate malicious Bob is not required to follow this strategy. In par-
ticular the simulator could potentially obtain keys in an adaptive manner
that depends on the garbled circuit it gets as input. To deal with this prob-
lem, we use a construction of Yao’s garbled circuit secure against malicious
adversaries [39].

- Since we are in the static input setting all the inputs of Alice must be
specified before any execution of the protocol is started. In our setting the
inputs of the honest Alice consist of the keys for the garbled circuit, and
can always be specified before the execution of the protocol. On the other
hand malicious Bob can follow any arbitrary polynomial-time strategy. In
particular the adversary can choose its inputs adaptively.

Bit OT. The intuition described above crucially relies on the fact that the ad-
versary can execute multiple instances of the string OT protocol in order to
obtain the desired keys for input wires of the garbled circuit and thereby eval-
uate the circuit. Note that the adversary described in the setting of string OT
will continue to work when provided with an access to a protocol that can be
used to evaluate bit OTs. However unfortunately, we will not be able to rule out
simulators that obtain potentially different bits of the key strings. We solve this
problem using the string OT construction from bit OT of [40]. The key idea of
the construction in [40] is to “encode” the keys of the garbled circuit in a man-
ner such that the partial information obtained by any simulator on the encoded
keys is essentially “useless.” An important feature of the [40] technique is that
it allows us to specify inputs of Alice before any bit OT protocol is executed.

4 Our proof builds upon the intuitive application of chosen protocol attack as in [27].

Extending to general functionalities. In extending the impossibility result to gen-
eral functionalities the challenge lies in realizing a form of bit OT but without
the use of adaptive inputs for honest parties. The key idea in achieving this is
to exploit the “uncertainty” in the input of honest Alice that must exist in the
eyes of any simulator that is constrained to keep the outputs of the real-world
execution and the ideal-world execution indistinguishable. In the case of sym-
metric functionalities (which are complete in the stand-alone malicious setting)
the outputs of honest Alice plays a crucial role in ensuring this. In particular
in order to make sure that Alice gets the correct output a simulator simulating
malicious Bob is forced into leaving some “uncertainty” in the input of honest
Alice. On the other hand asymmetric functionalities (again, which are complete
in the stand-alone malicious setting) do not provide any output to honest Alice
but posses a more general structure. In particular these functionalities have a
structure that leaves some “uncertainty” in the input of the honest Alice re-
gardless of the input of malicious Bob. This allows us to argue our impossibility
result.

1.3 Technical Overview - Impossibility of Stateless Two-Party
Computation

Consider three stateless parties Alice, Bob and Charlie executing two instances
of a two-party secure computation protocol. Malicious Bob5 interacts with an
honest Alice in the first instance and with an honest Charlie in the second
instance. In this setting malicious Bob can evaluate any function securely with
Charlie and use it as source of “information.” Just like in the concurrent security
case we can ask the question: “What is the right information?” Observe that the
adversary needs to send messages in the execution of the protocol with Alice.
Now note that the “information” that malicious Bob receives from Charlie may
very well be these next messages that it needs to send to Alice. This allows us
to construct a “virtual” party that malicious Bob securely implements with the
help of honest Charlie. Now observe that a simulator might have non-black box
access to malicious Bob, however, this is essentially useless because malicious
Bob acts just like a “message forwarding machine.” Therefore simulator only
has black-box access to malicious Bob which alone of course does not help the
simulator because a malicious Bob on being rewound can always reset honest
Charlie as it is stateless. Therefore we can conclude that no ideal-world adversary
can simulate the view of malicious Bob because an ability to do so will contradict
the security of the underlying protocol itself.

2 Preliminaries and Definitions

Let k denote a security parameter. We say that a function is negligible in the
security parameter k if it is asymptotically smaller than the inverse of any fixed

5 We stress that a malicious Bob is not required to be stateless.

polynomial. Otherwise, the function is said to be non-negligible in k. We say that
an event happens with overwhelming probability if it happens with a probability
p(k) = 1 − ν(k) where ν(k) is a negligible function of k. In this section, we

recall the definitions of basic primitives studied in this paper. Let
c≡ stand for

computational indistinguishability of two distributions.
Our definitions of concurrent security are judiciously borrowed from the work

of Lindell [24]. Some of the text has been taken verbatim from [24], however, the
definitions have been tailored and simplified to suit our requirements.

Two-party computation. A two-party protocol problem is cast by specifying
a function that maps pairs of inputs to pairs of outputs (one input/output for
each party). We refer to such a map as a functionality and denote it by f :
{0, 1}∗ × {0, 1}∗ → {0, 1}∗ × {0, 1}∗, where f = (f1, f2), i.e. for every pair of
inputs (x, y), we have a pair of outputs (f1(x, y), f2(x, y)). Thus for example,
the oblivious transfer functionality is denoted by FOT ((m0,m1), b) = (⊥,mb).

In the context of concurrent composition each party actually uses many in-
puts. These are represented by vectors of inputs x̄, ȳ for the two parties. Fur-
thermore, let ` = |x̄| = |ȳ| denote the number of sessions the two parties interact
in. In this work we consider the setting of static inputs as opposed to adaptive
inputs. More specifically in the setting of static inputs, the inputs of both parties
are specified before the execution of any protocol. This differs from the more gen-
eral setting of adaptive inputs, in which honest parties choose inputs for sessions
on the fly (possibly using the information obtained in previous sessions).

Adversarial Behavior. Throughout this paper we only consider a malicious
and static adversary. In a two-party interaction, such an adversary chooses one
of the parties before the protocol begins (who is referred to as a corrupted
party) and may then interact with the honest party on behalf of the corrupted
party while arbitrarily deviating from the specified protocol. Furthermore, in this
work, we consider secure computation protocols with aborts and no fairness. This
notion is well studied in literature [41]. More specifically, the adversary can abort
at any point and the adversary can decide when (if at all) the honest parties will
receive their output even when it receives its own output. The scheduling of the
message delivery is decided by the adversary.

Note that we study the security of the protocols in a setting where multiple
instances of a two-party protocol (between P1 and P2) are being executed. In
order to obtain stronger impossibilities, we look at the setting in which the same
party plays the role of P1 (and similarly P2) across all executions of the protocol.
We refer to this as the setting of fixed roles. In this setting, an adversary can
corrupt only one party that consistently plays the role of P1 (or P2) across all
sessions.

Observe that we consider a very restricted adversary (in terms of what it
can do) and provide impossibility results in this paper. Furthermore, all the
impossibility results in this setting directly translate to more demanding settings.

Security of protocols (informal). We give an informal description of the def-
inition here and refer the reader to the full version for formal definitions. We
start by giving the definition in the stand-alone case, in which the parties exe-

cute only one instance of the protocol. The security of a protocol is defined by
comparing what an adversary can do in the real-world execution of the protocol
to what it could have done in an ideal scenario. The real-world execution of the
protocol corresponds to the actual interaction of the adversary with honest par-
ties. The real execution of ρ (with security parameter k, initial inputs (x, y), and
auxiliary input z to the adversary A), denoted EXECρ,A(k, x, y, z), is defined
as the output pair of the honest party and A, resulting from the above process.
The ideal scenario is formalized by considering an ideal incorruptible trusted
third party to whom the parties send their inputs. The trusted party computes
the functionality on the inputs and returns to each party its respective output.
Then the ideal execution of f (with security parameter k, initial inputs (x, y) and
auxiliary input z to S), denoted by EXECf,S(k, x, y, z) is denoted as the output
pair of the honest party and the adversary S from the above execution. Infor-
mally, we require that executing a protocol in the real world roughly emulates
the ideal process.

Next we extend the definition to the concurrent setting. Unlike in the case of
stand-alone computation, in the concurrent setting the real-world protocol can be
executed multiple times. Correspondingly, in the ideal world, the trusted party
computes the functionality many times, each time upon the received inputs.
Loosely speaking, a protocol is secure if any adversary interacting in the real-
world protocol (where no trusted third party exists) can do no more harm than
if it was involved in a corresponding ideal computation, as described above.

Bounded Concurrency. The notion of concurrent self composition allows for
an unbounded (though, still polynomial) number of executions of a protocol.
We sometimes refer to this notion of concurrent self composition as unbounded
concurrency, in order to distinguish it from m−bounded concurrency that we de-
scribe next. In the setting of m-bounded concurrency, the number of concurrent
executions is a priori bounded by m (a fixed polynomial). More specifically, we
require that in the interval between the beginning and termination of any given
execution, the number of different sessions executed is at most m. Furthermore,
the protocol design and hence the running time of each party (in a single session)
can depend on this bound.

Resettability. The notion of resettably secure computation [36, 37] is also de-
fined by comparing what an adversary can do in the real-world execution of the
protocol to what it could have done in an ideal scenario, however there are two
crucial differences. The real-world adversary in the resettable setting is allowed
to reset (or, “rewind”) honest parties. In a similar way, the ideal-world adver-
sary in the resettable setting can query the ideal functionality on behalf of the
adversary multiple times, each time with a different input of its choice (while
the input of the honest party remains the same).

3 Impossibility of Static Input Concurrency

In this section we prove that the string OT functionality can not be concurrently
and securely realized even in the setting of static inputs and against adversaries

that corrupt only one party that plays a fixed role. Next we generalize this and
provide a general theorem allowing us to argue impossibility for a broader class
(we do this in Section 4) of functionalities.

3.1 The Case of String OT

In this section we start by first giving an impossibility result for the string OT
functionality. Roughly speaking, string OT is a two-party functionality between
a Sender S, with input (m0,m1) and a Receiver R with input b which allows
R to learn mb without learning anything about m1−b. At the same time the
Sender S learns nothing about b. More formally string OT functionality FOT :
({0, 1}p(k)×{0, 1}p(k))×{0, 1} → {0, 1}p(k) is defined as, FOT ((m0,m1), b) = mb,
where p(·) is any polynomial and only R gets the output. We show that for
some polynomial p(·) (to be fixed later), there does not exist a protocol π that
concurrently securely realizes the FOT functionality. More specifically we show
that there exists an adversary A who starts `(k) sessions (to be fixed later)
of the protocol π with honest parties (with pre-specified inputs drawn from a
particular distribution D) such that no ideal-world adversary whose output is
computationally indistinguishable from the output of real-world adversary A
exists. We stress that the adversary (we construct) corrupts only one of the two
parties – the Sender S or the Receiver R in all the `(k) sessions. In other words
we are in the setting of fixed roles (and our results of course extend also to the
setting where the adversary plays different roles).

Theorem 1 (impossibility of static input concurrent-secure string OT) Let π
be any protocol which implements6 the FOT functionality for a particular (to
be determined later) polynomial p(k). Then, (assuming one-way functions exist)
there exists a polynomial `(k) and a distribution D over `(k)-tuple of inputs
and an adversarial strategy A such that for every probabilistic polynomial-time
simulation strategy S, definition of concurrent security cannot be satisfied when
the inputs of the parties are drawn from D.

Proof Intuition. We start by giving an informal outline of the proof. We
postpone the full proof to the full version.

1. Setting up a Chosen protocol attack: As stated earlier our goal is to con-
struct a real-world adversary that can achieve something in the real world
that is infeasible for any ideal-world adversary to accomplish in the ideal
world. The starting point for realizing such an adversary is to consider a
chosen protocol attack [42, 43, 27] and adapt it to our setting. Let us start by
considering a protocol π that concurrently securely realizes the FOT func-
tionality. The key attack methodology of chosen protocol attack (first con-
sidered in the context of zero-knowledge protocols) is to consider a specific
protocol π′ (which may depend on π and hence the name “chosen protocol

6 We say that a protocol implements a functionality if the protocol allows two parties
to evaluate the desired function. This protocol however may not be secure.

attack”) which when concurrently executed with π renders π completely in-
secure. Next we present the chosen protocol attack in our specific setting.
Consider a setting with four parties A, B̃, C̃,D. (Looking ahead parties B̃
and C̃ will be corrupted by the adversary.) In this setting A and B̃ execute
an instance of the OT protocol π where A plays the role of the Sender (with
inputs say (m0,m1)) and B̃ plays the role of the Receiver (with some choice
bit c as input). At the same time, parties C̃ (with inputs say (m′0,m

′
1)) and

D (with a bit b ∈ {0, 1} and values mb, w as input) execute the following
chosen protocol π′ (which depends on π) and is meant to render π insecure.
We now describe this protocol π′. π′ involves first an execution of π between
C̃ and D in which C̃ plays the role of the sender (with inputs say (m′0,m

′
1))

and D plays the role of the receiver. Now note that D playing the role of
the receiver obtains the value m′b in the execution of π. D now checks if

m′b = mb and sends w to C̃ if this is indeed the case. Observe that in the
above setting A is provided with (m0,m1) as input and D is provided with
b and the corresponding mb as input.
Next we show how concurrent execution of protocol π with the protocol π′

renders π insecure. Towards this goal, consider a real-world adversary A
that corrupts B̃ and C̃, ignores their inputs and proceeds as follows7. Our
adversary A merely acts as an intermediary who forwards the messages he
receives from honest A to honest D on behalf of C̃ and similarly forwards
the messages it receives from honest D to honest A on behalf of B̃8. Our
adversary A will be able to complete the execution of π with Sender A and
the execution of π (executed as a part of π′) with receiver D. This setting
roughly amounts to A and D executing a protocol π in which A has inputs
(m0,m1) and D has input b. Additionally in this execution, D will always
obtain the value mb which will match its input mb and therefore it will always
send the value w to A. Our adversary outputs this value w as its output.
On the other hand, executing merely an ideal version of π and obtaining
its output will not help B̃, C̃ to successfully complete an interaction with
D and thus the adversary does not output w. This results in breaking the
indistinguishability between the real world and the ideal world, contradicting
the security definition of π.
Now that, we have described an adversarial strategy in a four party scenario
where A interacts in an execution of π and an execution of π′. We would
like to move to a setting with only concurrent executions of the protocol π.

2. Using Yao [1] for simulating parties C̃,D in the head: With the goal
of completely removing the execution of π′ between the adversary and an

7 Recall that we are in setting of static inputs. This setting requires that the inputs of
the honest parties be pre-specified before any execution of the protocol happens. On
the other hand our adversary A may deviate arbitrarily from the protocol specifica-
tion based on his input and auxiliary input. In particular, it could adaptively decide
on the messages it sends in the protocol ignoring the input it obtains completely.

8 We remark that in case the underlying protocol uses identities, then we will think
of C̃ as using the identity of A and D as using the identity B. As we will see later,
this continues to work in our setting.

external party D we provide the adversary with a garbled circuit to simulate
the execution of the protocol π′ “in the head”. Just like the previous scenario
consider an adversary A, who interacts with A in an execution of π. In
this execution, A with input (m0,m1) acts as the Sender and A acts as
the Receiver. We will refer to this execution as the main execution of π.
However, we need this adversary A to send messages to A on behalf of
a receiver. Our approach for generation of these messages is provide the
adversary A with a garbled circuit as an auxiliary input that it can use
to evaluate the next messages on behalf of D in π, in effect simulating the
interaction of C̃ with D “in its head”. In other words A now acts on behalf of
the party B̃ and interacts with A in an execution of protocol π and executes
the chosen protocol via evaluating the garbled circuit. This allows us to
simulate the protocol π′. However, note that in order to securely evaluate
the garbled circuit, the adversaryA will need keys corresponding to the input
wires. Furthermore, since we will rely on the security of the garbled circuits
itself we will need to ensure that only one key per wire can be obtained.
Looking ahead this will be crucial when considering ideal-world adversaries
and try to reach a contradiction. Loosely speaking this will guarantee that
garbled circuits will be useful for a one-time evaluation only, revealing only
the input/output behavior of the underlying function.
Next, we show how to achieve this task.

Garbled circuit keys: In the above setting note that A needs to obtain keys
for secure evaluation of the garbled circuit. We achieve this by using other
invocations of the OT protocol π at our disposal. Note that corresponding
to each input wire of the garbled circuit we will have two keys and the
adversary A needs to learn one of them in order to evaluate the garbled
circuit correctly. Corresponding to each input wire of the garbled circuit we
will provide the two keys to honest party A. The adversary A can choose
and obtain the appropriate keys in multiple executions of the OT protocol
π. We refer to these executions as the additional executions of π. Note that
this will involve an executions of the OT protocol that is interleaved with the
main invocation of the OT protocol. The benefits achieved here are two fold.
Firstly, we are now able to transfer the appropriate garbled circuit keys to
the adversary A via executions of π. This makes the chosen protocol attack
in the setting where only multiple instance of π are executed concurrently
possible. Secondly, loosely speaking, the adversary A for each input wire
can obtains only one of the two keys that the honest party A holds. This
intuitively follows from the sender security of the OT protocol π. Further
note here that since the honest party A always plays the role of the sender,
the adversary A is corrupting only the receiver in all executions of π. This
concludes the construction of our real-world adversary.

Remark on static nature of inputs. Observe that the inputs provided to the
honest party A include the values m0, m1 and the garbled circuit keys which
can all be fixed in advance. Recall that since we are in the static input setting

this is required for our adversary. Additionally a garbled circuit, generated
as above, is provided as an auxiliary input to the adversary.

3. The contradiction: Now that we have roughly specified the details of our
real-world adversary A we will now provide the key idea behind why no
simulator (or the ideal-world adversary) S can simulate the view of the
adversary A in all executions of π given access to the ideal functionality FOT
only. Observe that the real-world adversary A is a deterministic procedure
that uses garbled circuits to securely evaluate the messages it needs to send to
A. From the security of garbled circuits, the messages sent by the adversary
A in the main session roughly amount to be the messages generated by an
external honest party. In particular this means that S essentially has only
black-box access to the source of these messages and it can not rewind it.
Therefore the simulator S can not simulate the view of the adversary in the
main session allowing us to reach a contradiction.

Implications for bounded concurrency. Observe that the attack described
in the above proof (in the unboundend concurrent setting) has natural implica-
tions in the bounded setting as well. In particular, the number of sessions that
our adversary executes, or the “extent” of concurrency used by the adversary
in the proof above in order to arrive at a contradiction is bounded by the com-
munication complexity of the protocol. More specifically the adversary needs to
make one additional OT call for every bit that the Sender sends in the protocol.
This yields the following corollary:

Corollary 1 Let π be any protocol that securely realizes the FOT functionality
under m-bounded concurrent self-composition. Then (assuming one-way func-
tions) the communication complexity of (a single session of) π is at least m
bits.

Implications in the setting of very limited concurrency. Observe that
the attack described in the above proof (in the setting of arbitrary concurrent
composition) has natural implications even if we restrict ourselves to a very
limited concurrent composition. In particular, the adversary in the proof above
only interleaves the main session with the rest of the sessions all of which are
executed just sequentially.

3.2 General Theorem for Impossibility Results

In order to extend our results to more general functionalities we present a general
theorem that allows us to argue impossibility for any functionality which satisfies
certain special properties. We next state our theorem. In Section 4 we will use
this theorem to argue impossibility for large classes of functionalities.

Theorem 2 Let F be any two-party functionality between a Sender, S and a
Receiver, R. Consider a protocol π that securely realizes F in the concurrent
setting. Then (assuming one-way functions) at least one of the following is not
true.

1. Key Transmission. There exists a real-world adversary A1 and a distri-
bution (x̄, z)← D1(X0, X1) with inputs X0, X1 (each one bit long) such that
the following holds. A1 on input b, z interacting with an honest S with input
x̄ in concurrent executions of π outputs Xb such that every ideal-world ad-
versary S1 running on input (b, z) that simulates A1 can be simulated 9 by
querying an oracle that holds X0 and X1 for only one of the values except
with negligible probability.

2. Chosen Protocol Attack. There exists a chosen protocol π′ for π and a
distribution (x, y) ← D2 such that there exists a real-world adversary A2

(with auxiliary input z) that interacts with an honest sender A of π with
input x and a honest receiver D of π′ with input y and that there exists
no corresponding simulator S2. Namely, for every hybrid-world adversary
S2 interacting with the ideal functionality F (that talks to A) and a honest
receiver D of π′ we have

EXECF,π′,S2(k, x, y, z) 6 c≡ EXECπ,π′,A2
(k, x, y, z)

We start by giving the intuition. The key difference between the theorem
as stated above (beside the natural generalization) from Theorem 1 is that the
above theorem requires transmission of bits only. More specifically, the adversary
gets to choose one bit among X0 and X1 and gets Xb as the response. On the
other hand in the case of string OT these values were actually strings. We deal
with this problem by using a specialized garbled circuit (see the full version
for more details) construction in which all the keys are bits. This construction
involves applying an encoding function to the keys of the garbled circuit thereby
obtaining encoded key bits. These encoded key bits are then transferred via bit
OTs. The security guarantee is that each key for every input wire is encoded
in a manner such that even an adversary that obtains bits of its choice can not
learn more than one key per input wire. We prove the above theorem in the full
version.

3.3 Example: The Case of Bit OT

In this section we give an impossibility result for the bit OT functionality.
Roughly speaking, bit OT is a two-party functionality between a sender S,
with input bits (m0,m1) and a receiver R with input b which allows R to
learn mb without learning anything about m1−b. At the same time the sender
S learns nothing about b. More formally bit OT functionality is defined as
FBit-OT : ({0, 1} × {0, 1})× → {0, 1} where FBit-OT((m0,m1), b) = mb and only
R gets the output. We stress that we are in the setting of static inputs and fixed
roles.
9 Note that there are two levels of simulation happening here. First, any adversary A1

who runs π with honest party input drawn from D(X0, X1) is being simulated by an
ideal world adversary S1 with access to only the ideal functionality F . Second, such
a simulator S1 learns only one of the two values X0 or X1. That is, his ideal-world
interaction can actually be simulated by querying for only one of the two values (to
generate the honest party input).

Lemma 1. (impossibility of static input concurrency - bit OT) Let π be any
protocol which implements the FBit-OT functionality. Then, (assuming one-way
functions) there exists a polynomial `(k) and a distribution D over `(k)-tuple of
inputs and an adversarial strategy A such that for every probabilistic polynomial-
time simulation strategy S, definition of concurrent security cannot be satisfied
when the inputs of the parties are drawn from D.

Proof (Informal). Lemma 1 follows by a direct application of Theorem 2 and
the ideas developed in Theorem 1. Observe that Theorem 2 requires us to prove
two properties, namely, key transmission and chosen protocol attack. Key trans-
mission property requires us to construct an adversary A1 and a distribution D1

that generates inputs for the honest party S and auxiliary input z for the adver-
sary A1. Note that our adversary will run only one execution of π. In particular
this means that ν(k) = 1. We first specify our distribution D1. Distribution D1

on input X0, X1 outputs X0, X1 for the honest party S and it outputs an empty
string z for A1. Observe that A1 on input b can easily obtain Xb in one execution
of the protocol π playing as the receiver.

Next note that the chosen protocol attack for the case of bit OT functionality
is the same as the string OT functionality. Note that our goal here is to just give
intuition for Theorem 2 and since we prove general theorems for all functionalities
(in Section 4) we skip the details here.

4 The Case of General Functionalities

In this section we give impossibility results for general functionalities. We first
consider symmetric functionalities in which both parties get the same output and
then we consider functionalities in which the two parties get different outputs.
We stress that all our results are in the setting of static inputs and fixed roles.
Surprisingly, completeness theorems (and constructions) for secure computation
of such functions are known in the stand-alone two-party setting [33, 32, 34, 2].

4.1 The Case of Symmetric General Functionalities

Consider a two-party functionality Fsym between a sender S with input x and a
receiver R with input y which allows both S and R to learn f(x, y) (and nothing
else). More formally, let f : X×Y → Z be any finite function10 then a symmetric
functionality Fsym : X×Y → Z×Z is defined as, Fsym(x, y) = (f(x, y), f(x, y))
where both S and R get f(x, y). For any complete symmetric function f , as
defined below, we show that there does not exist a protocol π that concurrently
securely realizes the Fsym functionality.

Loosely speaking, a symmetric functionality that contains an embedded-OR is
complete. We know that Fsym is complete [44] (both in the setting of semi-honest
and malicious adversaries) in the stand-alone setting of information-theoretically

10 A function is said to be finite if both the domain and the range are of finite size.

secure computation 11 iff ∃a0, a1, b0, b1 such that f(a0, b0) = f(a0, b1) = f(a1, b0) 6=
f(a1, b1).

Theorem 3 (impossibility of static input concurrent security for symmetric
complete functionalities) Let Fsym be a functionality that is complete in the
stand-alone setting and π be any protocol which implements Fsym. Then, (as-
suming one-way functions) there exists a polynomial `(k) and a distribution D
over `(k)-tuple of inputs and an adversarial strategy A such that definition of
concurrent security cannot be satisfied when the inputs of the parties are drawn
from D.

Our argument in the proof of the theorem above specifically relies on the fact
that the output distribution of the honest party between a real-world and an
ideal-world execution cannot change. We give a proof of the above theorem in
the full version. The impossibility of secure computation for complete, symmet-
ric functionalities in the unbounded concurrent setting has natural implications
in the bounded setting as well. In particular, the number of sessions, or the
“extent” of concurrency used by the adversary in the proof of theorem above in
order to arrive at a contradiction is polynomially related to the communication
complexity of the protocol. This yields the following corollary:

Corollary 2 Let π be any protocol that securely realizes Fsym functionality un-
der m-bounded concurrent self-composition for any polynomial m. Then (assum-
ing one-way functions) there exists a constant c ≥ 0 such that for sufficiently
large k, the communication complexity of (a single session of) π is at least m

kc -
bits.

4.2 The Case of Asymmetric General Functionalities

Consider a two-party functionality Fasym between a sender S, with input x and
a receiver R with input y which allows R to learn f(x, y) (and nothing else) and
where S learns nothing. More formally, let f : X×Y → Z be any finite function
then an asymmetric functionality Fasym is defined as, Fasym(x, y) = (⊥, f(x, y))
where S gets nothing and R gets f(x, y). We show that there does not exist a
protocol π that concurrently securely realizes any complete Fasym functionality
as defined below.

We know that Fasym is complete [33] in the setting of stand-alone two-party
computation in the presence of malicious adversaries iff ∀b0,∃b1, a0, a1 such that

f(a0, b0) = f(a1, b0) ∧ f(a0, b1) 6= f(a1, b1).

Theorem 4 (impossibility of static input concurrent security for asymmetric
complete functionalities) Let π be any protocol which implements any Fasym
11 Note that the setting of stand-alone and information-theoretic security is used only

to define the class of functions. We deal with the concurrent and computational
security of this class of functions in this work.

functionality that is complete in the stand-alone setting. Then, (assuming one-
way functions) there exists a polynomial `(k) and a distribution D over `(k)-
tuple of inputs and an adversarial strategy A such that definition of concurrent
security, cannot be satisfied when the inputs of the parties are drawn from D.

The key difference when considering asymmetric functionalities as opposed to
the case of symmetric functionalities is that for asymmetric functionalities only
one party gets the output. Observe that our arguments in Theorem 3 specif-
ically relied on the fact that the output distribution of either of the parties
between a real-world and ideal-world execution (note that this output contains
the outputs of both the honest party and the adversarial party) cannot change.
However, complete asymmetric functionalities possess a larger structure than
what is available to complete symmetric functionalities. We crucially use this
additional structure in our proof. We give the full proof of the above theorem in
the full version.We also note that a direct analogue of Corollary 2 holds in the
asymmetric setting as well.

5 Impossibility of Stateless Two-Party Computation

In this section, we show the existence of a deterministic two-party functionality
for which there does not exist any stateless secure protocol. We start by giving
some intuition about our impossibility result. The key observation behind our
impossibility result is that even a deterministic adversary in interaction with an
honest party can come up with honest looking messages on behalf of an adver-
sarial party by obtaining them from other honest interactions. However, loosely
speaking, since these messages are obtained from other honest parties, the sim-
ulator only has black box access to the source of these messages. The simulator
does have non-black box access to the adversary itself, however, it is essentially
useless because the adversary acts just like a “message forwarding machine.”
Therefore simulator essentially only has black-box access to the adversary which
alone of course does not help the simulator because a real-world adversary can
also reset honest parties.

Functionalities considered. Before we move on to a formal claim, we introduce
description of some notation that will be useful in this work. Let us start by
describing a general functionality. Let Funiversal : ({0, 1}p1(k) × {0, 1}q1(k)) ×
({0, 1}p2(k) × {0, 1}q2(k)) → ({0, 1}r(k) × {0, 1}r(k)) be the following two-party
(between P1 and P2) functionality, Funiversal((C, x), (C ′, y)), where Funiversal
obtains the input (C, x) from P1 and (C ′, y) from P2. The functionality outputs
⊥ to both P1 and P2 if C 6= C ′ and it outputs C(x, y) to both P1 and P2

otherwise, where p1(·), q1(·), p2(·), q2(·), r(·) are polynomials. We stress that we
consider a functionality which outputs the same value to both parties. This is
consistent with the definition of [37]. Let π be a protocol that resettably securely
realizes the functionality Funiversal. Next we describe two circuits that will be
useful in our context.

Equality testing: Let Ceq(x, y) be a circuit that outputs 1 if x = y and 0,
otherwise. In an execution of the ideal functionality Funiversal, in which the
parties P1 and P2 input (Ceq, x) and (Ceq, y) respectively corresponds to the
equality testing functionality.

Next message function of P2: Let Cπ be the next message function of P2 in
the protocol π. In other words, Cπ is a non-interactive algorithm that gets as
an input, the input and random tape of P2 and the history of messages sent
by P1, and outputs the next message that P2 would send in a real execution
of π in which it sees this message history. More formally, Cπ takes as input a
sequence of messages (h1, h2 . . . ht) and P2’s input (C, y) and random coins
r and generates the next message of P2, i.e. the message that P2 sends in
the execution with the history h1, h2 . . . ht.

Theorem 5 (impossibility of static input resettability) There does not exist any
stateless secure protocol for the Funiversal functionality. (unconditionally)

Now we give a brief outline of the proof. The full proof is provided in the full-
version. For the sake of contradiction, assume that there exists a protocol π, with
round complexity r, that resettably securely realizes the functionality Funiversal.
We give an outline of the proof before giving all the details.
1. We consider the “first scenario” of two parties P1 and P2 executing π. In

this setting we consider an adversary that corrupts P2 and interacts hon-
estly with P1, in the first incarnation. However, it does not generate the
honest responses on its own. In fact it obtains these responses from P1 itself
(via different incarnations of P1). In this setting, as per the definition of
resettability there must exist a simulator (plausibly non-black box in this
adversary), which can “extract” the input used by the adversary, on behalf
of P2, in interaction with the first incarnation of P1.

2. Next we consider the “second scenario” of two parties P1 and P2 executing
π. In this setting we construct a real-world adversary that corrupts P1 and
interacts with an honest P2. This adversary internally uses the ideal-world
adversary constructed in the “first scenario” to extract the input of P2.
Finally, we observe that no ideal-world adversary in this “second scenario”
can achieve the same, thereby reaching a contradiction.

6 Acknowledgements

The work is supported in part by NSF grants 0830803, 09165174, 1065276,
1118126 and 1136174, US-Israel BSF grant 2008411, OKAWA Foundation Re-
search Award, IBM Faculty Research Award, Xerox Faculty Research Award,
B. John Garrick Foundation Award, Teradata Research Award, and Lockheed-
Martin Corporation Research Award. This material is based upon work sup-
ported by the Defense Advanced Research Projects Agency through the U.S.
Office of Naval Research under Contract N00014-11-1-0392. The views expressed
are those of the authors and do not reflect the official policy or position of the
Department of Defense or the U.S. Government. The work of the fourth author

has been done while visiting UCLA and is supported in part by the European
Commission through the FP7 programme under contract 216676 ECRYPT II.

We thank Hemanta K. Maji, Akshay Wadia, Vipul Goyal and Amit Sahai
for valuable discussions.

References

1. Yao, A.C.C.: How to generate and exchange secrets (extended abstract). In: FOCS,
IEEE Computer Society (1986) 162–167

2. Goldreich, O., Micali, S., Wigderson, A.: How to play any mental game or a
completeness theorem for protocols with honest majority. In Aho, A.V., ed.: STOC,
ACM (1987) 218–229

3. Canetti, R., Fischlin, M.: Universally composable commitments. In: CRYPTO.
LNCS, Springer (2001) 19–40

4. Canetti, R., Lindell, Y., Ostrovsky, R., Sahai, A.: Universally composable two-
party and multi-party secure computation. In: STOC. (2002) 494–503

5. Barak, B., Canetti, R., Nielsen, J., Pass, R.: Universally composable protocols
with relaxed set-up assumptions. In: FOCS. (2004) 186–195

6. Canetti, R., Pass, R., Shelat, A.: Cryptography from sunspots: How to use an
imperfect reference string. In: FOCS. (2007) 249–259

7. Katz, J.: Universally composable multi-party computation using tamper-proof
hardware. In: Eurocrypt. (2007)

8. Chandran, N., Goyal, V., Sahai, A.: New constructions for uc secure computation
using tamper-proof hardware. EUROCRYPT (2008)

9. Lin, H., Pass, R., Venkitasubramaniam, M.: A unified framework for concurrent
security: universal composability from stand-alone non-malleability. In: STOC.
(2009) 179–188

10. Groth, J., Ostrovsky, R.: Cryptography in the multi-string model. In: CRYPTO.
(2007) 323–341

11. Goyal, V., Katz, J.: Universally composable multi-party computation with an
unreliable common reference string. In: TCC. (2008) 142–154

12. Garg, S., Goyal, V., Jain, A., Sahai, A.: Bringing people of different beliefs together
to do uc. In: TCC. (2011) 311–328

13. Micali, S., Pass, R., Rosen, A.: Input-indistinguishable computation. In: FOCS.
(2006) 367–378

14. Garg, S., Goyal, V., Jain, A., Sahai, A.: Concurrently secure computation in
constant rounds. In: EUROCRYPT. (2012)

15. Pass, R.: Simulation in quasi-polynomial time, and its application to protocol
composition. (2003)

16. Prabhakaran, M., Sahai, A.: New notions of security: achieving universal compos-
ability without trusted setup. In: STOC. (2004) 242–251

17. Barak, B., Sahai, A.: How to play almost any mental game over the net - concurrent
composition via super-polynomial simulation. In: FOCS, IEEE Computer Society
(2005) 543–552

18. Canetti, R., Lin, H., Pass, R.: Adaptive hardness and composable security in the
plain model from standard assumptions. In: FOCS. (2010) 541–550

19. Pass, R.: Bounded-concurrent secure multi-party computation with a dishonest
majority. (2004) 232–241

20. Goyal, V.: Positive results for concurrently secure computation in the plain model.
Cryptology ePrint Archive, Report 2011/602 (2011) http://eprint.iacr.org/.

21. Goyal, V., Jain, A., Ostrovsky, R.: Password-authenticated session-key generation
on the internet in the plain model. In: CRYPTO. (2010) 277–294

22. Pass, R., Rosen, A.: Bounded-concurrent secure two-party computation in a con-
stant number of rounds. (2003)

23. Lindell, Y.: Lower bounds for concurrent self composition. In Naor, M., ed.: TCC.
LNCS, Springer (2004) 203–222

24. Lindell, Y.: Lower bounds and impossibility results for concurrent self composition.
J. Cryptology 21(2) (2008) 200–249

25. Garay, J.A., MacKenzie, P.D.: Concurrent oblivious transfer. In: FOCS. (2000)
314–324

26. Canetti, R., Kushilevitz, E., Lindell, Y.: On the limitations of universally com-
posable two-party computation without set-up assumptions. J. Cryptology 19(2)
(2006) 135–167

27. Barak, B., Prabhakaran, M., Sahai, A.: Concurrent non-malleable zero knowledge.
In: FOCS. (2006) 345–354

28. Dwork, C., Naor, M., Sahai, A.: Concurrent zero-knowledge. In: STOC. (1998)
409–418

29. Richardson, R., Kilian, J.: On the concurrent composition of zero-knowledge
proofs. In: EUROCRYPT. (1999) 415–431

30. Kilian, J., Petrank, E.: Concurrent and resettable zero-knowledge in poly-
loalgorithm rounds. In: STOC. (2001) 560–569

31. Prabhakaran, M., Rosen, A., Sahai, A.: Concurrent zero knowledge with logarith-
mic round-complexity. In: FOCS. (2002) 366–375

32. Kilian, J.: Founding cryptography on oblivious transfer. In Simon, J., ed.: STOC,
ACM (1988) 20–31

33. Kilian, J.: More general completeness theorems for secure two-party computation.
In: STOC ’00, New York, NY, USA, ACM (2000) 316–324

34. Beimel, A., Malkin, T., Micali, S.: The all-or-nothing nature of two-party secure
computation. In Wiener, M.J., ed.: CRYPTO. LNCS, Springer (1999) 80–97

35. Agrawal, S., Goyal, V., Jain, A., Prabhakaran, M., Sahai, A.: New impossibility
results for concurrent composition and a non-interactive completeness theorem for
secure computation. In: CRYPTO. (2012)

36. Goyal, V., Sahai, A.: Resettably secure computation. In: EUROCRYPT. (2009)
54–71

37. Goyal, V., Maji, H.K.: Stateless cryptographic protocols. In: FOCS. (2011) http:
//research.microsoft.com/en-us/people/vipul/gm11.pdf.

38. Goyal, V., Maji, H.K.: Personal communication. (2012)
39. Goldwasser, S., Kalai, Y.T., Rothblum, G.N.: One-time programs. In Wagner, D.,

ed.: CRYPTO. LNCS, Springer (2008) 39–56
40. Brassard, G., Crépeau, C., Santha, M.: Oblivious transfers and intersecting codes.

IEEE Transactions on Information Theory 42(6) (1996) 1769–1780
41. Goldwasser, S., Lindell, Y.: Secure computation without agreement. In Malkhi,

D., ed.: DISC. LNCS, Springer (2002) 17–32
42. Kelsey, J., Schneier, B., Wagner, D.: Protocol interactions and the chosen protocol

attack. In: Security Protocols Workshop. (1997) 91–104
43. Lindell, Y.: General composition and universal composability in secure multi-party

computation. In: FOCS, IEEE Computer Society (2003) 394–403
44. Kilian, J.: A general completeness theorem for two-party games. In Koutsougeras,

C., Vitter, J.S., eds.: STOC, ACM (1991) 553–560

