
Hash Functions Based on Three Permutations:
A Generic Security Analysis

Bart Mennink and Bart Preneel

Dept. Electrical Engineering, ESAT/COSIC, KU Leuven, and IBBT, Belgium
bart.mennink@esat.kuleuven.be, bart.preneel@esat.kuleuven.be

Abstract. We consider the family of 2n-to-n-bit compression functions
that are solely based on at most three permutation executions and on
XOR-operators, and analyze its collision and preimage security. Despite
their elegance and simplicity, these designs are not covered by the results
of Rogaway and Steinberger (CRYPTO 2008). By defining a carefully
chosen equivalence relation on this family of compression functions, we
obtain the following results. In the setting where the three permutations
π1, π2, π3 are selected independently and uniformly at random, there
exist at most four equivalence classes that achieve optimal 2n/2 collision
resistance. Under a certain extremal graph theory based conjecture, these
classes are then proven optimally collision secure. Three of these classes
allow for finding preimages in 2n/2 queries, and only one achieves optimal
22n/3 preimage resistance (with respect to the bounds of Rogaway and
Steinberger, EUROCRYPT 2008). Consequently, a compression function
is optimally collision and preimage secure if and only if it is equivalent to
F(x1, x2) = x1⊕π1(x1)⊕π2(x2)⊕π3(x1⊕x2⊕π1(x1)). For compression
functions that make three calls to the same permutation we obtain a
surprising negative result, namely the impossibility of optimal 2n/2 colli-
sion security: for any scheme, collisions can be found with 22n/5 queries.
This result casts some doubt over the existence of any (larger) secure
permutation-based compression function built only on XOR-operators
and (multiple invocations of) a single permutation.

Keywords. Hash function, Permutation-based, Collision resistance,
Preimage resistance.

1 Introduction

The traditional recipe for the design of a cryptographic hash function is to base
it on one or more block ciphers. Since the late 70s, this methodology developed
itself to become the dominating approach in the area of hash function design and
plenty of hash functions have been constructed accordingly (either explicitly or
implicitly) [3,4,7,8]. These designs are, however, characterized by the fact that
the key input to the cipher depends on the input values; this implies that the key
schedule has to be strong and that it needs to be executed for every encryption
(or for every second encryption), which entails a substantial computational cost.
An alternative approach is to fix one or more keys, and restrict the hash function

design to use the block cipher for these keys only. The usage of fixed-key block
ciphers, or alternatively permutations, additionally causes gain that one does
not need to implement an entire block cipher but only a limited number of
instantiations of it.

Black, Cochran and Shrimpton [1] were the first to formally study this ap-
proach, demonstrating that a 2n-to-n-bit compression function F using one n-
bit permutation π cannot be secure. This result has been generalized by Ro-
gaway and Steinberger [11], and refined by Stam [13] and Steinberger [14].
Consider any mn-to-rn-bit compression function using k n-bit permutations: if
2n(2m−2r−k+1)/(k+1) ≥ 17, collisions can be found in at most (2n)1−(m−r+1)/(k+1)

queries to the underlying primitives, a bound proven by Steinberger in [14] but
commonly known as “Stam’s bound.” Collisions and preimages can even be
found in at most (2n)1−(m−r/2)/k and (2n)1−(m−r)/k queries respectively, pro-
vided the compression function satisfies the “uniformity assumption” [11]. Due to
Stam’s bound, a 2n-to-n-bit compression function, which is the simplest case af-
ter all, achieves optimal 2n/2 collision resistance only if it employs at least three
permutations. Yet, it cannot achieve optimal preimage resistance if it fulfills the
uniformity assumption. These observations apply to the “multi-permutation set-
ting”, where each of the permutations is generated independently, as well as the
“single-permutation setting” where the permutations are the same.

The construction of 2n-to-n-bit compression functions (based on three per-
mutations) that provably attain optimal collision security, has turned out to be
a very challenging exercise. In [10], Rogaway and Steinberger formally proved
a broad class of 2n-to-n-bit compression functions using three distinct permu-
tations and finite field scalar multiplications optimally collision and preimage
secure (w.r.t. the bounds of [11]), provided the compression function satisfies a
so-called “independence criterion” (a similar result for the single-permutation
setting has been obtained by Lee and Kwon [5]). Unfortunately, this technical
criterion rules out the most intuitive and elegant type of designs, namely com-
pression functions that are (apart from the three permutations) solely based on
XOR-operators. As the proof of [10] extensively relies on its independence cri-
terion, the proof cannot be generalized to compression functions of this type.
In [12], Shrimpton and Stam derived a XOR-based compression function, us-
ing three one-way functions rather than permutations: F(x1, x2) = f1(x1) ⊕
f3(f1(x1)⊕f2(x2)). This function is proven collision resistant up to 2n/2 queries
(asymptotically), but preimages can be found with high probability after 2n/2

queries [12]. It has been demonstrated by an automated analysis of Rogaway
and Steinberger [10] that the same results hold if f1, f2, f3 are Davies-Meyer-like
compression functions using permutations π1, π2, π3, i.e. fi(x) = x⊕πi(x), but a
formal security analysis has never been given. Since these works, a synthetic for-
mal collision and preimage security analysis of XOR-based compression functions
has remained an interesting and important theoretical open problem, because
of their elegance and simplicity (the functions only employ XOR-operators) as
well as their slight efficiency improvement (XOR-operators are slightly cheaper
than finite field multiplications).

Our Contributions. We focus on the entire family of 2n-to-n-bit compression
functions constructed only of three isolated permutations and of XOR-operators,
and analyze the security of these functions against information-theoretic adver-
saries. For each of the functions, we either provide a proof of optimal collision
resistance or a collision attack faster than the birthday bound. We also analyze
the preimage resistance of the schemes that have optimal collision security.

The approach followed in this work is based on defining an equivalence class
on the set of compression functions, and is of independent interest: informally,
two compression functions are equivalent if there exists a tight bi-directional
preimage and collision security reduction (cf. Def. 3). Consequently, security
results of one compression function hold for the entire class, and it suffices to
analyze the security of one function per class. In this work we restrict to equiva-
lence reductions that are easy to verify, such as interchanging the inputs to the
compression function.

For the multi-permutation setting, where the three permutations π1, π2, π3
are assumed to be selected independently and uniformly at random, the results
are as follows. A compression function F is optimally collision secure (asymp-
totically) if and only if it is equivalent to one of the four compression functions
F1, . . . ,F4:

F1(x1, x2) = x2 ⊕ π2(x2)⊕ π3(x1 ⊕ x2 ⊕ π1(x1)) ,
F2(x1, x2) = x1 ⊕ π1(x1)⊕ π2(x2)⊕ π3(x1 ⊕ x2 ⊕ π1(x1)) ,
F3(x1, x2) = x1 ⊕ π1(x1)⊕ π3(x1 ⊕ x2 ⊕ π1(x1)⊕ π2(x2)) ,
F4(x1, x2) = x1 ⊕ x2 ⊕ π1(x1)⊕ π3(x1 ⊕ x2 ⊕ π1(x1)⊕ π2(x2)) .

(1)

These compression functions are depicted in Fig. 1. Not surprisingly, the
permutation-based variant of the Shrimpton-Stam compression function [12]
is included, it equals F3. For compression functions non-equivalent to any of
F1,F2,F3,F4, collisions can be found faster than the birthday bound, namely in
at most 22n/5 queries. Compression functions equivalent to F2 are proven opti-
mally preimage secure up to 22n/3 queries, and compression functions equivalent
to F1,F3 or F4 are additionally shown to achieve tight 2n/2 preimage security.
Therefore, a compression function achieves optimal collision and preimage resis-
tance (w.r.t. the bounds of [11]) if and only if it is equivalent to F2. Particularly,

x1

x2

zn

n

n π1

π2

π3

(only for

(only for

(only for
F3, F4)

F1, F2, F3)

F2, F3, F4)

1

Fig. 1. A graphical representation of the compression functions F1, . . . ,F4 of (1).

this class of functions beats the Shrimpton-Stam compression function [12] with
respect to preimage resistance. These results are summarized in Table 1.

A minor part of the results in the multi-permutation setting, more concretely
the collision resistance of F1,F2 and F4 and the preimage resistance of F2, are
based on an extremal graph theory based conjecture. Informally, this conjec-
ture bounds the number of solutions (x1, x2, x3) ∈ X1 × X2 × X3 such that
x2 ⊕ x3 = x1 ⊕ π1(x1), where X1, X2, X3 are three sets of q elements. This con-
jecture is similar to (but more complex than) a problem posed by Zarankiewicz
in 1951 (cf. [2, Ch. 6.2]), and is of independent interest. In the full version of this
paper [6], we analyze our conjecture in more detail, provide it with a heuristic
argument, and compare it with the conjecture of Zarankiewicz.

Table 1. The security results of this work for the multi-permutation setting.
The functions F1, . . . ,F4 are given in (1) and Fig. 1. The equivalence relation is
defined in Def. 3. For F2, the obtained security results are optimal with respect
to the bounds of Rogaway and Steinberger [11]. The proofs of the results with
appended “[c]” fall back on Conjecture 1.

collision preimage

F equivalent to: security attack security attack

F1,F4 2n/2 [c] 2n/2 2n/2 2n/2

F2 2n/2 [c] 2n/2 22n/3 [c] 22n/3

F3 2n/2 2n/2 2n/2 2n/2

none of these ? 22n/5 ? ?

In the single-permutation setting, where the compression function makes
three calls to the same random permutation π, there does not exist any compres-
sion function that achieves optimal collision resistance. In particular, for any pos-
sible function, collisions can be found in at most 22n/5 queries, beating the desired
birthday bound. This negative result is surprising, given the fair amount of secure
functions we have found in the multi-permutation setting. The attacks mainly
rely on the fact that the adversary can misuse the single-permutation property
by introducing dependencies between the two input values x1 and x2. For in-
stance, the function F2 of (1) satisfies F2(x1, x2) = F2(x1, x2⊕x1⊕π(x1)) in the
single-permutation setting. This result raises the interesting question whether
(larger) compression functions exist based only on XOR-operators and (more
than three invocations of) one single permutation.

Outline. In Sect. 2, we present some background information, and formally
describe the set of permutation-based compression functions we have analyzed.
In Sect. 3, the equivalence relation on the set of compression functions is formally
defined. The main results are given in Sect. 4 for the multi-permutation setting

and in Sect. 5 for the single-permutation setting. We conclude the paper in
Sect. 6.

2 Preliminaries

For an integer n ∈ N, we denote by {0, 1}n the set of bit strings of length n.
For two bit strings x, y, we denote by x‖y their concatenation and by x ⊕ y

their bitwise XOR. If X is a set, by x
$← X we denote the uniformly random

sampling of an element from X . For two integers m,n ∈ N, we denote by 〈m〉n
the encoding of m as an n-bit string. By log we denote the logarithm function
with respect to base 2. By Pn we denote the set of all permutations operating
on n bits. Vectors are denoted as x, and by ‖x‖ =

∑
i |xi| we denote the 1-norm

of x. For a matrix A, by ai,j we denote its coefficient at the ith row and jth

column. By ai,∗ we denote the ith row of A, and by a∗,j its jth column.

2.1 Permutation Based Compression Functions

We consider the following type of 2n-to-n-bit compression functions. Let π1, π2,
π3 ∈ Pn be three permutations. For a binary 4× 5 matrix A of the form

A =


a11 a12 0 0 0
a21 a22 a23 0 0
a31 a32 a33 a34 0
a41 a42 a43 a44 a45

 , (2)

the compression function FA : {0, 1}2n → {0, 1}n is defined as follows:

FA(x1, x2) = z , where y1 ← π1(a11x1 ⊕ a12x2) ,

y2 ← π2(a21x1 ⊕ a22x2 ⊕ a23y1) ,

y3 ← π3(a31x1 ⊕ a32x2 ⊕ a33y1 ⊕ a34y2) ,

z ← a41x1 ⊕ a42x2 ⊕ a43y1 ⊕ a44y2 ⊕ a45y3 .

(3)

The function FA is depicted in Fig. 2. If the three permutations are all differ-
ent, we refer to it as the multi-permutation setting. If π1, π2, π3 are equal to
one permutation π, we are in the single-permutation setting. In total, we thus
analyze 2 · 214 compression functions. Many of these, however, are trivially weak
(cf. Sect. 2.3).

For the single-permutation setting, it is of interest to also consider the case
where n-bit constants are added to the inputs to the permutations (e.g. y1 ←
π1(a11x1⊕a12x2⊕ b1) for b1 ∈ {0, 1}n). This results in many more schemes, but
requires a more complex analysis. Therefore, we present our main results on FA of
(3), and in App. A we generalize our findings on the single-permutation setting to
cover any FA where additional affine transformations on the permutation inputs
are taken into account.

x1

x2

zn

n

n

π1

π2

π3

a11

a12

a21

a22

a23

a31

a32

a33

a34

a41

a42

a43

a44

a45

1

Fig. 2. The permutation-based compression function FA of (3).

2.2 Security Notions

An adversary is a probabilistic algorithm with oracle access to the underlying
permutations π1, π2, π3. He can make forward and inverse queries to its oracles,
and the queries are stored in a query history Q. By (xk, yk) ∈ Q, for k ∈ {1, 2, 3},
we denote that yk = πk(xk); the adversary either made a forward query xk to
obtain yk or an inverse query yk to obtain xk. In the remainder, we assume
that Q always contains the queries required for the attack, and we assume that
the adversary does not make trivial queries, i.e. queries to which the adversary
already knows the answer in advance. In this work we consider information-
theoretic adversaries only. This type of adversary has unbounded computational
power, and its complexity is measured by the number of queries made to its
oracles.

Definition 1. Let FA : {0, 1}2n → {0, 1}n be a compression function defined
by a matrix A of the form (2). Let A be a collision finding adversary for this
compression function. The advantage of A is defined as

Advcol
FA

(A) = Pr
(
π1, π2, π3

$← Pn, x, x
′ ← Aπi,π

−1
i : x 6= x′, Fπi

A (x) = Fπi

A (x′)
)
.

By Advcol
FA

(q) we denote the maximum advantage, taken over all adversaries
making q queries to each of their oracles.

Several definitions for preimage resistance are known, but we opt for every-
where preimage resistance [9], which intuitively guarantees preimage security for
every range point.

Definition 2. Let FA : {0, 1}2n → {0, 1}n be a compression function defined by
a matrix A of the form (2). Let A be an everywhere preimage finding adversary
for this compression function. The advantage of A is defined as

Advepre
FA

(A) = max
z∈{0,1}n

Pr
(
π1, π2, π3

$← Pn, x← Aπi,π
−1
i (z) : z = Fπi

A (x)
)
.

By Advepre
FA

(q) we denote the maximum advantage, taken over all adversaries
making q queries to each of their oracles.

The security definitions for the single-permutation setting, where the compres-
sion function is built on one permutation π, are analogous.

2.3 Invalid Matrices

We will classify the set of optimally collision secure compression functions FA of
the form described in Sect. 2.1, but for some matrices A the induced compression
function will clearly not fulfill the desired security requirements. For instance,
if a compression function does not use one or more permutations, attacks faster
than the birthday bound can easily be constructed. We introduce the notion of
“valid” matrices, in order to rule out compression functions that trivially fail to
achieve optimal collision resistance. A matrix A is called “valid” if it satisfies
the following properties:

(1) For the jth column (j = 1, 2), we have a1j +a2j +a3j ≥ 1. This requirement
ensures that input xj is used in the computation of at least one permutation.
If this would not be the case, collisions can easily be constructed;

(2) For the jth column (j = 3, 4, 5), we have ‖a∗,j‖ ≥ 1, and for the ith row
(i = 1, 2, 3), we have ‖ai,∗‖ ≥ 1. Notice that if the ith row (resp. jth column)
would consist of zeroes only, it means that permutation πi (resp. πj−2) is
not used in the computation, and collisions can be found in at most 2n/3

queries by Stam’s bound [13,14].

In the remainder, we will consider valid matrices A only. By an extensive com-
putation one can show that 2796 < 212 out of 214 matrices are valid (for both
the single- and multi-permutation setting).

3 Equivalence Classes of Permutation Based Compression
Functions

We define an equivalence relation on the set of compression functions FA. This
equivalence relation intuitively describes classes of “equally secure” compression
functions, and can be used to reduce the number of compression functions to be
analyzed. Indeed, security properties of one compression function naturally con-
vey to all compression functions in the same equivalence class. The equivalence
relation is defined in Def. 3, and in Props. 1-4 we describe the four equivalence
reductions that will be used in this work.

Definition 3. Two compression functions FA and FA′ are equivalent if for both
collision and preimage security there exists a tight reduction from FA to FA′ , and
vice versa.

Proposition 1 (x-reduction). Consider two matrices A =
(
a∗,1 ; a∗,2 ; a∗,3 ;

a∗,4 ; a∗,5
)

and A′ =
(
a∗,2 ; a∗,1 ; a∗,3 ; a∗,4 ; a∗,5

)
. Then, the compression

functions FA and FA′ are equivalent. Intuitively, this reduction corresponds to
swapping x1 and x2.

Proposition 2 (XOR-reduction). Consider a matrix A =
(
a∗,1 ; a∗,2 ; a∗,3 ;

a∗,4 ; a∗,5
)
, and let k = min{ i | ai,2 6= 0 } (notice that k ∈ {1, 2, 3} as A is

valid). Let c0, . . . , c2 ∈ {0, 1}. Consider the matrix A′ = A ⊕
(
c0a∗,2 ; 0 ; [k ≥

2]c1a∗,2 ; [k ≥ 3]c2a∗,2 ; 0
)
, where [X] = 1 if X holds and 0 otherwise. Then,

the compression functions FA and FA′ are equivalent. Intuitively, πk is the first
permutation that incorporates x2, and this reduction represents replacing x2 by
x2 ⊕ c0x1 ⊕

∑k−1
i=1 ciyi, where yi is the outcome of the ith permutation. Using

Prop. 1, the same reduction holds for x1.

Proposition 3 (π-swap-reduction). Let i ∈ {1, 2}, and consider a matrix A
with ai+1,i+2 = 0. Consider the matrix A′ obtained from A by swapping rows
ai,∗ and ai+1,∗ and consequently swapping columns a∗,i+2 and a∗,i+3. Then,
the compression functions FA and FA′ are equivalent. Intuitively, this reduction
corresponds to swapping πi and πi+1, which is only possible if the outcome of πi
is not used as input of πi+1 (i.e. if ai+1,i+2 = 0).

Proposition 4 (π-inverse-reduction). Consider a matrix A with (a11, a12) =
(1, 0). Consider the matrix A′ obtained from A by swapping (a21, a31, a41) and
(a23, a33, a43). Then, the compression functions FA and FA′ are equivalent. In-
tuitively, this reduction corresponds to replacing π1 by π−11 . Using Prop. 1 and
Prop. 3 on i = 1, the same reduction holds for π2.

Proof (Proof of Props. 1-4). Let FA and FA′ be two compression functions de-
fined as in either of the propositions. For simplicity, in case of Prop. 2 we only
consider k = 2 (so a12 = 0, a22 = 1 and c2 = 0), for Prop. 3 we only consider
i = 1 (so a23 = 0). By construction, the compression functions FA and FA′ satisfy
the following properties:

Fπ1,π2,π3

A (x1, x2) =


Fπ1,π2,π3

A′ (x2, x1) for Prop. 1,

Fπ1,π2,π3

A′ (x1, x2 ⊕ c0x1 ⊕ c1π1(a11x1)) for Prop. 2,

Fπ2,π1,π3

A′ (x1, x2) for Prop. 3,

F
π−1
1 ,π2,π3

A′ (π1(x1), x2) for Prop. 4.

(4)

We need to provide a bi-directional collision and preimage security reduction.
For conciseness, we will provide only the collision security reduction; the case
of preimage resistance is similar and is therefore omitted. Let A be a collision

finding adversary for the compression function FA, that on input of π1, π2, π3
$←

Pn, outputs two tuples (x1, x2), (x′1, x
′
2) such that Fπi

A (x1, x2) = Fπi

A (x′1, x
′
2). We

construct a collision finding adversary A′ for FA′ that uses A as a subroutine and

on input of π′1, π
′
2, π
′
3

$← Pn outputs a collision for F
π′i
A′ . Adversary A′ operates

as follows:

1. In Props. 1 and 2, the adversary A′ sends (π1, π2, π3)← (π′1, π
′
2, π
′
3) to A. In

Prop. 3, the adversary A′ sends (π1, π2, π3) ← (π′2, π
′
1, π
′
3) to A. In Prop. 4,

the adversary A′ sends (π1, π2, π3)← ((π′1)−1, π′2, π
′
3) to A;

2. A outputs two tuples (x1, x2), (x′1, x
′
2) such that Fπi

A (x1, x2) = Fπi

A (x′1, x
′
2);

3. In Prop. 1, A′ outputs collision (x2, x1) and (x′2, x
′
1). In Prop. 2, A′ outputs

(x1, x2 ⊕ c0x1 ⊕ c1π1(a11x1)) and (x′1, x
′
2 ⊕ c0x′1 ⊕ c1π1(a11x

′
1)). In Prop. 3,

A′ outputs (x1, x2) and (x′1, x
′
2). In Prop. 4, A′ outputs ((π′1)−1(x1), x2) and

((π′1)−1(x′1), x′2).

Notice that in step one, (π1, π2, π3) are clearly randomly and independently
distributed as (π′1, π

′
2, π
′
3) are, and therefore A can output (x1, x2), (x′1, x

′
2) such

that Fπ1,π2,π3

A (x1, x2) = Fπ1,π2,π3

A (x′1, x
′
2) with probability Advcol

FA
(A). For FA′ of

Prop. 3, these tuples indeed render a collision as given in step 3:

F
π′1,π

′
2,π
′
3

A′ (x1, x2) = F
π′2,π

′
1,π
′
3

A (x1, x2) by (4),

= F
π′2,π

′
1,π
′
3

A (x′1, x
′
2) by collision for FA,

= F
π′1,π

′
2,π
′
3

A′ (x′1, x
′
2) by (4).

The same argument applies to the other propositions. In any case, A′ needs at
most four queries more than A, and thus we obtain Advcol

FA
(q) ≤ Advcol

FA′
(q+ 4).

The reductions in the other direction (from FA′ to FA) are identical due to
symmetry. ut

Except for Prop. 4, the reductions also hold in the single-permutation setting.
We remark that these reductions are not only restricted to binary matrices, but
apply to general matrices A. In particular, the independence criterion of [10]
can be derived using the given reductions. Also, we note that the reductions can
easily be represented by linear matrix operations.

4 Main Result for Multi-Permutation Setting

We classify the set of permutation-based compression functions of the form (3)
that achieve optimal collision resistance. Theorem 1 shows that the set of (asymp-
totically) secure functions is fully covered by four equivalence classes; for any
other compression function collisions can be found faster than the birthday
bound. One of these four classes – defined by FA2

below – provides optimal
(asymptotic) 22n/3 preimage security, for the other three classes preimages can
be found significantly faster.

Theorem 1. Consider the multi-permutation setting. Let FA be any compres-
sion function defined by a binary matrix A of the form (2). Let FAk

for k =

1, 2, 3, 4 be the compression functions defined by matrices

A1 =


1 0 0 0 0
0 1 0 0 0
1 1 1 0 0
0 1 0 1 1

 , A2 =


1 0 0 0 0
0 1 0 0 0
1 1 1 0 0
1 0 1 1 1

 ,

A3 =


1 0 0 0 0
0 1 0 0 0
1 1 1 1 0
1 0 1 0 1

 , A4 =


1 0 0 0 0
0 1 0 0 0
1 1 1 1 0
1 1 1 0 1

 .

(5)

Let ε > 0.

(i) If FA is equivalent to FAk
for k ∈ {1, 2, 3, 4}, it satisfies limn→∞

Advcol
FA

(2n/2(1−ε)) = 0. Otherwise, it satisfies Advcol
FA

(q) = Ω(q5/22n);

(ii) If FA is equivalent to FA2 , it satisfies limn→∞Advepre
FA

(22n/3(1−ε)) = 0;

(iii) If FA is equivalent to FAk
for k ∈ {1, 3, 4}, it satisfies Advepre

FA
(q) =

Θ(q2/2n).

In other words, a compression function offers optimal collision resistance if and
only if it is equivalent to either of FA1

,FA2
,FA3

,FA4
, and additionally achieves

optimal preimage resistance (with respect to the bounds of [11]) if and only if
it is equivalent to FA2 .

In order to prove Thm. 1, more specifically part (i) for k = 1, 2, 4 and part (ii),
we pose the following conjecture. This conjecture relates to the area of extremal
graph theory and is of independent interest. In particular, it can be shown to
be similar to (but more complex than) a longstanding problem of Zarankiewicz
from 1951 [2, Ch. 6.2].

Conjecture 1. Let q ≤ 2n, and let Z be a set of q elements taken uniformly at
random from {0, 1}n. Let β denote the maximum number of tuples (x1, x2, z) ∈
X1×X2×Z such that x1⊕x2 = z, where X1, X2 are any two subsets of {0, 1}n
of size q. Formally:

β := max
X1,X2⊆{0,1}n
|X1|=|X2|=q

∣∣{(x1, x2, z) ∈ X1 ×X2 × Z | x1 ⊕ x2 = z}
∣∣ . (6)

There exists a constant d1 such that Pr (β > d1q log q) → 0 for n → ∞ and
q < 2n/2. Similarly, there exists a constant d2 such that Pr

(
β > d2q

3/2
)
→ 0

for n→∞ and q < 22n/3.

The first bound is used in the proof Thm. 1(i) for k = 1, 2, 4, and the second
bound in the proof Thm. 1(ii). A detailed heuristic for Conj. 1 is given in [6],
together with a comparison with Zarankiewicz’s conjecture, but we leave a full
proof of Conj. 1 as an open problem.

4.1 Proof of Theorem 1

The proof of Thm. 1 is structured as follows. Firstly, in Lem. 1 we show that
any compression function FA can be reduced either to an invalid compression
function or to a compression function FA′ defined by a matrix A′ with first
two rows 10000, 01000. By construction (see Sect. 3), the security properties of
one compression function are valid for the whole equivalence class. Secondly,
in Lem. 2 several collision attacks are described that invalidate the security
of each of the remaining compression functions, except for the classes defined
by FAk

(k ∈ {1, 2, 3, 4}) for Ak as in (5). Thirdly, the collision and preimage
resistance of the remaining four compression functions are analyzed in Lem. 3,
which completes the proof of Thm. 1.

Lemma 1. Any compression function FA, for valid A, is equivalent to a com-
pression function FA′ , where either A′ is invalid or the first two rows of A′ equal
10000, 01000.

Proof. The proof is constructive. Several reductions are used, but for ease of
notation apostrophes are omitted. Let FA be a compression function defined by
some valid matrix A. As A is valid, we have a11 + a12 ≥ 1. If a11 + a12 = 2, we
can apply Prop. 2 on c0 = 1 to obtain a11 + a12 = 1. Now, by Prop. 1 we can
assume that (a11, a12) = (1, 0).

Considering the second row of A, we distinguish between a22 = 1 and
a22 = 0. In the former case, a XOR-reduction (Prop. 2) on (c0, c1) = (a21, a23)
reduces the scheme to the required form. In the latter case, where a22 = 0,
we proceed as follows. If a32 = 0, A is equivalent to an invalid matrix. Oth-
erwise, by applying Prop. 2 with (c0, c1, c2) = (a31, a33, a34) we obtain that
FA is equivalent to a compression function FA′ , for some matrix A′ with rows
(10000, a′210a′2300, 01000, a′41a

′
42a
′
43a
′
44a
′
45). The result is now obtained by swap-

ping π2 and π3 (Prop. 3 for i = 2). ut

As a direct consequence of Lem. 1, it suffices to consider compression functions
FA, where

A =


1 0 0 0 0
0 1 0 0 0
a31 a32 a33 a34 0
a41 a42 a43 a44 1

 (7)

for some binary values a31, . . . , a44. Notice that a45 = 1 because of the validity
of the matrix. We describe a couple of collision attacks that apply to compres-
sion functions of this form. We note that similar results also hold for preimage
resistance.

Lemma 2. Let FA be a compression function defined by a valid matrix A of the
form (7).

(i) If A satisfies (a31 + a33)(a32 + a34) = 0, then Advcol
FA

(q) = Ω(q4/2n);

(ii) If A satisfies
∨4
j=1 a3j = a4j = 0, then Advcol

FA
(q) = Ω(q3/2n);

(iii) If A satisfies
∧2
j=1 a3ja4,j+2 6= a3,j+2a4j, then Advcol

FA
(q) = Ω(q3/2n);

(iv) If A satisfies a41 + a42 + a43 + a44 = 1, then Advcol
FA

(q) = Ω(q5/22n).

For clarity, the proofs of results (i), (ii), (iii) and (iv) will be given separately.

Proof (Proof of Lem. 2(i)). Without loss of generality, we assume a32 + a34 =

0, i.e. a32 = a34 = 0. Hence, we consider matrices A with
(a31 a32 a33 a34
a41 a42 a43 a44

)
=(a31 0 a33 0

a41 a42 a43 1

)
, where a31 + a33 ≥ 1, by validity of A. This matrix defines the

compression function:

FA(x1, x2) = a41x1 ⊕ a42x2 ⊕ a43π1(x1)⊕ π2(x2)⊕ π3(a31x1 ⊕ a33π1(x1)) .

Define the functions f1(x) = a41x⊕ a43π1(x)⊕π3(a31x⊕ a33π1(x)) and f2(x) =
a42x ⊕ π2(x). Notice that FA(x1, x2) = f1(x1) ⊕ f2(x2). A collision-finding ad-
versary A for FA proceeds as follows. He sets up two lists of q random elements

X1 := {x(1)1 , . . . , x
(q)
1 } and X2 := {x(1)2 , . . . , x

(q)
2 }, and computes the correspond-

ing values f1(x
(k)
1) and f2(x

(k)
2) (for k = 1, . . . , q). Thus, in total A makes

q queries to each of his random oracles. Given one of the
(
q
2

)2
combinations

x1, x
′
1 ∈ X1, x2, x

′
2 ∈ X2, this combination yields a collision for FA with proba-

bility Θ(2−n). Concluding, Advcol
FA

(q) = Ω(q4/2n). ut

Proof (Proof of Lem. 2(ii)). For the cases j ∈ {3, 4} as explained in Sect. 2.3
(these cases are in fact redundant due to the validity of A), collisions can be found
in at most 2n/3 queries due to Stam’s bound [13,14]. We consider a matrix A
with a32 = a42 = 0 (the case j = 2), a similar analysis holds for j = 1. Note that
FA satisfies FA(x1, x2) = FA′(x1, π2(x2)), where A′ has third and fourth rows
(a31a34a3300, a41a44a4301). The compression function FA′ satisfies the condition
of this lemma for j = 4, and invertibility of π2 guarantees a collision for FA in
the same amount of queries plus 2. We note that the result also follows from
Prop. 4, but as we will use Lem. 2(ii) in the single-permutation setting as well,
we here consider a more robust reduction. ut

Proof (Proof of Lem. 2(iii)). The idea of the attack is to focus on collisions
(x1, x2) 6= (x′1, x

′
2) for which the input to the third permutation π3 is the same.

We first consider the case of matrices A with
(a31 a32 a33 a34
a41 a42 a43 a44

)
=
(1 1 0 0
a41 a42 1 1

)
, the

general case is discussed afterwards. The matrix defines compression function

FA(x1, x2) = a41x1 ⊕ a42x2 ⊕ π1(x1)⊕ π2(x2)⊕ π3(x1 ⊕ x2) .

We construct an adversary A that aims at finding a collision (x1, x2) 6= (x′1, x
′
2)

such that

x1 ⊕ x2 = x′1 ⊕ x′2 , (8a)

a41x1 ⊕ a42x2 ⊕ π1(x1)⊕ π2(x2) = a41x
′
1 ⊕ a42x′2 ⊕ π1(x′1)⊕ π2(x′2) . (8b)

The adversary sets up two lists of q = 2α elements X1 := {x(1)1 , . . . , x
(q)
1 } and

X2 := {x(1)2 , . . . , x
(q)
2 }, where x

(k)
1 = x

(k)
2 = 0n−α‖〈k − 1〉α for k = 1, . . . , q.

He computes the corresponding values π1(x
(k)
1) and π2(x

(k)
2) (for k = 1, . . . , q).

Fix any x1, x2, x
′
1 such that x1 6= x′1. Then, there is exactly one x′2 such that

(8a) is satisfied. For any of these q
(
q
2

)
options, (8b) is satisfied with probability

Θ(2−n). For any of such succeeding tuples, the adversary additionally queries
π3(x1 ⊕ x2) = π3(x′1 ⊕ x′2) in order to get a collision. Concluding, Advcol

FA
(q) =

Ω(q3/2n).
The described attack relies on the key property that the set of equations(
a31 a32 a33 a34
a41 a42 a43 a44

)
(x1 ⊕ x′1, x2 ⊕ x′2, π1(x1)⊕ π1(x′1), π2(x2)⊕ π2(x′2))> = 0

contains an equation in which x1, x2, x
′
1, x
′
2 occur exactly once. By the require-

ment of A,
(a31 a32 a33 a34
a41 a42 a43 a44

)
contains at least two zeroes. If two zeroes are located

in the same row, this key property is satisfied and the attack succeeds. On the
other hand, if both rows contain exactly one zero, one can XOR the first equa-
tion to the second one to return to the first case. ut

Proof (Proof of Lem. 2(iv)). Without loss of generality, we assume a41 = 1. By
Lem. 2(ii), we can consider a32 = a33 = a34 = 1. The matrix defines compression
function

FA(x1, x2) = x1 ⊕ π3(a31x1 ⊕ x2 ⊕ π1(x1)⊕ π2(x2)) .

We construct a collision adversary A for FA. The adversary sets up a list of

q = 2α random elements X2 := {x(1)2 , . . . , x
(q)
2 }, and computes the corresponding

values y
(k)
2 = π2(x

(k)
2) (for k = 1, . . . , q). Additionally, the adversary sets up two

lists X1 := {x(1)1 , . . . , x
(q)
1 } and Y3 := {y(1)3 , . . . , y

(q)
3 }, where x

(k)
1 = y

(k)
3 =

0n−α‖〈k − 1〉α for k = 1, . . . , q. He computes the corresponding values y
(k)
1 =

π1(x
(k)
1) and x

(k)
3 = π−13 (y

(k)
3) (for k = 1, . . . , q). Fix any x1, y3, x

′
1 such that

x1 6= x′1. Then, there is exactly one y′3 such that x1⊕y3 = x′1⊕y′3. The adversary
obtains a collision for FA if X2 contains two elements x2, x

′
2 such that x2⊕ y2 =

a31x1 ⊕ y1 ⊕ x3 and x′2 ⊕ y′2 = a31x
′
1 ⊕ y′1 ⊕ x′3. Two such x2, x

′
2 exist with

probability Ω(
(
q
2

)
/22n). As the adversary needs to succeed for only one of the

q
(
q
2

)
choices of x1, y3, x

′
1, he finds a collision for FA with probability Ω(q5/22n).

ut

Next, the compression functions evolved from Lem. 1 are analyzed with re-
spect to the attacks of Lem. 2. Before proceeding, we remark that for the multi-
permutation setting, the following reductions apply to the compression function
classes evolved from Lem. 1. We refer to these reductions as the “M- and N-
reduction”.

M-reduction: Applying Prop. 1, and Prop. 3 on i = 1 corresponds to mutually

swapping
(a31
a41

)
↔
(a32
a42

)
and

(a33
a43

)
↔
(a34
a44

)
;

N-reduction: Prop. 4 reduces to swapping
(a3j
a4j

)
↔
(a3,j+2

a4,j+2

)
for j ∈ {1, 2}.

We now continue evaluating the matrices A of the form (7), and consider the
different values of ‖a3,∗‖.

‖a3,∗‖ = 0. The matrix is invalid and excluded by definition;
‖a3,∗‖ = 1. The matrix is vulnerable to the attack of Lem. 2(i);
‖a3,∗‖ = 2. The matrix contradicts either one of the requirements of Lem. 2.

Technically, if (a31 + a33)(a32 + a34) = 0 it violates Lem. 2(i), and otherwise
the values a41, . . . , a44 will violate either the requirement of Lem. 2(ii) or of
Lem. 2(iii);

‖a3,∗‖ = 3. Due to M- and N-reductions, it suffices to consider a31a32a33a34 =
1110, and consequently a44 = 1 by Lem. 2(ii). Lemma 2(iii) now states that
we require a41 = a43, which gives the following four options for a41a42a43:
000, 010, 101 and 111. The first one is vulnerable to the attack of Lem. 2(iv),
and the fourth matrix is equivalent to the second (by consequently applying
Prop. 2 on (c0, c1) = (1, 1), and Prop. 3 for i = 2). We are left with A1 and
A2 of (5);

‖a3,∗‖ = 4. Due to M- and N-reductions, it suffices to consider a41a42a43a44 ∈
{0000, 1000, 1010, 1100, 1110, 1111}. The cases 1000 and 1100 are vulnerable
to the attacks of Lems. 2(iv) and 2(iii), respectively. For the cases 0000
and 1111, finding collisions is as hard as finding collisions for F(x1, x2) =
x1 ⊕ x2 ⊕ π1(x1) ⊕ π2(x2) (for which collisions are found in at most 2n/3

queries, due to Stam’s bound [13,14]). We are left with A3 and A4 of (5).

It remains to analyze collision and preimage security of the four compression
functions defined by the matrices of (5). This is covered by following lemma,
which is proven in [6]. Particularly, Lem. 3 completes the proof of Thm. 1.

Lemma 3. Let ε > 0. Then:

(i) limn→∞Advcol
FAk

(2n/2(1−ε)) = 0 for k = 1, 2, 3, 4;

(ii) limn→∞Advepre
FA2

(22n/3(1−ε)) = 0, and Advepre
FAk

(q) = Θ(q2/2n) for k =

1, 3, 4.

5 Main Result for Single-Permutation Setting

In a similar fashion as in Sect. 4, we analyze the security of compression functions
based on three calls to the same permutations, the single-permutation setting.
It turns out that there does not exist any compression function of the form (3)
that achieves optimal collision resistance. We note that this result does not rely
on Conj. 1. In App. A we show how the results of this section can be generalized
to cover any single-permutation compression function where additional affine
transformations on the permutation inputs are taken into account.

Theorem 2. Consider the single-permutation setting, where π1 = π2 = π3 =: π.
Any compression function FA defined by a binary matrix A of the form (2)
satisfies Advcol

FA
(q) = Ω(q5/22n).

Proof. The proof of Thm. 2 is similar to the proof of Thm. 1, and we highlight
the differences. Lemmas 1 and 2 still apply, and additionally the M-reduction
also holds in the single-permutation setting. Notice that the N-reduction does not
hold as it incorporates Prop. 4. Similar to before, we will evaluate the matrices
A of the form (7). The case ‖a3,∗‖ ≤ 2 is the same as before.

‖a3,∗‖ = 3. Due to M-reductions, it suffices to consider a31a32a33a34 ∈ {1110,
0111}.
– a31a32a33a34 = 1110. The same analysis as in Sect. 4.1 applies, leaving

the matrices A1 and A2 of (5). In the single-permutation setting, the two
corresponding compression functions satisfy FA1(x1, π(x1)) = π2(x1) and
FA2(x1, x2) = FA2(x1, x1⊕x2⊕π(x1)) for any x1, x2. Collisions can thus
be trivially found;

– a31a32a33a34 = 0111. By Lem. 2(ii), we have a41 = 1. Lemma 2(iii)
now states that we require a42 = a44, which gives the following four
options for a42a43a44: 000, 010, 101 and 111. The first one is vulnerable
to the attack of Lem. 2(iv), the second, third and fourth matrix satisfy
FA(x1, x1) = x1, FA(x1, x1) = 0 and FA(x1, x1) = π(x1), respectively,
for any x1. Collisions can thus be trivially found;

‖a3,∗‖ = 4. Except for a41a42a43a44 ∈ {1010, 1001, 0110, 0101}, all induced
compression functions satisfy FA(x1, x1) ⊕ π(0) ∈ {0, x1, π(x1)} for any x1,
for which collisions can be trivially found. The cases 1001, 0110 are vul-
nerable to Lem. 2(iii). The remaining two cases, which are equivalent by
M-reduction, allow for trivial collisions as well: the compression function in-
duced by (a41a42a43a44) = (1010) satisfies FA(x1, π

−1(x1 ⊕ π(x1))) = 0 for
any x1 (cf. [10]).

Hence, the analyzed compression functions either allow for trivial collision or are
vulnerable to Lem. 2, therewith allowing for collisions in at most 22n/5 queries.

ut

Concluding, for any compression function FA of the form (3), where the three
permutations are equal to one single permutation π, collisions can be found in
at most 22n/5 queries, hence considerably faster than in 2n/2 queries.

6 Conclusions

We provided a full security classification of 2n-to-n-bit compression functions
that are solely built of XOR-operators and of three permutations. Therewith,
we have analyzed compression functions that are not included in the analysis of
Rogaway and Steinberger [10], but yet are interesting because of their elegance
(they only employ XOR-operators) and efficiency (XOR-operators are slightly
cheaper than finite field multiplications by constants). For any of the 215 com-
pression functions of the described form, we either provide a formal collision and
preimage security proof or a collision attack more efficient than the birthday
bound.

For the multi-permutation setting, where the three permutations are differ-
ent, there are exactly four equivalence classes of functions that allow for optimal
collision resistance, one class of which the compression functions achieve opti-
mal preimage resistance w.r.t. the bounds of [11]. A summary of these results
is given in Table 1. Regarding the absolute number of collision/preimage secure
compression functions, by ways of an extensive computation one finds 96 func-
tions equivalent to FA1

(including the FA1
itself), 48 functions in each of the

classes defined by FA2 and FA4 , and 24 functions equivalent to FA3 . In total,
we have thus proven 216 compression functions optimally collision secure, 48 of
which we have proven optimally preimage secure. A small part of the results for
the multi-permutation setting relies on an extremal graph theory based conjec-
ture, Conj. 1, which we supported by an extensive and detailed heuristic. We
leave the full analysis of Conj. 1 as an open problem.

For the single-permutation setting, where the three permutations are the
same, we show that it is not possible to construct a 2n-to-n-bit compression
function that achieves optimal collision resistance. In light of the amount of
optimally secure compression functions we have found in the multi-permutation
setting, this observation is not as expected. This negative result casts doubts
over the existence of any (larger) permutation-based XOR-based compression
function built on (multiple invocations of) one single permutation. We leave this
question as an open problem.

The results in this work are derived in the permutation setting. Different re-
sults may be obtained if we consider three underlying primitives to be one-way
functions: in particular, the π-inverse-reduction (Prop. 4) and Lem. 2 rely on the
invertibility of these primitives. Further research questions include the applica-
bility of the approach followed in this work to different classes of compression
functions, for instance with larger domain and range, with more permutations
or random functions instead, or defined over different fields.

Acknowledgments. This work has been funded in part by the IAP Program
P6/26 BCRYPT of the Belgian State (Belgian Science Policy), in part by the Eu-
ropean Commission through the ICT program under contract ICT-2007-216676
ECRYPT II, and in part by the Research Council K.U.Leuven: GOA TENSE.
The first author is supported by a Ph.D. Fellowship from the Institute for the
Promotion of Innovation through Science and Technology in Flanders (IWT-
Vlaanderen).

References

1. Black, J., Cochran, M., Shrimpton, T.: On the impossibility of highly-efficient
blockcipher-based hash functions. In: Advances in Cryptology - EUROCRYPT
2005. Lecture Notes in Computer Science, vol. 3494, pp. 526–541. Springer-Verlag,
Berlin (2005)

2. Bollobás, B.: Extremal Graph Theory. Academic Press (1978)
3. Hirose, S.: Some plausible constructions of double-block-length hash functions. In:

Fast Software Encryption ’06. Lecture Notes in Computer Science, vol. 4047, pp.
210–225. Springer-Verlag, Berlin (2006)

4. Lai, X., Massey, J.: Hash function based on block ciphers. In: Advances in Cryptol-
ogy - EUROCRYPT ’92. Lecture Notes in Computer Science, vol. 658, pp. 55–70.
Springer-Verlag, Berlin (1992)

5. Lee, J., Kwon, D.: Security of single-permutation-based compression functions.
Cryptology ePrint Archive, Report 2009/145 (2009)

6. Mennink, B., Preneel, B.: Hash functions based on three permutations: A generic
security analysis. Cryptology ePrint Archive, Report 2011/532 (2011), full version
of this paper

7. Preneel, B., Govaerts, R., Vandewalle, J.: Hash functions based on block ciphers:
A synthetic approach. In: Advances in Cryptology - CRYPTO ’93. Lecture Notes
in Computer Science, vol. 773, pp. 368–378. Springer-Verlag, Berlin (1993)

8. Rabin, M.: Digitalized signatures. In: Foundations of Secure Computation ’78. pp.
155–166. Academic Press, New York (1978)

9. Rogaway, P., Shrimpton, T.: Cryptographic hash-function basics: Definitions, im-
plications, and separations for preimage resistance, second-preimage resistance, and
collision resistance. In: Fast Software Encryption 2004. Lecture Notes in Computer
Science, vol. 3017, pp. 371–388. Springer-Verlag, Berlin (2004)

10. Rogaway, P., Steinberger, J.: Constructing cryptographic hash functions from fixed-
key blockciphers. In: Advances in Cryptology - CRYPTO 2008. Lecture Notes in
Computer Science, vol. 5157, pp. 433–450. Springer-Verlag, Berlin (2008)

11. Rogaway, P., Steinberger, J.: Security/efficiency tradeoffs for permutation-based
hashing. In: Advances in Cryptology - EUROCRYPT 2008. Lecture Notes in Com-
puter Science, vol. 4965, pp. 220–236. Springer-Verlag, Berlin (2008)

12. Shrimpton, T., Stam, M.: Building a collision-resistant compression function from
non-compressing primitives. In: International Colloquium on Automata, Languages
and Programming - ICALP (2) 2008. Lecture Notes in Computer Science, vol. 5126,
pp. 643–654. Springer-Verlag, Berlin (2008)

13. Stam, M.: Beyond uniformity: Better security/efficiency tradeoffs for compression
functions. In: Advances in Cryptology - CRYPTO 2008. Lecture Notes in Computer
Science, vol. 5157, pp. 397–412. Springer-Verlag, Berlin (2008)

14. Steinberger, J.: Stam’s collision resistance conjecture. In: Advances in Cryptology
- EUROCRYPT 2010. Lecture Notes in Computer Science, vol. 6110, pp. 597–615.
Springer-Verlag, Berlin (2010)

A Generalization of Theorem 2

We generalize our findings on the single-permutation setting to cover any func-
tion, where affine transformations on the inputs to the permutations are taken
into account. This generalization is straightforward, but technical and more elab-
orate. For a matrix B = (b1, b2, b3, b4)> with elements in {0, 1}n, we define the
compression function FAB as follows:

FAB(x1, x2) = z , where y1 ← π1(a11x1 ⊕ a12x2 ⊕ b1) ,

y2 ← π2(a21x1 ⊕ a22x2 ⊕ a23y1 ⊕ b2) ,

y3 ← π3(a31x1 ⊕ a32x2 ⊕ a33y1 ⊕ a34y2 ⊕ b3) ,

z ← a41x1 ⊕ a42x2 ⊕ a43y1 ⊕ a44y2 ⊕ a45y3 ⊕ b4 .

(9)

where A is as in Sect. 2.1. We note that for the multi-permutation setting, this
generalization is of no added value, as the permutations are independently dis-
tributed anyway. Adding constants is, however, a customary approach to obtain
“different” permutations from a single one (e.g. πi(x) = π(bi⊕x) for i = 1, 2, 3),
but as we will show, the findings of Thm. 2 also apply to this extended setting.

We reformulate Props. 1-3 to the case of FAB (recall that Prop. 4 did not
apply to the single-permutation setting in the first place). Propositions 1 and
2 apply to any FAB and FA′B′ with B = B′ and Prop. 3 holds for any B and
B′ with (b′i, b

′
i+1) = (bi+1, bi). Given this, the proof of Thm. 2 almost carries

over. Lemmas 1 and 2 apply with straightforward generalization. It remains to
evaluate the matrices A of the form (7) for any B ∈ ({0, 1}n)

4×1
. The case

‖a3,∗‖ ≤ 2 is the same as in the proof of Thm. 2.

‖a3,∗‖ = 3. Due to M-reductions, it suffices to consider a31a32a33a34 ∈ {1110,
0111}.
– a31a32a33a34 = 1110. The same analysis as in Sect. 4.1 applies, leav-

ing the matrices A1 and A2 of (5). In the extended single-permutation
setting, the two corresponding compression functions satisfy FA1B(x1 ⊕
b1, π(x1)⊕b1⊕b3) = π(π(x1)⊕b1⊕b2⊕b3)⊕b1⊕b3⊕b4 and FA2B(x1, x2) =
FA2B(x1, x1 ⊕ x2 ⊕ π(x1 ⊕ b1) ⊕ b2 ⊕ b3) for any x1, x2. Collisions can
thus be trivially found;

– a31a32a33a34 = 0111. By Lem. 2(ii), we have a41 = 1. Lemma 2(iii)
now states that we require a42 = a44, which gives the following four
options for a42a43a44: 000, 010, 101 and 111. The first one is vulnerable
to the attack of Lem. 2(iv), the second, third and fourth matrix satisfy
FAB(x1, π

−1(π(x1 ⊕ b1) ⊕ b2 ⊕ b3) ⊕ b2) = x1 ⊕ b2 ⊕ b3 ⊕ b4, FAB(x1 ⊕
b1, x1⊕ b2) = FAB(x1⊕ b1⊕ b2⊕ b3, x1⊕ b3) and FAB(x1⊕ b1, x1⊕ b2) =
π(x1⊕ b2⊕ b3)⊕ b1⊕ b2⊕ b4, respectively, for any x1. Collisions can thus
be trivially found;

‖a3,∗‖ = 4. Except for a41a42a43a44 ∈ {1010, 1001, 0110, 0101}, all induced
compression functions satisfy FAB(x1⊕b1, x1⊕b2)⊕π(b1⊕b2⊕b3)⊕a41b1⊕
a42b2 ⊕ b4 ∈ {0, x1, π(x1)} for any x1, for which collisions can be trivially
found. The cases 1001, 0110 are vulnerable to Lem. 2(iii). The remaining
two cases, which are equivalent by M-reduction, allow for trivial collisions as
well: the compression function induced by (a41a42a43a44) = (1010) satisfies
FAB(x1, π

−1(x1 ⊕ π(x1 ⊕ b1)⊕ b2 ⊕ b3)⊕ b2) = b2 ⊕ b3 ⊕ b4 for any x1.

Hence, any of the analyzed compression functions either allows for trivial collision
or is vulnerable to Lem. 2, therewith allowing for collisions in at most 22n/5

queries.
Concluding, for any compression function FAB of the generalized form (9),

collisions can be found in at most 22n/5 queries, hence considerably faster than
in 2n/2 queries.

	Hash Functions Based on Three Permutations:A Generic Security Analysis
	Bart Mennink and Bart Preneel

