
Universal Composability from
Essentially Any Trusted Setup

Mike Rosulek?

Department of Computer Science, University of Montana. mikero@cs.umt.edu.

Abstract. It is impossible to securely carry out general multi-party
computation in arbitrary network contexts like the Internet, unless proto-
cols have access to some trusted setup. In this work we classify the power
of such trusted (2-party) setup functionalities. We show that nearly every
setup is either useless (ideal access to the setup is equivalent to having
no setup at all) or else complete (composably secure protocols for all
tasks exist in the presence of the setup). We further argue that those
setups which are neither complete nor useless are highly unnatural.
The main technical contribution in this work is an almost-total charac-
terization of completeness for 2-party setups. Our characterization treats
setup functionalities as black-boxes, and therefore is the first work to
classify completeness of arbitrary setup functionalities (i.e., randomized,
reactive, and having behavior that depends on the global security pa-
rameter).

1 Introduction

When a protocol is deployed in a vast network like the Internet, it may be exe-
cuted in the presence of concurrent instances of other arbitrary protocols with
possibly correlated inputs. A protocol that remains secure in such a demanding
context is called universally composable. This security property is highly desir-
able; unfortunately, it is simply too demanding to be achieved for every task.
Canetti’s UC framework [5] provides the means to formally reason about uni-
versal composability in a tractable way, and it is widely regarded as the most
realistic model of security for protocols on the Internet. A sequence of impossi-
bility results [8,30,9] culminated in a complete characterization for which tasks
are securely realizable in the UC framework [35]. Indeed, universal composabil-
ity is impossible for almost all tasks of any cryptographic interest, under any
intractability assumption.

For this reason, there have been many attempts to slightly relax the UC
framework to permit secure protocols for more tasks, while still keeping its
useful composition properties. Many of these variants are extremely powerful,
permitting composably-secure protocols for all tasks; for example: adding cer-
tain trusted setup functionalities [8,11,1,12,17,23,21,31], allowing superpolyno-
mial simulation [34,36,2,32,10], assuming bounded network latency [22], consid-
ering uniform adversaries [29], and including certain global setups [7], to name a

? Supported by NSF grant CCF-1149647.

few (for a more comprehensive treatment, see the survey by Canetti [6]). Other
variants of the UC framework turn out to be no more powerful than the original
framework; for example, adding certain setup functionalities [35,25] or global
setups [7], and requiring only self-composition rather than universal composi-
tion [30]. A natural question is, therefore: under what circumstances can univer-
sal composability be achieved?

1.1 Our Results

In this work we study the power of 2-party trusted setups. In other words, given
access to a particular trusted setup functionality (e.g., a common random string
functionality), what tasks have UC-secure protocols? In particular, two extremes
are of interest. First, we call a trusted setup F useless if having ideal access to
F is equivalent to having no trusted setup at all. More precisely, F is useless if
it already has a UC-secure protocol in the plain (no trusted setups) model. A
complete characterization for such functionalities was given in [35].

At the other extreme, we call a trusted setup F complete if every well-
formed task has a UC-secure protocol given ideal access to F . As mentioned
above, many setups are known to be complete (e.g., a common random string
functionality), but the methods for demonstrating their completeness have been
quite ad hoc. Our major contribution is to give a new framework for understand-
ing when a trusted setup is complete.

Informal statement of the results. Our characterization is based on the concept
of splittability from [35]. To give a sense of splittability, imagine the following
two-party game between a “synchronizer” and a “distinguisher.” The parties
connect to two independent instances of F , each party playing the role of Alice
in one instance and the role of Bob in the other. They are allowed to arbitrarily
interact with these two instances of F . The synchronizer’s goal is to make the
two instances behave like a single instance of F , from the distinguisher’s point
of view. The distinguisher’s goal is to make the two instances act noticeably
different from a single instance of F , from his point of view.

Then, informally, we say that F is splittable if the synchronizer has a win-
ning strategy in this game, and F is strongly unsplittable if the distinguisher
has a winning strategy.1 Importantly, these splittability-based conditions are
relatively easy to check for a candidate setup, and apply uniformly to com-
pletely arbitrary functionalities in the UC framework (i.e., possibly randomized,
reactive, with behavior depending on the security parameter). Prabhakaran &
Rosulek [35] showed that F is useless if and only if F is splittable. Analogously,
our main result is the following:

Theorem (Informal). If F is strongly unsplittable∗, then F is complete.

1 In the formal definition, both players are computationally bounded, so it may be that
neither party has a feasible winning strategy in the 2-party game. See Section 3.2.

The asterisk after “strongly unsplittable” indicates that the precise statement
of our result involves a variant of strong unsplittability, in which the “synchro-
nizer” is allowed to obtain the internal state of one of the instance of F . However,
in the case that F is a nonreactive functionality, the informal statement above
is correct; the asterisk can be safely ignored.

Our completeness theorem is proved under the assumption that there exists
a semi-honest secure oblivious transfer protocol (the SHOT assumption), an
intractability assumption we show is necessary. We also show that a very slight
modification of strong unsplittability is necessary for a setup to be complete,
and so our characterization is nearly tight.

We argue that setups which are neither splittable nor strongly unsplittable
exploit low-level technical “loopholes” of the UC framework or are otherwise
highly unnatural. Thus, combining our result with that of [35], we can informally
summarize the power of trusted setups by saying that every “natural” setup is
either useless or complete.

Our notion of completeness. Many prior completeness results place restrictions
on how protocols are allowed to access a setup functionality. A common restric-
tion is to allow protocols to access only one instance of the setup — typically
only at the beginning of a protocol. In these cases, we say that the protocols
have only offline access to the setup. Additionally, some completeness results
construct a multi-session commitment functionality from such offline access to
the setup, modeling a more globally available setup assumption.

In contrast, the completeness results in this work are of the following form.
We say that a functionality F is a complete setup if there is a UC-secure
protocol for the ideal (single-session) commitment functionality in the F-hybrid
model. This corresponds to the complexity-theoretic notion of completeness,
under the reduction implicit in the conventional UC security definition. As is
standard for protocols in the F-hybrid model, we place no restrictions on how
or when protocols may access F or how many instances of F they may invoke.
However, we point out that completeness for offline access can be achieved by
simply using our construction to generate a common random string in an offline
phase, then applying a result such as [11].

Technical overview. To prove that a functionality F is complete, it suffices to
show that there is a UC-secure protocol for bit commitment, given ideal access
to F . This follows from the well-known result of Canetti et al. [11] that com-
mitment is complete, under the SHOT assumption. We construct a commitment
protocol in several steps: In Sections 4 & 5 we construct (for the two cases in
our main theorem) commitment protocols that have a straight-line UC simulator
for corrupt receivers (i.e., an equivocating simulator) but have only a rewinding
simulator for corrupt senders (i.e., an extracting simulator). Then, in Section 6
we show how to use such a “one-sided” UC-secure commitment protocol to build
a full-fledged UC-secure commitment protocol.

In Section 7 we show that several variants of strong unsplittability are neces-
sary for a setup to be complete. These variants involve only very minor technical
modifications to the strong unsplittability definition.

1.2 Related Work

Dichotomies in the cryptographic power of functionalities are known in several
settings [13,28]. Our work follows a rich line of research exhibiting dichotomies
specifically between useless and complete functionalities, for various security
models and restricted to various classes of functionalities [3,26,27,18,31,24]. Among
these results, only [31] considered reactive functionalities, and only [26] consid-
ered randomized functionalities. In comparison, ours is the first work to consider
the full range of arbitrary functionalities allowed by the UC framework (the class
of functionalities is stated explicitly in Section 2.2).

Among the results listed above, two [31,24] are cast in the UC framework;
for these we give a more detailed comparison to our own results. Maji, Prab-
hakaran, and Rosulek [31] showed a uselessness/completeness dichotomy among
deterministic functionalities whose internal state and input/output alphabets are
constant-sized (i.e., independent of the security parameter). Their approach re-
lies heavily on deriving combinatorial criteria for such functionalities, expressed
as finite automata, whereas our classification achieves much greater generality
by treating functionalities essentially as black-boxes. Concurrently and indepen-
dently of this work, Katz et al. [24] showed a similar result for deterministic,
non-reactive (secure function evaluation) functionalities.2 They construct UC-
puzzles [29] for classes of SFE functionalities deemed impossible in the charac-
terization of Canetti, Kushilevitz, and Lindell [9]. Our result achieves greater
generality by being based not on the CKL characterization but the splittability
characterization of [35]. Furthermore, we show completeness by directly con-
structing a commitment protocol rather than a UC puzzle (see below).

Lin, Pass, and Venkitasubramaniam [29] developed a framework for proving
completeness results in the UC framework and many variants. Their framework
is based on “UC-puzzles” — protocols with an explicit trapdoor and satisfy-
ing a statistical simulation property. Using UC-puzzles, they construct round-
optimal protocols for all functionalities. Our work focuses on completeness in
terms of feasibility rather than the efficiency. To explicitly highlight the use-
lessness/completeness dichotomy, our completeness criterion is closely tied to
the existing notion of splittability. Consequently, our criterion is less demanding
(requiring only a distinguisher) and is tailored exclusively towards setup func-
tionalities (not more fundamental modifications to the UC framework). We leave
it as an open problem whether strong unsplittability can be used to construct
a UC puzzle to give an efficiency improvement for our result. In particular, the
requirement of a statistical simulation seems incompatible with strong unsplit-
tability, which gives only computational properties.

2 Our result and that of [24] use different formulations for SFE functionalities. See the
discussion in the full version.

In the full version we show that strong unsplittability can be used to un-
derstand many previous (ad hoc) completeness results involving trusted setups.
However, not all setups considered in previous works are within the class of
functionalities we consider for the general result here (in particular, many rely
crucially on the setup interacting with the adversary).

2 Preliminaries

A function f : N→ [0, 1] is negligible if for all c > 0, we have f(n) < 1/nc for all
but finitely many n. A function f is noticeable if there exists some c > 0 such
that f(n) ≥ 1/nc for all but finitely many n. We emphasize that there exist
functions that are neither negligible nor noticeable (e.g., f(n) = n mod 2). A
probability p(n) is overwhelming if 1− p(n) is negligible.

2.1 Universal Composability

We assume some familiarity with the framework of universally composable (UC)
security; for a full treatment, see [5]. We use the notation exec[Z,F , π,A, k]
to denote the probability that the environment outputs 1, in an interaction
involving environment Z, a single instance of an ideal functionality F , parties
running protocol π, adversary A, with global security parameter k. All entities
in the system must be PPT interactive Turing machines (see [19] for a complete
treatment of “polynomial time” definitions for the UC framework). We consider
security only against static adversaries, who corrupt parties only at the beginning
of a protocol execution. πdummy denotes the dummy protocol which simply relays
messages between the environment and the functionality.

A protocol π is a UC-secure protocol for functionality F in the G-hybrid
model if for all adversaries A, there exists a simulator S such that for all en-
vironments Z, we have that

∣∣exec[Z, Ĝ, π,A, k] − exec[Z,F , πdummy,S, k]
∣∣ is

negligible in k. Here, Ĝ denotes the multi-session version of G, so that the pro-
tocol π is allowed to access multiple instances of G in the G-hybrid model. The
former interaction (involving π and G) is called the real process, and the latter
(involving πdummy and F) is called the ideal process.

We consider a communication network for the parties in which the adver-
sary has control over the timing of message delivery. In particular, there is no
guarantee of fairness in output delivery.

2.2 Class of Functionalities

Our results apply to essentially the same class of functionalities considered in
the feasibility result of Canetti et al. [11]. First, the functionality must be well-
formed, meaning that it ignores its knowledge of which parties are corrupt.

Second, the functionality must be represented as a (uniform) circuit family
{Ck | k ∈ N}, where Ck describes a single activation of the functionality when
the security parameter is k. For simplicity, we assume that Ck receives k bits of

the functionality’s internal state, k bits of randomness (independent randomness
in each activation), a k-bit input from the activating party, and the identity of
the activating party as input, and then outputs a new internal state and k bits
of output to each party (including the adversary). Note that all parties receive
outputs; in particular, all parties are informed of every activation. We focus on
2-party functionalities and refer to these parties as Alice and Bob throughout.

Finally, we require that the functionality do nothing when activated by the
adversary.3

2.3 The SHOT Assumption and Required Cryptographic Primitives

The SHOT assumption is that there exists a protocol for
(
2
1

)
-oblivious transfer

that is secure against semi-honest PPT adversaries (equivalently, standalone-
secure, by standard compilation techniques). From the SHOT assumption it also
follows that there exist standalone-secure protocols for every functionality in
the class defined above [15,11]. We require a simulation-based definition of stan-
dalone security, equivalent to the restriction of UC security to environments that
do not interact with the adversary during the execution of the protocol.

The SHOT assumption implies the existence of one-way functions [20], which
in turn imply the existence of standalone-secure statistically-binding commit-
ment schemes [33] and zero-knowledge proofs of knowledge [16,4] that we use in
our constructions. One-way functions also imply the existence of non-malleable
secret sharing schemes (NMSS) [21]. An NMSS consists of two algorithms,
Share and Reconstruct. We require that if (α, β) ← Share(x), then the marginal
distributions of α and β are each independent of x, but that Reconstruct(α, β) =
x. The non-malleability property of the scheme is that, for all x and PPT ad-
versaries A the following probability is negligible:

Pr
[
(α, β)← Share(x);β′ ← A(β, x) : β′ 6= β ∧ Reconstruct(α, β′) 6= ⊥

]
.

Furthermore, an NMSS has the property that given α, β, x, and x′, where
(α, β)← Share(x), one can efficiently sample a correctly distributed β′ such that
Reconstruct(α, β′) = x′.

3 Splittability and Our Characterization

Our result is based on the alternative characterization of UC-realizability called
splittability, introduced by Prabhakaran & Rosulek [35]. Intuitively, a two-party
functionality F is splittable if there is a strategy to coordinate two independent

3 In [11], this convention is also used. However, in the context of a feasibility result
such as theirs, it is permissible (even desirable) to construct a protocol for a stronger
version of F that ignores activations from the adversary. By contrast, in a complete-
ness result, we must be able to use the given F as-is. Since we cannot reason about
the behavior of an honest interaction if an external adversary could influence the
setup, we make the requirement explicit.

F
(b)(a)

Z

FL FR

T(b)(a) (b)(a)

Z

FL FR

T(b)(a) (b)(a)

int. state

Z
(a) F functionality (b) FT

split functionality (c) L-splittability variant

Fig. 1. Interactions considered in the splittability definitions. Small “a” and
“b” differentiate a functionality’s communication links for Alice and Bob, re-
spectively.

instances of F , so that together they behave as a single instance of F . More
formally, let T be an interactive Turing machine, and define FTsplit to be the
2-party functionality which behaves as follows (Figure 1b):

FTsplit internally simulates two independent instances of F , denoted FL and

FR. FTsplit associates its input-output link for Alice with the Alice-input/output

link of FL, and similarly the Bob-input/output link with that of FR. FTsplit
also internally simulates an instance of T , which is connected to the Bob- and
adversary-input/output links of FL and the Alice- and adversary-input/output
links of FR. T receives immediate delivery along its communication lines with
FL and FR. The FTsplit functionality does not end its activation until all three
subprocesses cease activating. Finally, the instances T , FL, and FR are each
given the global security parameter which is provided to FTsplit. We say that T
is admissible if FTsplit is a valid PPT functionality. For an environment Z, we
define

∆split(Z,F , T , k) :=
∣∣exec[Z,F , πdummy,A0, k]− exec[Z,FTsplit, πdummy,A0, k]

∣∣,

where A0 denotes the dummy adversary that corrupts no one.

Definition 1 ([35]). Call an environment suitable if it does not interact with
the adversary except to immediately deliver all outputs from the functionality.4

Then a functionality F is splittable if there exists an admissible T such that
for all suitable environments Z, ∆split(Z,F , T , k) is negligible in k.

Splittability provides a complete characterization of uselessness:

Theorem 1 ([35]). Call a functionality useless if it has a (non-trivial) UC-
secure protocol in the plain model. Then F is useless if and only if F is splittable.

4 The restriction on delivering outputs is analogous to the restriction to so-called “non-
trivial protocols” in [9], which is meant to rule out the protocol which does nothing.
Similarly, this definition of splittability rules out the trivial splitting strategy T
which does nothing.

3.1 Our Main Theorem

Our classification is based on the following variant of splittability:

Definition 2. A functionality F is strongly unsplittable if there exists a
suitable, uniform environment Z and noticeable function δ such that for all ad-
missible T , ∆split(Z,F , T , k) ≥ δ(k).

Due to technical subtleties (described in Section 4) involving the internal
state of functionalities, we also consider the following variants of splittability. If
in FTsplit we let T obtain the internal state of FL (resp. FR) after every activa-
tion (Figure 1c), then we obtain the notions of L-splittability and L-strong-
unsplittability (resp. R-splittability, R-strong-unsplittability). We emphasize
that T is only allowed read-only access to the internal state of FL (resp. FR).
In fact, most natural functionalities that are strongly unsplittable also appear
to be also either L- or R-strongly-unsplittable. For example, the 3 notions are
equivalent for secure function evaluation (SFE) functionalities — those which
evaluate a (possibly randomized) function of the two parties’ inputs (definitions
and details deferred to the full version). As another example, the ideal commit-
ment functionality Fcom is R-strongly-unsplittable (assuming we identify Alice
as the sender), since the sender already knows the entire internal state of Fcom

at all times.

Main Theorem. F is complete if the SHOT assumption is true and either of
the following conditions is true:

1. F is L-strongly-unsplittable or R-strongly-unsplittable, or
2. F is strongly unsplittable and L-splittable and R-splittable, and at least one

of the T machines from the L- and R-splittability conditions is uniform.

Given the equivalence of these notions for SFE functionalities, we have:

Corollary 2 If the SHOT assumption is true, and F is a strongly unsplittable,
SFE functionality, then F is complete.5

3.2 Interpreting (L-/R-) Splittability & Strong Unsplittability

Nearly all functionalities of interest can be quite easily seen to be either split-
table or strongly unsplittable, and thus we informally summarize our results by
stating that every “natural” functionality is either useless or complete. How-
ever, there are functionalities with intermediate cryptographic power, which are

5 Though similar, this corollary is somewhat incomparable to the main result of [24].
The two works use fundamentally different formulations of SFE functionalities. In
ours (following our convention of Section 2.2) the functionality gives an empty out-
put to both parties after receiving the first party’s input. In [24], the functionality
gives no output (except to the adversary) until receiving both party’s inputs. Our
result also applies to randomized functions, whereas the results of [24] involve only
deterministic functionalities.

neither splittable or strongly unsplittable. We give concrete examples of such
functionalities in the full version, and here briefly describe properties of such
functionalities:

First, a functionality’s behavior may fluctuate in an unnatural way with
respect to the security parameter. This may force every environment’s distin-
guishing probability in the splittability definition to be neither negligible (as
required for splittability) nor noticeable (as required for strong unsplittability).
Second, a functionality may have cryptographically useful behavior that can only
be accessed by non-uniform computations, while uniform computations (such as
a hypothetical commitment protocol using such a functionality) can elicit only
trivial behavior. Both of these properties heavily rely on low-level technical re-
strictions used in the UC framework, and can easily be mitigated by relaxing
these restrictions — for example, by considering notions of “infinitely-often use-
less/complete” or by allowing protocols to be nonuniform machines. We point
out that analogous gaps also appear in other contexts involving polynomial-time
cryptography [18].

Finally, as in the introduction, interpret the splittability definitions as a
2-party game between T and Z. Then splittability corresponds to a winning
strategy for T (i.e., a fixed T which fools all Z), and strong unsplittability cor-
responds to a winning strategy for Z (i.e., a fixed Z which detects all T). Yet
some functionalities may not admit winning strategies for either player. (Simi-
larly, there may exist an environment which can distinguish F from FTsplit with
noticeable probability for every T , but the distinguishing bias may necessarily
depend on T .) An example of such a functionality is presented in the full version;
however, the functionality is outside the class considered in this work (it cannot
be expressed as a circuit family with a priori bound on input length). We do not
know whether similar behavior is possible within the scope of our results.

4 UC-Equivocal Commitment from R-Strong
Unsplittability

In this section we show that any R-strongly unsplittable (symmetrically, L-
strongly unsplittable) functionality F can be used to construct a certain kind
of commitment protocol. The resulting protocol has a UC simulation only in
the case where the receiver is corrupt (i.e., an equivocating simulator). Its other
properties are of the standalone-security flavor. We call such a protocol a UC-
equivocal commitment. Later in Section 6 we show that such a protocol can be
transformed into a fully UC-secure protocol for commitment. From this it follows
that F is complete. The other case of our main theorem is simpler, similar in its
techniques, and presented in Section 5.

Simplest instantiation. We first motivate the general design of the protocol with
a concrete example. Suppose F is a functionality which takes input x from Bob
and gives f(x) to Alice, where f is a one-way function. Then our UC-equivocal
commitment using F is as follows:

Commit phase; Alice has input b. Alice commits to b using a standalone-
secure commitment protocol COM. Let C denote the commitment transcript,
and let σ denote the noninteractive decommitment (known only to Alice).

Reveal phase Alice sends b to Bob. Bob chooses a random string x, and sends
it to F ; Alice receives y = f(x). Both parties engage in a standalone-secure
protocol for the following functionality, with common input (C, b):

“On input (σ, z) from Alice, if σ is a valid COM-opening of C to
value b, then give output z to Bob; otherwise give output f(z) to
Bob.”

Alice uses (σ, y) as input to this subprotocol. Bob accepts iff he receives
output f(x).

The protocol has a straight-line simulator for a corrupt Bob. The simulator
commits to a junk value, then obtains Bob’s input x in the reveal phase. As such,
it can give (⊥, x) as input to the subprotocol, and Bob will receive output f(x)
just as in the real interaction. Note that the subprotocol need only be standalone-
secure — the simulator runs the subprotocol honestly, and in particular does not
need to rewind the subprotocol.

The protocol is also binding in a standalone-security sense. Intuitively, for an
equivocating Alice to succeed, she must provide an input (σ, z) to the subproto-
col, where either σ is a valid COM-opening of C to 1−b, or y = f(z). The former
is infeasible by the standalone binding property of COM; the latter is infeasible
because it requires Alice to invert the one-way function f .

Connection to splittability. How does this simple protocol relate to the notion of
splittability? Observe that Bob’s strategy in our protocol is the obvious strat-
egy for the environment when showing that F is strongly unsplittable; namely,
choose a random x, send it as Bob, and see whether Alice receives f(x). An
honest Alice and the simulator are able to succeed because they effectively “by-
pass” one of the two applications of f — either the one that happens within
F (by virtue of the simulation) or the one that happens within the subprotocol
(by knowing the correct σ value). These interactions are analogous to the en-
vironment interacting with a single instance (not a split instance) of F in the
splittability game. However, a cheating Alice is “stuck” between two applications
of f , analogous to the role of T in the splittability game.

Generalizing to our final protocol. Following the ideas from the previous para-
graph, we generalize the protocol as follows. As before, the commit phase of our
final UC-equivocal protocol is essentially just a commitment under a statistically
binding, standalone-secure commitment protocol (for technical reasons, it must
have a rewinding extracting simulator). Again, the non-trivial part of our proto-
col is the reveal phase. To be UC-equivocal, the honest sender and the simulator
(who can each cause the receiver to accept) must each have some advantage over
a cheating sender (who should not be able to force the receiver to accept).

Imagine the sender and receiver both connected to two instances of F , in op-
posite roles (similar to the splittability interaction in Figure 1b). Further imagine

Z∗F

Fideal
receiversimulator

F̃virt prot.

F
(b)(a)

regular
mode

Z∗F

Fideal

(a)(b)

receiverhonest
sender

F̃virt prot.

F

bypass
mode

σ

(a) The simulator can bypass the
ideal F by nature of the sim-
ulation.

(b) An honest sender can bypass the
virtual F using a special mode of
the subprotocol.

Z∗F

Fideal

(a)(b)

receivercheating
sender

F̃virt prot.

F
(b)(a)

regular
mode

T

(c) A cheating sender cannot bypass either in-
stance of F .

Fig. 2. Intuition behind the reveal phase of ΠFEqCom and its security properties.

that the receiver is running the code of Z∗F , the distinguishing environment from
the definition of strong unsplittability.

Let us denote one instance of F (the one associated with FL) as Fideal. In
our protocol, this instance will indeed be an ideal instance of F , as our protocol
is in the F-hybrid model. As such, the simulator for a corrupt receiver is able
to bypass this instance — by which we mean that the simulator can directly
obtain the receiver’s inputs and set its outputs on behalf of Fideal. The simulator
then simply “re-routes” the receiver’s connection with Fideal directly into the
second instance of F . Thus, from the receiver’s point of view, Z∗F appears to be
interacting with only a single instance of F (Figure 2a).

An honest sender’s only advantage is that the underlying standalone com-
mitment can indeed be opened to the value being claimed, whereas a cheating
sender cannot generate a valid decommitment to the false value it claims. We
would like to translate this advantage into a similar “bypassing” capability as the
simulator. Let us denote the other instance of F (the one associated with FR) as

F̃virt (virtual-F), and modify it as follows. It now takes as input the commitment-
phase transcript C and the purported value b. It also takes as input a candidate
decommitment string σ from the sender. If σ is indeed a valid decommitment
of C to b, then F̃virt allows the sender to bypass just as above (directly giving

the receiver’s inputs to the sender and allowing the sender to directly fix the
receiver’s outputs). Otherwise, the functionality simply acts exactly like F . Now

the honest sender can bypass F̃virt so that, again, from the receiver’s point of
view, Z∗F is interacting with a single instance of F (Figure 2b). This advantage
for the honest sender holds even if we have just a standalone-secure protocol
for F̃virt (importantly, since constructing a UC-secure protocol for F̃virt in the
F-hybrid model might even be harder than our goal of constructing UC-secure
commitment in the F-hybrid model).

Finally, a cheating (equivocating) sender cannot provide such a value σ to

F̃virt, so F̃virt behaves just like an instance of F . Thus the cheating sender can
bypass neither instance and is “stuck” between two instances of F (Figure 2c).
The receiver’s environment Z∗F is specifically designed to detect this difference,
no matter what the cheating sender does. The distinguishing bias of Z∗F is guar-
anteed to be noticeable, so by repeating this basic interaction a polynomial num-
ber of times Z∗F can distinguish with overwhelming probability. The receiver will
therefore accept the decommitment if Z∗F believes it is interacting with instances
of F rather than instances of FTsplit.

Technical subtleties. We outline some important technical considerations that
affect the final design of our UC-equivocal commitment protocol. First, our F̃virt

subprotocol only has standalone security, so to apply any of its properties may
require using a rewinding simulation. If the F̃virt subprotocol is ongoing while
the parties interact with Fideal, or while the receiver is executing its Z∗F instance,
then these instances may also be rewound. Since rewinding Z∗F and Fideal would
jeopardize our ability to apply the splittability condition, we let our subprotocol
only perform a single activation of the virtual F per execution. We allow F to
be reactive, so we need a way to maintain the internal state of the virtual-F
between activations of F̃virt. For this purpose we have the F̃virt subprotocol share
F ’s internal state between the two parties using a non-malleable secret sharing
(NMSS) scheme, which was proposed for precisely this purpose [21].

The other important technicality is that activations of the F̃virt subprotocol
and of Fideal are decoupled, meaning that the receiver can observe the relative
timings of these activations. This differs from the splittability interaction, in
which successive activations of FL and FR within FTsplit are atomic from the en-
vironment’s perspective. This difference makes the “bypassing” technique more
subtle. For instance, when the receiver gives an input to the F̃virt subprotocol,
the sender must obtain this input, then make a “round trip” to Fideal to obtain
the output that it forces to the receiver through the F̃virt subprotocol. For this
reason, and to avoid having the subprotocol running while Fideal is accessed, we
split such an activation (initiated by the receiver activating the virtual F) of the
virtual F into two phases: one for input-extraction and one for output-fixing.

Similarly, consider the case where the simulator is bypassing Fideal. In the
real-process interaction, every activation of Fideal is instantaneous, so the sim-
ulator must make such activations appear instantaneous as well. In particular,
the simulator has no time to make a “round-trip” to the F̃virt subprotocol to

determine the appropriate response to simulate on behalf Fideal. A moment’s
reflection shows that the only way for the simulator to immediately give the
correct response is if it already knows the internal state of the virtual-F . For
this reason, we let the subprotocol give this information to the sender, even
in its normal (non-bypassing) mode. Since this internal state information then
becomes available to a cheating sender as well, we require that F be strongly
unsplittable even when FR leaks its internal state in this way (i.e., R-strongly
unsplittable).

We use only indistinguishability properties of the F̃virt subprotocol to prove
the soundness of the straight-line equivocating simulator. Indeed, the simulation
is valid even against arbitrary corrupt receivers, even though for simplicity we
have portrayed here all receivers to be running Z∗F as the protocol prescribes. We
use the splittability condition to prove only the (standalone) binding property
of the commitment, where the receiver is honest and indeed runs Z∗F .

Lemma 1. If the SHOT assumption is true, then ΠFEqCom has a UC simulator
in the case that the receiver is corrupt (i.e., an equivocating simulator). If F is
R-strongly-unsplittable, then ΠFEqCom has a rewinding simulator in the case that
the sender is corrupt (i.e., an extracting simulator).

5 UC-Equivocal Commitment from L/R-Splittability

In this section we show that if F is strongly unsplittable, L-splittable, and R-
splittable, then F can be used to construct a UC-equivocal commitment protocol.
This is the second case in our main theorem.

5.1 Overview

Our approach for this case is quite similar to that of Section 4 — our protocol
involves an ideal instance of F along with a “virtual” instance of F within a
standalone-secure subprotocol. The receiver runs instances of Z∗F , the environ-
ment guaranteed by the strong unsplittability condition. The receiver accepts
the commitment if Z∗F believes it is interacting with a single instance of F as
opposed to some FTsplit. The primary difference from the previous section is in
the “bypass mode” of the virtual-F subprotocol. In this subprotocol, the bypass
mode does not completely bypass the virtual F , but instead it simply leaks the
internal state of the virtual F to the receiver. Intuitively, leaking the internal
state is sufficient to “fool” Z∗F , since F is L/R-splittable. We have the following
observations about the protocol (Figure 3):

– An honest sender who can activate the bypass mode of the F̃virt subprotocol
is situated between an ideal instance of F and (intuitively) an instance of
F that leaks its internal state. By the R-splittability of F , there exists a T2
that the sender can execute to make two such instances behave to the sender
as a single instance of F . Note that T2 must be a uniform machine, since it
is used as a subroutine in the description of the protocol.

Z∗F

Fideal

(a)(b)

receiversender

Πvirt-F

F
(b)(a)

bypass
mode

T2

int. state

Z∗F

Fideal

(a)(b)

receiversimulator

Πvirt-F

F
(b)(a)

normal
mode

T1
int. state

(a) Honest sender behavior.
(b) The simulator simulates Fideal hon-

estly but also gives its internal state
to T1.

Fig. 3. Interactions in ΠFEqCom and its security proof.

– The simulator can honestly simulate Fideal while also having access to its
internal state. The remainder of the simulator is intuitively between this
simulated instance of F and a (normal, non-bypassed) instance of F . By the
L-splittability of F , there exists a T1 that the simulator can execute to make
these two instances behave to the sender as a single instance of F . Note that
T1 need not be uniform, since it is used only by the simulator. Finally, since
the simulator is designed to interact with a corrupt receiver, T1 and T2 must
be able to “fool” every environment, not just the environment Z∗F from the
strong unsplittability condition.

– A cheating sender cannot obtain the internal state from either the ideal
or the virtual instance of F . As such, it plays the role of the machine T
in the (normal) splittability interaction. By the strong unsplittability of F ,
the receiver’s environment Z∗F can detect a noticeable deviation from the
expected behavior.

In this section, we never have need to completely bypass an instance of F .
The technical complications described in Section 4 are not present here, and
the actual construction is a much more straight-forward implementation of the
intuition described above.

Lemma 2. If the SHOT assumption is true and F is L- & R-splittable, then
ΠFEqCom has a UC simulator in the case that the receiver is corrupt (i.e., an

equivocating simulator). If F is strongly-unsplittable, then ΠFEqCom has a rewind-
ing simulator in the case that the sender is corrupt (i.e., an extracting simulator).

6 Full-Fledged UC Commitment from Equivocal
Commitment

We now show how the UC-equivocal commitment protocol from the previous
sections can be used to construct a full-fledged UC commitment protocol. Due
to space limitations, we give only a high-level overview of the protocol ΠFcom
here; the full details and security proof are deferred to the full version.

Commit phase:

1. The receiver first uses ΠFEqCom to commit to a random string r containing
half 0s and half 1s.

2. To commit to a bit b, the sender uses ΠFEqCom to commit (bitwise) to a
random string x, and gives b⊕ (

⊕
i xi) to the receiver.

3. The two parties engage in a standalone-secure subprotocol in which the
receiver learns a random half of the bits of x. The sender does not learn
which positions of x the receiver obtains.

4. The receiver opens his commitment to r. The receiver opens her commit-
ments to all bits xi such that ri = 1.

Intuitively, a malicious receiver can expect to learn no more than about 3/4 of
the bits of x in this way (a random half in step 3 and an independent random
half in step 4), so the secret bit b remains hidden. However, the simulator for a
corrupt sender can equivocate (in ΠFEqCom) while revealing r so that it learns all
the bits of x, and hence can extract b.

Reveal phase: The parties engage in a standalone-secure subprotocol in which
the sender learns a position i∗ for which the receiver did not learn the bit xi∗

in steps 3 and 4 the commit phase. Then the sender opens all the remaining
commitments to the bits of x.

Intuitively the information i∗ is useless to a corrupt sender, but the simulator
for a corrupt receiver can equivocate (in ΠFEqCom) on its opening of the bit xi∗ ,
and hence open its commitment to either value of b.

Lemma 3. ΠFcom is a UC-secure protocol for commitment, in the F-hybrid model.

7 Necessity of SHOT Assumption & Strong Unsplittability

The SHOT assumption is necessary for many strongly unsplittable functionalities
(e.g., coin-tossing, commitment) to be complete under static corruption [14,31].
Thus the SHOT assumption is the minimal assumption for a completeness result
such as ours.

In this work we showed that strong unsplittability (and its variants) is a
sufficient condition for completeness. Ideally, we would like to prove that it is
also a necessary condition; currently we are able to prove that several minor
modifications of strong unsplittability are necessary.

To prove necessity of some kind of strong unsplittability, we show that F is
not complete by showing that there is no UC-secure protocol for coin-tossing in
the F-hybrid model. Consider an interaction involving a purported coin-tossing
protocol in the F-hybrid model. This protocol invokes possibly many instances
of F , and it is likely that we will have to apply some property of F to each
of them (indeed, this is what we must do in the proofs below). If F is not
strongly unsplittable, then for every suitable Z, there is a machine T so that
∆split(Z,F , T , k) is non-noticeable — that is, negligible only for infinitely many

values of the security parameter. In the following proofs, we must apply this
condition in a hybrid argument, each time with a slightly different environment
and thus a potentially different subset of security parameter values. There may
not be an infinite number of security parameter values for which every step of the
hybrid argument succeeds, and thus we must settle for slight variants of strong
unsplittability in the following:

Lemma 4. If F is complete, then all of the following are true:

1. F is infinitely-often strongly unsplittable with respect to uniform T .
2. The multi-session version of F is strongly unsplittable.
3. F is strongly unsplittable via an environment with multi-bit output.

In item (1), “infinitely-often” refers to the relaxation in which ∆split(Z,F , T , k)
is non-negligible (rather than noticeable, as required in the usual definition).

The complete proofs are given in the full version, but for a flavor of the
techniques we give a proof of item (1) here:

Proof (of item 1). We prove the contrapositive. Suppose that F is not as
in item (1), then for every suitable Z there is a uniform machine T so that
∆split(Z,F , T , k) is negligible. It suffices to show that there is no protocol for
coin-tossing in the F-hybrid model.

Suppose for contradiction that π is such a secure protocol for coin-tossing.
Let Z be the environment that invokes one session of coin tossing and outputs
1 if both parties output the same coin. Then we inductively define sequences of
machines Ti and Zi as follows. Zi is the environment that internally simulates
Z and two honest parties running π. For j > i, the jth instance of F invoked by
π is simulated internally to Zi. The ith instance of F is routed to an external
ideal instance of F . And for j < i, the jth instance of F is simulated internally

as FTjsplit rather than F . The machine Ti is defined as the uniform machine that
“fools” environment Zi. By a straight-forward hybrid argument, we have that
Z outputs 1 with overwhelming probability when invoking an instance of π in
which the ith instance of F is replaced by FTisplit.

By applying the UC-security of π, we can replace Alice (who is honestly
running π) and the collection of FL instances in this interaction with an ideal
instance of coin-tossing (and appropriate simulator). Similarly, we can replace
Bob and the set of FR instances in the interaction with another ideal instance of
coin-tossing. Both of these changes have only a negligible effect on the outcome
of the interaction, by the security of π. Now Z receives two coins from totally
independent instances of an ideal coin-tossing functionality, and outputs 1 with
overwhelming probability. Since Z only outputs 1 if its two inputs agree, this is
a contradiction. Thus, no such protocol π can exist.

Acknowledgements

The author would like to thank Tal Malkin for helpful discussions surrounding
Lemma 4, and Manoj Prabhakaran, Hong-Sheng Zhou, and several anonymous
referees for various constructive suggestions.

References

1. B. Barak, R. Canetti, J. B. Nielsen, and R. Pass. Universally composable proto-
cols with relaxed set-up assumptions. In FOCS, pages 186–195. IEEE Computer
Society, 2004.

2. B. Barak and A. Sahai. How to play almost any mental game over the net -
concurrent composition via super-polynomial simulation. In FOCS, pages 543–
552. IEEE Computer Society, 2005.

3. A. Beimel, T. Malkin, and S. Micali. The all-or-nothing nature of two-party secure
computation. In M. J. Wiener, editor, CRYPTO, volume 1666 of Lecture Notes in
Computer Science, pages 80–97. Springer, 1999.

4. M. Bellare and O. Goldreich. On defining proofs of knowledge. In E. F. Brickell,
editor, CRYPTO, volume 740 of Lecture Notes in Computer Science, pages 390–
420. Springer, 1993.

5. R. Canetti. Universally composable security: A new paradigm for cryptographic
protocols. In M. Naor, editor, FOCS, pages 136–145. IEEE Computer Society, 2001.
Revised version (2005) on Cryptology ePrint Archive: http://eprint.iacr.org/
2000/067.

6. R. Canetti. Obtaining universally composable security: Towards the bare bones
of trust. In K. Kurosawa, editor, ASIACRYPT, volume 4833 of Lecture Notes in
Computer Science, pages 88–112. Springer, 2007.

7. R. Canetti, Y. Dodis, R. Pass, and S. Walfish. Universally composable security
with global setup. In S. P. Vadhan, editor, TCC, volume 4392 of Lecture Notes in
Computer Science, pages 61–85. Springer, 2007.

8. R. Canetti and M. Fischlin. Universally composable commitments. In J. Kilian,
editor, CRYPTO, volume 2139 of Lecture Notes in Computer Science, pages 19–40.
Springer, 2001.

9. R. Canetti, E. Kushilevitz, and Y. Lindell. On the limitations of universally
composable two-party computation without set-up assumptions. J. Cryptology,
19(2):135–167, 2006.

10. R. Canetti, H. Lin, and R. Pass. Adaptive hardness and composable security in
the plain model from standard assumptions. In L. Trevisan, editor, FOCS, pages
541–550. IEEE Computer Society, 2010.

11. R. Canetti, Y. Lindell, R. Ostrovsky, and A. Sahai. Universally composable two-
party and multi-party secure computation. In STOC, pages 494–503. ACM, 2002.

12. R. Canetti, R. Pass, and a. shelat. Cryptography from sunspots: How to use an
imperfect reference string. In FOCS, pages 249–259. IEEE Computer Society, 2007.

13. B. Chor and E. Kushilevitz. A zero-one law for boolean privacy. SIAM J. Discrete
Math., 4(1):36–47, 1991.

14. I. Damg̊ard, J. B. Nielsen, and C. Orlandi. On the necessary and sufficient as-
sumptions for UC computation. In D. Micciancio, editor, TCC, volume 5978 of
Lecture Notes in Computer Science, pages 109–127. Springer, 2010.

15. O. Goldreich, S. Micali, and A. Wigderson. How to play any mental game or a
completeness theorem for protocols with honest majority. In STOC, pages 218–229.
ACM, 1987.

16. S. Goldwasser, S. Micali, and C. Rackoff. The knowledge complexity of interactive
proof-systems (extended abstract). In STOC, pages 291–304. ACM, 1985.

17. J. Groth and R. Ostrovsky. Cryptography in the multi-string model. In A. Menezes,
editor, CRYPTO, volume 4622 of Lecture Notes in Computer Science, pages 323–
341. Springer, 2007.

http://eprint.iacr.org/2000/067
http://eprint.iacr.org/2000/067

18. D. Harnik, M. Naor, O. Reingold, and A. Rosen. Completeness in two-party secure
computation: A computational view. J. Cryptology, 19(4):521–552, 2006.

19. D. Hofheinz, D. Unruh, and J. Müller-Quade. Polynomial runtime and compos-
ability. Cryptology ePrint Archive, Report 2009/023, 2009. http://eprint.iacr.
org/2009/023.

20. R. Impagliazzo and M. Luby. One-way functions are essential for complexity based
cryptography (extended abstract). In FOCS, pages 230–235. IEEE, 1989.

21. Y. Ishai, M. Prabhakaran, and A. Sahai. Founding cryptography on oblivious
transfer - efficiently. In D. Wagner, editor, CRYPTO, volume 5157 of Lecture
Notes in Computer Science, pages 572–591. Springer, 2008.

22. Y. T. Kalai, Y. Lindell, and M. Prabhakaran. Concurrent general composition
of secure protocols in the timing model. In H. N. Gabow and R. Fagin, editors,
STOC, pages 644–653. ACM, 2005.

23. J. Katz. Universally composable multi-party computation using tamper-proof
hardware. In M. Naor, editor, EUROCRYPT, volume 4515 of Lecture Notes in
Computer Science, pages 115–128. Springer, 2007.

24. J. Katz, A. Kiayias, R. Kumaresan, a. shelat, and H.-S. Zhou. From impossibility
to completeness for deterministic two-party SFE. Unpublished manuscript, 2011.

25. D. Kidron and Y. Lindell. Impossibility results for universal composability in
public-key models and with fixed inputs. J. Cryptology, 24(3):517–544, 2011.

26. J. Kilian. More general completeness theorems for secure two-party computation.
In STOC, pages 316–324. ACM, 2000.

27. J. Kilian, E. Kushilevitz, S. Micali, and R. Ostrovsky. Reducibility and complete-
ness in private computations. SIAM J. Comput., 29(4):1189–1208, 2000.

28. G. Kreitz. A zero-one law for secure multi-party computation with ternary outputs.
In Y. Ishai, editor, TCC, volume 6597 of Lecture Notes in Computer Science, pages
382–399. Springer, 2011.

29. H. Lin, R. Pass, and M. Venkitasubramaniam. A unified framework for concurrent
security: universal composability from stand-alone non-malleability. In M. Mitzen-
macher, editor, STOC, pages 179–188. ACM, 2009.

30. Y. Lindell. Lower bounds for concurrent self composition. In M. Naor, editor, TCC,
volume 2951 of Lecture Notes in Computer Science, pages 203–222. Springer, 2004.

31. H. K. Maji, M. Prabhakaran, and M. Rosulek. A zero-one law for cryptographic
complexity with respect to computational UC security. In T. Rabin, editor,
CRYPTO, volume 6223 of Lecture Notes in Computer Science, pages 595–612.
Springer, 2010.

32. T. Malkin, R. Moriarty, and N. Yakovenko. Generalized environmental security
from number theoretic assumptions. In S. Halevi and T. Rabin, editors, TCC,
volume 3876 of Lecture Notes in Computer Science, pages 343–359. Springer, 2006.

33. M. Naor. Bit commitment using pseudorandomness. J. Cryptology, 4(2):151–158,
1991.

34. R. Pass. Simulation in quasi-polynomial time, and its application to protocol
composition. In E. Biham, editor, EUROCRYPT, volume 2656 of Lecture Notes
in Computer Science, pages 160–176. Springer, 2003.

35. M. Prabhakaran and M. Rosulek. Cryptographic complexity of multi-party compu-
tation problems: Classifications and separations. In D. Wagner, editor, CRYPTO,
volume 5157 of Lecture Notes in Computer Science, pages 262–279. Springer, 2008.

36. M. Prabhakaran and A. Sahai. New notions of security: achieving universal com-
posability without trusted setup. In L. Babai, editor, STOC, pages 242–251. ACM,
2004.

http://eprint.iacr.org/2009/023
http://eprint.iacr.org/2009/023

	Universal Composability from Essentially Any Trusted Setup
	Mike Rosulek

