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Abstract. This paper develops a theory of multi-instance (mi) security
and applies it to provide the first proof-based support for the classical
practice of salting in password-based cryptography. Mi-security comes
into play in settings (like password-based cryptography) where it is com-
putationally feasible to compromise a single instance, and provides a
second line of defense, aiming to ensure (in the case of passwords, via
salting) that the effort to compromise all of some large number m of
instances grows linearly with m. The first challenge is definitions, where
we suggest LORX-security as a good metric for mi security of encryp-
tion and support this claim by showing it implies other natural met-
rics, illustrating in the process that even lifting simple results from the
si setting to the mi one calls for new techniques. Next we provide a
composition-based framework to transfer standard single-instance (si)
security to mi-security with the aid of a key-derivation function. Ana-
lyzing password-based KDFs from the PKCS#5 standard to show that
they meet our indifferentiability-style mi-security definition for KDFs,
we are able to conclude with the first proof that per password salts am-
plify mi-security as hoped in practice. We believe that mi-security is of
interest in other domains and that this work provides the foundation for
its further theoretical development and practical application.

1 Introduction

This paper develops a theory of multi-instance security and applies it to support
practices in password-based cryptography.

Background. Password-based encryption (PBE) in practice is based on the
PKCS#5 (equivalently, RFC 2898) standard [32]. It encrypts a messageM under
a password pw by picking a random s-bit salt sa, deriving a key L← KD(pw‖sa)
and returning C′ ← C‖sa where C←$ E(L,M). Here E is a symmetric encryp-
tion scheme, typically an IND-CPA AES mode of operation, and key-derivation
function (KDF) KD: {0, 1}∗ → {0, 1}n is the c-fold iteration KD = Hc of a
cryptographic hash function H : {0, 1}∗ → {0, 1}n. However, passwords are of-
ten poorly chosen [29], falling within a set D called a “dictionary” that is small
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enough to exhaust. A brute-force attack now recovers the target password pw
(thereby breaking the ind-cpa security of the encryption) using cN hashes where
N = |D| is the size of the dictionary.Increasing c increases this effort, explaining
the role of this iteration count, but c cannot be made too large without adversely
impacting the performance of PBE.

Consider now m users, the i-th with password pwi. If the salt is absent (s =
0), the number of hashes for the brute force attack to recover all m passwords
remains around cN , but if s is large enough that salts are usually distinct, it
rises to mcN , becoming prohibitive for large m. Salting, thus, aims to make the
effort to compromise m target passwords scale linearly in m. (It has no effect on
the security of encryption under any one, particular target password.)

New directions. This practice, in our view, opens a new vista in theoretical
cryptography, namely to look at the multi-instance (mi) security of a scheme. We
would seek metrics of security under which an adversary wins when it breaks all
of m instances but not if it breaks fewer. This means that the mi security could
potentially be much higher than the traditional single-instance (si) security. We
would have security amplification.

Why do this? As the above discussion of password-based cryptography shows,
there are settings where the computational effort t needed to compromise a single
instance is feasible. Rather than give up, we provide a second line of defense.
We limit the scale of the damage, ensuring (in the case of passwords, via the
mechanism of salting) that the computational effort to compromise all of m
instances is (around) tm and thus prohibitive for large m. We can’t prevent the
occasional illness, but we can prevent an epidemic.

We initiate the study of multi-instance security with a foundational treatment
in two parts. The first part is agnostic to whether the setting is password-based
or not, providing definitions for different kinds of mi-security of encryption and
establishing relations between them, concluding with the message that what we
call LORX-security is a good choice. The second part of our treatment focuses
on password-based cryptography, providing a modular framework that proves
mi-security of password-based primitives by viewing them as obtained by the
composition of a mi-secure KDF with a si-secure primitive, and yielding in par-
ticular the first proof that salting works as expected to increase multi-instance
security under a strong and formal metric for the latter.

Multi-instance security turns out to be challenging both definitionally (pro-
viding metrics where the adversary wins on breaking all instances but not fewer)
and technically (reductions need to preserve tiny advantages and standard hy-
brid arguments no longer work). It also connects in interesting ways to security
amplification via direct products and xor lemmas, eg. [37, 16, 19, 30, 13, 27, 34,
28, 35]. (We import some of their methods and export some novel viewpoints.)
We believe there are many fruitful directions for future work, both theoretical
(pursuing the connection with security amplification) and applied (mi security
could be valuable in public-key cryptography where steadily improving attacks
are making current security parameters look uncomfortably close to the edge for
single-instance security). Let us now look at all this in some more detail.
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LORX. We consider a setting with m independent target keys K1, . . . ,Km.
(They may, but need not, be passwords.) In order to show that mi-security
grows with m we want a metric (definition) where the adversary wins if it breaks
all m instances of the encryption but does not win if it breaks strictly fewer. If
“breaking” is interpreted as recovery of the key then such a metric is easily given:
it is the probability that the adversary recovers all m target keys. We refer to
this as the UKU (Universal Key Unrecoverability) metric. But we know very
well that key-recovery is a weak metric of encryption security. We want instead
a mi analog of ind-cpa. The first thing that might come to mind is multi-user
security [3, 2]. But in the latter the adversary wins (gets an advantage of one)
even if it breaks just one instance so the mu-advantage of an adversary can never
be less than its si (ind-cpa) advantage. We, in contrast, cannot “give up” once
a single instance is broken. Something radically different is needed.

Our answer is LORX (left-or-right xor indistinguishability). Our game picks
m independent challenge bits b1, . . . , bm and gives the adversary an oracle Enc(·,
·, ·) which given i,M0,M1 returns an encryption of Mbi under Ki. The adversary
outputs a bit b′ and its advantage is 2 Pr[b′ = b1 ⊕ · · · ⊕ bm]− 1.4 Why xor? Its
well-known “sensitivity” means that even if the adversary figures out m − 1 of
the challenge bits, it will have low advantage unless it also figures out the last.
This intuitive and historical support is strengthened by the relations, discussed
below, that show that LORX implies security under other natural metrics.

Relations. The novelty of multi-instance security prompts us to step back
and consider a broad choice of definitions. Besides UKU and LORX, we define
RORX (real-or-random xor indistinguishability, a mi-adaptation of the si ROR
notion of [4]) and a natural AND metric where the challenge bits b1, . . . , bm and
oracle Enc(·, ·, ·) are as in the LORX game but the adversary output is a vector
(b′1, . . . , b

′
m) and its advantage is Pr[(b′1, . . . , b

′
m) = (b1, . . . , bm)] − 2−m. The

relations we provide, summarized in Figure 1, show that LORX emerges as the
best choice because it implies all the others with tight reductions. Beyond that,
they illustrate that the mi terrain differs from the si one in perhaps surprising
ways, both in terms of relations and the techniques needed to establish them.

Thus, in the si setting, LOR and ROR are easily shown equivalent up to a
factor 2 in the advantages [4]. It continues to be true that LORX easily implies
RORX but the hybrid argument used to prove that ROR implies LOR [4] does
not easily extend to the mi setting and the proof that RORX implies LORX
is not only more involved but incurs a factor 2m loss.5 In the si setting, both

4 This is a simplification of our actual definition, which allows the adversary to adap-
tively corrupt instances to reveal the underlying keys and challenge bits. This ca-
pability means that LORX-security implies threshold security where the adversary
wins if it predicts the xor of the challenge bits of some subset of the instances of its
choice. See Section 2 for further justification for this feature of the model.

5 This (exponential) 2m factor loss is a natural consequence of the factor of 2 loss in
the si case, our bound is tight, and the loss in applications is usually small because
advantages are already exponentially vanishing in m. Nonetheless it is not always
negligible and makes LORX preferable to RORX.
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Fig. 1. Notions of multi-instance security for encryption and their rela-

tions. LORX (left-or-right xor indistinguishability) emerges as the strongest, tightly

implying RORX (real-or-random xor indistinguishability) and UKU (universal key-

unrecoverability). The dashed line indicates that under some (mild, usually met) con-

ditions LORX also implies AND. RORX implies LORX and UKU but with a 2m loss

in advantage where m is the number of instances, making LORX a better choice.

LOR and ROR are easily shown to imply KU (key unrecoverability). Showing
LORX implies UKU is more involved, needing a boosting argument to ensure
preservation of exponentially-vanishing advantages. This reduction is tight but,
interestingly, the reduction showing RORX implies UKU is not, incurring a 2m-
factor loss, again indicating that LORX is a better choice. We show that LORX
usually implies AND by exploiting a direct product theorem by Unger [35], evi-
dencing the connections with this area. Another natural metric of mi-security is
a threshold one, but our incorporation of corruptions means that LORX implies
security under this metric.

Mi-security of PBE. Under the LORX metric, we prove that the advantage
ǫ′ obtained by a time t adversary against m instances of the above PBE scheme
E ′ is at most ǫ + (q/mcN)m (we are dropping negligible terms) where q is the
number of adversary queries to RO H and ǫ is the advantage of a time t ind-cpa
(si) adversary against E . This is the desired result saying that salting works to
provide a second line of defense under a strong mi security metric, amplifying
security linearly in the number of instances.

Framework. This result for PBE is established in a modular (rather than ad
hoc) way, via a framework that yields corresponding results for any password-
based primitive. This means not only ones like password-based message authen-
tication (also covered in PKCS#5) or password-based authenticated encryption
(WinZip) but public-key primitives like password-based digital signatures, where
the signing key is derived from a password. We view a password-based scheme for
a goal as derived by composing a key-derivation function (KDF) with a standard
(si) scheme for the same goal. The framework then has the following components.
(1) We provide a definition of mi-security for KDFs. (2) We provide composition
theorems, showing that composing a mi-secure KDF with a si-secure scheme for
a goal results in a mi-secure scheme for that goal. (We will illustrate this for
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the case of encryption but similar results may be shown for other primitives.)
(3) We analyze the iterated hash KDF of PKCS#5 and establish its mi security.

The statements above are qualitative. The quantitative security aspect is
crucial. The definition of mi-security of KDFs must permit showing mi-security
much higher than si-security. The reductions in the composition theorems must
preserve exponentially vanishing mi-advantages. And the analysis of the PKCS#5
KDF must prove that the adversary advantage in q queries to the RO H grows
as (q/cmN)m, not merely q/cN . These quantitative constraints represent im-
portant technical challenges.

Mi-security of KDFs. We expand on item (1) above. The definition of mi-
security we provide for KDFs is a simulation-based one inspired by the indiffer-
entiability framework [26, 11]. The attacker must distinguish between the real
world and an ideal counterpart. In both, target passwords pw1, . . . , pwm and
salts sa1, . . . , sam are randomly chosen. In the real world, the adversary gets
input (pw1, sa1,KD(pw1‖sa1)), . . . , (pwm, sam,KD(pwm‖sa1)) and also gets an
oracle for the RO hash function H used by KD. In the ideal world, the input
is (pw1, sa1, L1), . . . , (pwm, sam, Lm) where the keys L1, . . . , Lm are randomly
chosen, and the oracle is a simulator. The simulator itself has access to a Test
oracle that will take a guess for a password and tell the simulator whether or
not it matches one of the target passwords. Crucially, we require that when the
number of queries made by the adversary to the simulator is q, the number of
queries made by the simulator to its Test oracle is only q/c. This restriction is
critical to our proof of security amplification and a source of challenges therein.

Related work. Previous work which aimed at providing proof-based assur-
ances for password-based key-derivation has focused on the single-instance case
and the role of iteration as represented by the iteration count c. Our work focuses
on the multi-instance case and the roles of both salting and iteration.

The UNIX password hashing algorithm maps a password pw to Ec
pw(0) where

E is a blockcipher and 0 is a constant. Luby and Rackoff [24] show this is a one-
way function when c = 1 and pw is a random blockcipher key. (So their result
does not really cover passwords.) Wagner and Goldberg [36] treat the more
general case of arbitrary c and keys that are passwords, but the goal continues
to be to establish one-wayness and no security amplification (meaning increase in
security with c) is shown. Boyen [8, 9] suggests various ways to enhance security,
including letting users pick their own iteration counts.

Yao and Yin [38] give a natural pseudorandomness definition of a KDF in
which the attacker gets (K, sa) where K is either Hc(pw‖sa) or a random string
of the same length and must determine which. Modeling H as a random oracle
(RO) [7] to which the adversary makes q queries, they claim to prove that the
adversary’s advantage is at most q/cN plus a negligible term. This would es-
tablish single-instance security amplification by showing that iteration works as
expected to increase attacker effort.6 However, even though salts are considered,

6 Unfortunately, we point in [6] to a bug in the proof of [38, Lemma 2.2] and explain
why the bound claimed by [38, Theorem 1] is wrong. Beyond this, the proof makes
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this does not consider multi-instance security let alone establish multi-instance
security amplification, and their definition of KDF security does not adapt to
allow this. (We use, as indicated above, an indifferentiability-style definition.) In
fact the KDF definition of [38] is not even sufficient to establish si security of
password-based encryption in the case the latter, as specified in PKCS#5, picks
a fresh salt for each message encrypted. Kelsey, Schneier, Hall and Wagner [21]
look into the time for password-recovery attacks for different choices of KDFs.

KDFs are for use in non-interactive settings like encryption with WinZip.
The issues and questions we consider do not arise with password authenticated
key exchange (PAKE) [5, 10, 14] where definitions already guarantee that the
session key may be safely used for encryption. There are no salts and no ampli-
fication issues. Abadi and Warinschi [1] provide a si, key-recovery definition for
PBE security and connect this with symbolic notions. They do not consider mi
security. Dodis, Gennaro, H̊astad, Krawczyk and Rabin [12] treat statistically-
secure key derivation using hash functions and block ciphers. As discussed in-
depth by Kracwzyk [23], these results and techniques aren’t useful for password-
based KDFs because passwords aren’t large enough, let alone have the sufficient
amount of min-entropy. Krawczyk [23] also notes that his two-stage KDF ap-
proach could be used to build password-based KDFs by replacing the extraction
stage with a key-stretching operation. Our general framework may be used to
analyze the mi-security of this construction.

Work on direct product theorems and XOR lemmas (eg. [37, 15, 18, 13, 27])
has considered the problem of breaking multiple instances of a cryptographic
primitive, in general as an intermediate step to amplifying security in the single-
instance setting. Mi-Xor-security is used in this way in [13, 27].

2 The Multi-Instance Terrain

This section defines metrics of mi-secure encryption and explores the relations
between them to establish the notions and results summarized in Figure 1. Our
treatment intends to show that the mi terrain is different from the si one in
fundamental ways, leading to new definitions, challenges and connections.

Syntax. Recall that a symmetric encryption scheme is a triple of algorithms
SE = (K, E ,D). The key generation algorithm K outputs a key. The encryp-
tion algorithm E takes a key K and a message M and outputs a ciphertext
C←$ E(K,M). The deterministic decryption algorithm D takes K and a cipher-
text C to return either a string or ⊥. Correctness requires that D(K, E(K,M)) =
M for all M with probability 1 over K←$K and the coins of E .

To illustrate the issues and choices in defining mi security, we start with key
unrecoverability which is simple because it is underlain by a computational game
and its mi counterpart is easily and uncontentiously defined. When we move to

some rather large and not fully justified jumps. The special case m = 1 of our
treatment will fill these gaps and recover the main claim of [38].
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main UKUA
SE,m

K[1], . . . ,K[m]←$K; K′←$AEnc

Ret K′ = K

proc. Enc(i,M)

Ret E(K[i],M)

proc. Cor(i)

Ret K[i]

main LORXA
SE,m

K[1], . . . ,K[m]←$K

b←$ {0, 1}m

b′←$AEnc

Ret (b′ = ⊕ib[i])

main ANDA
SE,m

K[1], . . . ,K[m]←$K

b←$ {0, 1}m

b′←$AEnc

Ret (b′ = b)

proc. Enc(i,M0,M1)

If |M0| 6= |M1|

then Ret ⊥

C←$ E(K[i],Mb[i])

Ret C

proc. Cor(i)

Ret (K[i],b[i])

main RORXA
SE,m

K[1], . . . ,K[m]←$ ({0, 1}k)m

b←$ {0, 1}m; b′←$AEnc

Ret (b′ = ⊕ib[i])

proc. Enc(i,M)

C1←$ E(K[i],M)

M0←$ {0, 1}|M|; C0←$ E(K[i],M0)

Ret Cb[i]

proc. Cor(i)

Ret (K[i],b[i])

Fig. 2. Multi instance security notions for encryption.

stronger notions underlain by decisional games, definitions will get more difficult
and more contentious as more choices will emerge.

UKU. Single-instance key unrecoverability is formalized via the game KUSE

where a target key K←$K is initially sampled, and the adversary A is given an
oracle Enc which, on input M , returns E(K,M). Finally, the adversary is asked
to output a guess K ′ for the key, and the game returns true if K = K ′, and
false otherwise. An mi version of the game, UKUSE,m, is depicted in Figure 2.
It picks an m-vector K of target keys and the oracle Enc now takes i,M to
return E(K[i],M). The Cor oracle gives the adversary the capability of cor-
rupting a user to obtain its target key. The adversary’s output guess is also a
m-vector K′ and the game returns the boolean (K = K′), meaning the adver-
sary wins only if it recovers all the target keys. (The “U” in “UKU” reflects
this, standing for “Universal.”) The advantage of adversary A is Advuku

SE,m(A) =

Pr[UKUA
SE,m ⇒ true]. Naturally, this advantage depends on the adversary’s re-

sources. (It could be 1 if the adversary corrupts all instances.) We say that A
is a (t,q, qc)-adversary if it runs in time t and makes at most q[i] encryption
queries of the form Enc(i, ·) and makes at most qc corruption queries. Then
we let Advuku

SE,m(t,q, qc) = maxA Advuku
SE,m(A) where the maximum is over all

(t,q, qc)-adversaries.

AND. Single-instance indistinguishabilty for symmetric encryption is usually
formalized via left-or-right security [4]. A random bit b and key K←$K are
chosen, and an adversary A is given access to an oracle Enc that given equal-
length messagesM0,M1 returns E(K,Mb). The adversary outputs a bit b

′ and its
advantage is 2 Pr[b = b′]− 1. There are several ways one might consider creating
an mi analog. Let us first consider a natural AND-based metric based on game
ANDSE,m of Figure 2. It picks at random a vector b←$ {0, 1}m of challenge bits
as well as a vector K[1], . . . ,K[m] of keys, and the adversary is given access to
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oracle Enc that on input i,M0,M1, where |M0| = |M1|, returns E(K[i],Mb[i]).
Additionally, the corruption oracle Cor takes i and returns the pair (K[i],b[i]).
The adversary finally outputs a bit vector b′, and wins if and only if b = b′.
(It is equivalent to test that b[i] = b′[i] for all uncorrupted i.) The advantage
of adversary A is Advand

SE,m(A) = Pr[ANDA
SE,m ⇒ true] − 2−m. We say that A

is a (t,q, qc)-adversary if it runs in time t and makes at most q[i] encryption
queries of the form Enc(i, ·, ·) and makes at most qc corruption queries. Then
we let Advand

SE,m(t,q, qc) = maxA Advand
SE,m(A) where the maximum is over all

(t,q, qc)-adversaries.
This metric has many points in its favor. By (later) showing that security

under it is implied by security under our preferred LORX metric, we automat-
ically garner whatever value it offers. But the AND metric also has weaknesses
that in our view make it inadequate as the primary choice. Namely, it does not
capture the hardness of breaking all the uncorrupted instances. For example, an
adversary that corrupts instances 1, . . . ,m − 1 to get b[1], . . . ,b[m − 1], makes
a random guess g for b[m] and returns (b[1], . . . ,b[m − 1], g) has the high ad-
vantage 0.5− 2−m without breaking all instances. We prefer a metric where this
adversary’s advantage is close to 0.

LORX. To overcome the above issue with the AND advantage, we introduce
the XOR advantage measure and use it to define LORX. Game LORXSE,m of
Figure 2 makes its initial choices the same way as game ANDSE,m and provides
the adversary with the same oracles. However, rather than a vector, the adversary
must output a bit b′, and wins if this equals b[1]⊕ · · · ⊕b[m]. (It is equivalent
to test that b′ = ⊕i∈Sb[i] where S is the uncorrupted set.) The advantage of
adversary A is Advlorx

SE,m(A) = 2Pr[LORXA
SE,m ⇒ true] − 1. We say that A is a

(t,q, qc)-adversary if it runs in time t and makes at most q[i] encryption queries
of the form Enc(i, ·, ·) and makes at most qc corruption queries. Then we let
Advlorx

SE,m(t,q, qc) = maxA Advlorx
SE,m(A) where the maximum is over all (t,q, qc)-

adversaries. In the example we gave for AND, if an adversary corrupts the first
m− 1 instances to get back b[1], . . . ,b[m− 1], makes a random guess g for b[m]
and outputs b′ = b[1]⊕ · · · ⊕b[m− 1]⊕g, it will have advantage 0.

RORX. A variant of the si LOR notion, ROR, was given in [4]. Here the ad-
versary must distinguish between an encryption of a message M it provides and
the encryption of a random message of length |M |. This was shown equivalent
to LOR up to a factor 2 in the advantages [4]. This leads us to define the mi
analog RORX and ask how it relates to LORX. Game RORXSE,m of Figure 2
makes its initial choices the same way as game LORXSE,m. The adversary is
given access to oracle Enc that on input i,M , returns E(K[i],M) if b[i] = 1 and
otherwise returns E(K[i],M1) where M1←$ {0, 1}|M|. It also gets the usual Cor
oracle. It outputs a bit b′ and wins if this equals b[1]⊕ · · · ⊕b[m]. The advantage
of adversary A is Advrorx

SE,m(A) = 2Pr[RORXA
SE,m ⇒ true] − 1. We say that A

is a (t,q, qc)-adversary if it runs in time t and makes at most q[i] encryption
queries of the form Enc(i, ·) and makes at most qc corruption queries. Then
we let Advrorx

SE,m(t,q, qc) = maxA Advrorx
SE,m(A) where the maximum is over all

(t,q, qc)-adversaries.
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Discussion. The multi-user security goal from [3] gives rise to a version of
the above games without corruptions and where all instances share the same
challenge bit b, which the adversary tries to guess. But this does not measure
mi security, since recovering a single key suffices to learn b.

The above approach extends naturally to providing a mi counterpart to any
security definition based on a decisional game, where the adversary needs to
guess a bit b. For example we may similarly create mi metrics of CCA security.

Why does the model include corruptions? The following example may help
illustrate. Suppose SE is entirely insecure when the key has first bit 0 and highly
secure otherwise. (From the si perspective, it is insecure.) In the LORX game, an
adversary will be able to figure out around half the challenge bits. If we disallow
corruptions, it would still have very low advantage. From the application point
of view, this seems to send the wrong message. We want LORX-security to
mean that the probability of “large scale” damage is low. But breaking half the
instances is pretty large scale. Allowing corruptions removes this defect because
the adversary could corrupt the instances it could not break and then, having
corrupted only around half the instances, get a very high advantage, breaking
LORX-security. In this way, we may conceptually keep the focus on an adversary
goal of breaking all instances, yet cover the case of breaking some threshold
number via the corruption capability.

An alternative way to address the above issue without corruptions is to define
threshold metrics where the adversary wins by outputting a dynamically chosen
set S and predicting the xor of the challenge bits for the indexes in S. This,
again, has much going for it as a metric. But LORX with corruptions, as we
define it, will imply security under this metric.

LORX implies UKU. In the si setting, it is easy to see that LOR security
implies KU security. The LOR adversary simply runs the KU adversary. When
the latter makes oracle query M , the LOR adversary queries its own oracle with
M,M and returns the outcome to the KU adversary. When the latter returns
a key K ′, the LOR adversary submits a last oracle query consisting of a pair
M0,M1 of random messages to get back a challenge ciphertext C, returning 1
if D(K ′, C) = M1 and 0 otherwise. A similar but slightly more involved proof
shows that ROR implies KU.

It is important to establish analogs of these basic results in the mi setting, for
they function as “tests” for the validity of our mi notions. The following shows
that LORX security implies UKU. Interestingly, it is not as simple to establish
in the mi case as in the si case. Also, as we will see later, the proof that RORX
implies UKU is not only even more involved but incurs a factor 2m loss, making
LORX a better choice as the metric to target in designs.

Theorem 1. [LORX ⇒ UKU] Let SE = (K, E ,D) be a symmetric encryption

scheme with message space M, and let ℓ be such that {0, 1}ℓ ⊆ M. Then, for

all t, qc, and q, and for all k ≥ 1,

Advuku
SE,m(t,q, qc) ≤ Advlorx

SE,m(t′,q′, qc) +m ·

(

1

2ℓ − 1

)k

,
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where t′ = t+O(m · k), and q′[i] = q[i] + k for all i = 1, . . . ,m.

The proof is given in [6]. Here, let us stress Theorem 1 surfaces yet another
subtlety of the mi setting. At first, it would seem that proving the case k = 1
of the theorem is sufficient (this is what usually done in the si case). However,
it is crucial to remark that Advlorx

SE,m(t′,q′, qc) may be very small. For example,
it is not unreasonable to expect 2−128·m if SE is secure in the single-instance
setting. Yet, assume that E encrypts 128-bit messages, then we are only able to
set ℓ = 128, in turn making m/(2ℓ − 1) ≈ m · 2−128 by far the leading term on
the right-hand side. The parameter k hence opens the door to fine tuning of the
additive extra term at the cost of an additive complexity loss in the reduction.
Also note that the reduction in the proof of Theorem 1 is not immediate, as
an adversary guessing all the keys in the UKU game with probability ǫ only
yields an adversary recovering all the bits b[1], . . . ,b[m] in the LORX game
with probability ǫ. Just outputting the xor of these bits is not sufficient, as
we have to boost the success probability to 1+ǫ

2 in order to obtain the desired
relation between the two advantage measures.

In analogy to the si setting, UKU does not imply LORX. Just take a scheme
SE = (K, E ,D) encrypting n-bit messages which is UKU-secure, and modify it
into a scheme SE′ = (K′, E ′,D′) where K = K′ and E ′(K,M) = E ′(K,M) ‖M [0],
with M [0] being the first bit of M . Clearly, SE′ is still UKU-secure but not
LORX-secure

As indicated above, a proof that RORX implies UKU is much more involved
and incurs a factor 2m loss. Roughly speaking, this is because in the si case, in
the reduction needed to prove that ROR implies KU, the ROR adversary can
only simulate the execution of the KU adversary correctly in the case where the
bit is 1, i.e., the encryption oracle returns the actual encryption of a message.
This results in a factor two loss in terms of advantage. Upon translating this
technique to the mi case, the factor 2 becomes 2m, as all bits need to be 1 for
the UKU adversary to output the right keys with some guaranteed probability.
However, we will not follow this route for the proof of this result. Instead, we
can obtain the same result by combining Theorem 2 and Theorem 1.

LORX versus RORX. In the si setting, LOR and ROR are the same up to a
factor 2 in the advantage [4]. The LOR implies ROR implication is trivial and
ROR implies LOR is a simple hybrid argument. We now discuss the relation
between the mi counterparts, namely RORX and LORX, which is both more
complex and more challenging to establish.

Theorem 2. [RORX ⇒ LORX] Let SE = (K, E ,D) be a symmetric encryption

scheme. For all m, t, qc > 0, and all vectors q we have Advlorx
SE,m(t,q, qc) ≤

2m ·Advrorx
SE,m(t′,q, qc), where t′ = t+O(1).

As discussed in Section 1, the multiplicative factor 2m is often of no harm because
advantages are already exponentially small in m. The factor is natural, being the
mi analogue of the factor 2 appearing in the traditional si proof, and examples
can be given showing that the bound is tight. The proof of the above is in [6].
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The difficulty is adapting the hybrid argument technique to the mi setting. We
omit the much simpler proof of the converse:

Theorem 3. [LORX ⇒ RORX] Let SE = (K, E ,D) be a symmetric encryption

scheme. For all m, t, qc > 0, and all vectors q we have Advrorx
SE,m(t,q, qc) ≤

Advlorx
SE,m(t′,q, qc), where t′ = t+O(1).

LORX implies AND. Intuitively, one might expect AND security to be a
stronger requirement than LORX security, as the former seems easier to break
than the latter. However we show that under a fairly minimal requirement,
LORX implies AND. This brings another argument in support of LORX: Even
if an application requires AND security, it turns out that proving LORX security
is generally sufficient. The following theorem is to be interpreted as follows: In
general, if we only know that Advlorx

SE,m(t,q, qc) is small, we do not know how

to prove Advand
SE,m(t′,q, qc) is also small (for t′ ≈ t), or whether this is true at

all. As we sketched above, the reason is that we do not know how to use an ad-
versary A for which the ANDSE,m advantage is large to construct an adversary
for which the LORXSE,m advantage is large. Still, one would expect that such
an adversary might more easily yield one for which the LORXSE,k advantage is
sufficiently large, for some k ≤ m. The following theorem uses a probabilistic
lemma due to Unger [35] to confirm this intuition.

Theorem 4. Let SE = (K, E ,D) be a symmetric encryption scheme. Further,

let m, t, q, and qc be given, and assume that there exist C, ǫ, and γ such that

for all 1 ≤ i ≤ m,

max
S⊆{1,...,m},|S|=i

Advlorx
SE,i(t

∗
S ,q[S], qc) ≤ C · ǫi + γ ,

where q[S] is the projection of q on the components in S, and t∗S = t + O(tE ·
∑

i/∈S q[i]), with tE denoting the running time needed for one encryption with E.

Then, Advand
SE,m(t,q, qc) ≤ γ + C ·

∏m
i=1(1 + ǫi)/2.

We are not able to prove that the converse (AND implies LORX) is true in
general, but in the absence of corruptions one can upper bound Advlorx

SE,m(t,q, 0)

in terms of Advand
SE,m′(t′,q′, 0) for m′ ≈ 2m and t′ and q′ being much larger than

t,q. The proof, which we omit, follows the lines of the proof of the XOR Lemma
from the Direct Product Theorem given by [18], and relies on the Goldreich-
Levin theorem [17]. As the loss in concrete security in this reduction is very
large, and it only holds in the corruption-free case, we find this an additional
argument to support the usage of the LORX metric.

3 Password-based Encryption via KDFs

We now turn to our main motivating application, that of password based encryp-
tion (PBE) as specified in PKCS#5 [32]. The schemes specified there combine
a conventional mode of operation (e.g., CBC mode) with a password-based key
derivation function (KDF). We start with formalizing the latter.
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Password-based KDFs. Formally, a (k, s, c)-KDF is a deterministic map KD

: {0, 1}∗×{0, 1}s → {0, 1}k that may make use of an underlying ideal primitive.
Here c is the iteration count, which specifies the multiplicative increase in work
that should slow down brute force attacks.

PKCS#5 describes two KDFs [32]. We treat the first in detail and discuss
the second in [6]. Let KD1

H(pw, sa) = Hc(pw ‖ sa) where Hc is the function
that composes H with itself c times. To generalize beyond concatenation, we
can define a function Encode(pw, sa) that describes how to encode its inputs
onto {0, 1}∗ with efficiently computable inverse Decode(W ).

PBE schemes. A PBE scheme is just a symmetric encryption scheme where we
view the keys as passwords and key generation as a password sampling algorithm.
To highlight when we are thinking of key generation as password sampling we will
use P to denote key generation (instead ofK). We will also write pw for a key that
we think of as a password. Let KD be a (k, s, c)-KDF and let SE = (K, E ,D) be
an encryption scheme with K outputting uniformly selected k-bit keys. Then we
define the PBE scheme SE [KD, SE] = (P , E ,D) as follows. Encryption E(pw,M)
is done via sa←$ {0, 1}s ; K ← KD(pw, sa) ; C←$ E(K,M), returning (sa, C) as
the ciphertext. Decryption recomputes the key K by reapplying the KDF and
then applies D. If the KDF is KD1 and the encryption scheme is CBC mode,
then one obtains the first PBE scheme from PKCS#5 [32].

Password guessing. We aim to show that security of the above constructions
holds up to the amount of work required to brute-force the passwords output
by P . This begs the question of how we measure the strength of a password
sampler. We will formalize the hardness of guessing passwords output by some
sampler P via an adaptive guessing game: It challenges an adversary with guess-
ing passwords adaptively in a setting where the attacker may, also, adaptively
learn some passwords via a corruption oracle. Concretely, let GUESSP,m be
the game defined in Figure 3. A (qt, qc)-guessing adversary is one that makes
at most qt queries to Test and qc queries to Cor. An adversary B’s guessing
advantage is Advguess

P,m (B) = Pr
[

GUESSBP,m ⇒ true
]

. We assume without loss
of generality that A does not make any pointless queries : (1) repeated queries
to Cor on the same value; (2) a query Test(i, ·) following a query of Cor(i);
and (3) a query Cor(i) after a query Test(i, pw) that returned true. We also
define a variant of the above guessing game that includes salts and allows an
attacker to test password-salt pairs against all m instances simultaneously. This
will be useful as an intermediate step when reducing to guessing advantage.
The game saGUESSP,m,ρ is shown in Figure 3 and we define advantage via

Advsa-guess
P,m (B) = Pr

[

saGUESSBP,m ⇒ true
]

. An easy argument proves the fol-
lowing lemma.

Lemma 5. Let m, ρ > 0, let P be a password sampler and let A be an (qt, qc)-
guessing GUESSP,m adversary. Then there is a (qt, qc)-guessing saGUESSP,m,ρ

adversary B such that Advsa-guess
P,m,ρ (A) ≤ Advguess

P,m (B) +m2ρ2/2s. �

Samplers with high min-entropy. Even though the guessing advantage pre-
cisely quantifies strength of password samplers, good upper bounds in terms of
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main GUESSP,m

pw[1], . . . ,pw[m]←$P

pw′←$ BTest,Cor

Ret
∧m

i=1(pw
′[i] = pw[i])

proc. Test(i, pw)

If (pw = pw[i]) then Ret true

Ret ⊥

proc. Cor(i)

Ret pw[i]

main saGUESSP,m,ρ

pw[1], . . . ,pw[m]←$P

For i = 1 to m do

For j = 1 to ρ do

sa[i, j]←$ {0, 1}s

pw′←$ BTest,Cor(sa)

Ret
∧m

i=1(pw
′[i] = pw[i])

proc. Test(pw, sa)

For i = 1 to m do

For j = 1 to ρ do

If (pw, sa) = (pw[i], sa[i, j]) then

Ret (i, j)

Ret (⊥,⊥)

proc. Cor(i)

Ret pw[i]

Fig. 3. An adaptive password-guessing game.

the adversary’s complexity and of some simpler relevant parameters of a pass-
word sampler are desirable. One interesting case is samplers with high min-
entropy. Formally, we say that P has min-entropy µ if for all pw′ it holds that
Pr[pw = pw′] ≤ 2−µ over the coins used in choosing pw←$ P .

Theorem 6. Fix m ≥ qc ≥ 0 and a password sampler P with min-entropy

µ. Let B be a (qt, qc)-adversary for GUESSP,m making qi queries of the form

Test(i, ·) with qt = q1 + · · · + qm. Let δ = qt/(m2µ) and let γ = (m − qc)/m.

Then Advguess
P,m (B) ≤ e−m∆(γ,δ) where ∆(γ, δ) = γ ln(γδ ) + (1 − γ) ln(1−γ

1−δ ). �

Using∆(γ, δ) ≥ 2(γ−δ)2, we see that to win the guessing game for qc corruptions,
qt ≈ (m−qc)·2

µ Test queries are necessary, and the brute-force attack is optimal.
Note that the above bound is the best we expect to prove: Indeed, assume for a
moment that we restrict ourselves to adversaries that want to recover a subset
of m− qc passwords, without corruptions, and make qt/m queries Test(i, ·), for
each i, which are independent from queries Test(j, ·) for other j 6= i. Then, each
individual password is found, independently, with probability at most qt/(m·2

µ),
and if one applies the Chernoff bound, the probability that a subset of size m−qc
of the passwords are retrieved is upper bounded by e−m∆(γ,δ). In our case, we
have additional challenges: Foremost, queries for each i are not independent.
Also, the number of queries may not be the same for each index i. And finally,
we allow for corruption queries.

The full proof of Theorem 6 is given in [6]. At a high level, it begins by
showing how to move to a simpler setting in which the adversary wins by re-
covering a subset of the passwords without the aid of a corrupt oracle. The
resulting setting is an example of a threshold direct product game. This allows
us to apply a generalized Chernoff bound due to Panconesi and Srinivasan [31]
(see also [20]) that reduces threshold direct product games to (non-threshold)
direct product games. Finally, we apply an amplification lemma due to Maurer,
Pietrzak, and Renner [25] that yields a direct product theorem for the pass-
word guessing game. Let us also note that using the same technique, the better
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bound Advguess
P,m (B) ≤ (qt/m2µ)m can be proven for the special case of (qt, 0)-

adversaries.

Correlated passwords. By taking independent samples from P we have cap-
tured only the setting of independent passwords. In practice, of course, passwords
may be correlated across users or, at least, user accounts. Our results extend to
the setting of jointly selecting a vector of m passwords, except of course the
analysis of the guessing advantage (whose proof fundamentally relies upon in-
dependence). This last only limits our ability to measure, in terms of simpler
metrics like min-entropy, the difficulty of a guessing game against correlated
passwords. This does not decrease the security proven, as the simulation-based
paradigm we introduce below allows one to reduce to the full difficulty of the
guessing game.

Simulation-based Security for KDFs.We define an ideal-functionality style
notion of security for KDFs. Figure 4 depicts two games. A message samplerM is
an algorithm that takes input a number r and outputs a pair of vectors (pw, sa)
each having r elements and with |sa[i]| = s for 1 ≤ i ≤ r. A simulator S is
a randomized, stateful procedure. It expects oracle access to a procedure Test
to which it can query a message. Game RealKD,M,r gives a distinguisher D the
messages and associated derived keys. Also, D can adaptively query the ideal
primitive H underlying KD. Game IdealS,M,r gives D the messages and keys
chosen uniformly at random. Now D can adaptively query a primitive oracle
implemented by a simulator S that, itself, has access to a Test oracle. Then we
define KDF advantage by

Advkdf
KD,M,r(D, S) = Pr

[

RealDKD,M,r ⇒ 1
]

− Pr
[

IdealDS,M,r ⇒ 1
]

.

To be useful, we will require proving that there exists a simulator S such that
for any D,M pair the KDF advantage is “small”.

This notion is equivalent to applying the indifferentiability framework [26]
to a particular ideal KDF functionality. That functionality chooses messages
according to an algorithmM and outputs on its honest interface the messages
and uniform keys associated to them. On the adversarial interface is the test
routine which allows the simulator to learn keys associated to messages. This
raises the question of why not just use indifferentiability from a RO as our
target security notion. The reasons are two-fold. First, it is not clear that Hc

is indifferentiable from a random oracle. Second, even if it were, a proof would
seem to require a simulator that makes at least the same number of queries
to the RO as it receives from the distinguisher. This rules out showing security
amplification due to the iteration count c. Our approach solves both issues, since
we will show KDF security for simulators that make one call to Test for every c
made to it. For example, our simulator for KD1 will only query Test if a chain of
c hashes leads to the being-queried point X and this chain is not a continuation
of some longer chain. We formally capture this property of simulators next.

c-amplifying simulators. Let τ = (X1, Y1), . . . , (Xq, Yq) be a (possibly par-
tial) transcript of Prim queries and responses. We restrict attention to (k, s, c)-
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main RealKD,M,r

(pw, sa)←$M(r)

For i = 1 to r do

K[i]←$ KD
H (pw[i], sa[i])

b′←$DPrim(pw, sa,K)

Ret b′

proc. Prim(X)

Ret H(X)

main IdealS,M,r

(pw, sa)←$M(r)

For i = 1 to r do

K[i]←$ {0, 1}k

b′←$DPrim(pw, sa,K)

Ret b′

proc. Prim(X)

Ret STest(X)

sub. Test(pw, sa)

For i = 1 to r do

If (pw[i], sa[i]) = (pw, sa)

then Ret K[i, j]

Ret ⊥

Fig. 4. Games for the simulation-based security notion for KDFs.

KDFs for which we can define a predicate finalKD(Xi, τ) which evaluates to true
if there exists exactly one sequence of c indices j1 < · · · < jc such that (1) jc = i,
(2) there exist unique (pw, sa) such that evaluating KD

H(pw, sa) when H is such
that Yj = H(Xj) for 1 ≤ j ≤ i results exactly in the queries Xj1 , . . . , Xjc in any
order where Xi is the last query, and (3) finalKD(Xjr , τ) = false for all r < c.

Our simulators only query Test on queriesXi for which finalKD(Xi, τ) = true;
we call such queries KD-completion queries and simulators satisfying this are
called c-amplifying. Note that (3) implies that there are at most q/c total KD-
completion queries in a q-query transcript.

Hash-dependent passwords. We do not allowM access to the random ora-
cle H . This removes from consideration hash-dependent passwords. Our results
should extend to cover hash-dependent passwords if one has explicit domain sep-
aration between use of H during password selection and during key derivation.
Otherwise, an indifferentiability-style approach as we use here will not work due
to limitations pointed out in [33]. A full analysis of the hash-dependent password
setting would therefore appear to require direct analysis of PBE schemes without
taking advantage of the modularity provided by simulation-based approaches.

Security of KD1. For a message sampler M, let γ(M, r) := Pr[∃i 6= j :
(pw[i], sa[i]) = (pw[j], sa[j])] where (pw, sa)←$M(r). We prove the following
theorem in [6].

Theorem 7. Fix r > 0. Let KD1 be as above. There exists a simulator S such

that for all adversaries D making q RO queries, of which qc are chain completion

queries, and all message samplers M,

Advkdf
KD1,M,r(D, S) ≤ 4 γ(P , r) +

2r2 + 7 (2q + rc)2

2n
.

The simulator S makes at most qc Test queries, and answers each query in time

O(c). �

Security of PBE.We are now in a position to analyze the security of password
based encryption as used in PKCS#5. The following theorem, proved in [6],
uses the multi-user left-or-right security notion from [3] whose formalization is
recalled in [6]:
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Theorem 8. Let m ≥ 1, let SE [KD, SE] = (P , E ,D) be the encryption scheme

built from an (k, s, c)-KDF KD and an encryption scheme SE = (K, E ,D) with

k-bit keys. Let A be an adversary making ρ queries to Enc(i, ·, ·) for each

i ∈ {1, . . . ,m} and making at most qc < m corruption queries. Let S be a

c-amplifying simulator. Then there exists message sampler M and adversaries

D, C, and B such that

Advlorx
SE,m(A) ≤ m ·Advmu-lor

SE,ρ (C) + 2 ·Advguess
P,m,ρ(B) + 2 ·Advkdf

KD,M,mρ(D, S)

If A makes q queries to H, then: D makes at most q queries to its H oracle;

B makes at most ⌈q/c⌉ queries to Test and at most qc corruption queries; and

C makes a single query Enc(i, ·, ·) for each 1 ≤ i ≤ ρ. Moreover, C’s running

time equals tA + q · tS plus a small, absolute constant, and where tA is the

running time of A, and tS is the time needed by S to answer a query. Finally,

γ(M,mρ) ≤ m2ρ2/2s. �

Note that the theorem holds even when SE is only one-time secure (meaning
it can be deterministic), which implies that the analysis covers tools such as
WinZip (c.f., [22]). In terms of the bound we achieve, Theorem 7 for KD1 shows
that an adversary that makesAdvkdf

KD,P∗,mρ(D, S) large requires q ≈ 2n/2 queries
to H , provided salts are large. If H is SHA-256 then this is about 2128 work.
Likewise, a good choice of SE will ensure that Advmu-lor

SE,K,ρ(C) will be very small.
Thus the dominating term ends up the guessing advantage of B against P , which
measures its ability to guess m− qc passwords.
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