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Abstract. In this work we focus on a simple database commitment
functionality where besides the standard security properties, one would
like to hide the size of the input of the sender. Hiding the size of the input
of a player is a critical requirement in some applications, and relatively
few works have considered it. Notable exceptions are the work on zero-
knowledge sets introduced in [14], and recent work on size-hiding private
set intersection [1]. However, neither of these achieves a secure compu-
tation (i.e., a reduction of a real-world attack of a malicious adversary
into an ideal-world attack) of the proposed functionality.

The first result of this submission consists in defining “secure” database
commitment and in observing that previous constructions do not satisfy
this definition. This leaves open the question of whether there is any way
this functionality can be achieved.

We then provide an affirmative answer to this question by using new tech-
niques that combined together achieve “secure” database commitment.
Our construction is in particular optimized to require only a constant
number of rounds, to provide non-interactive proofs on the content of
the database, and to rely on the existence of a family of CRHFs. This is
the first result where input-size hiding secure computation is achieved for
an interesting functionality and moreover we obtain this result with stan-
dard security (i.e., simulation in expected polynomial time against fully
malicious adversaries, without random oracles, without non-black-box
extraction assumptions, without hardness assumptions against super-
polynomial time adversaries).

A key building block in our construction is a universal argument enjoying
an improved proof of knowledge property, that we call quasi-knowledge.
This property is significantly closer to the standard proof of knowledge
property than the weak proof of knowledge property satisfied by previous
constructions.
Keywords: ZK sets, universal arguments, input-size hiding security.

1 Introduction

Secure computation. The standard notion of “security” for any multi-party
computation [10] involves describing an ideal model where parties have access
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to a trusted functionality which will carry out the desired computation without
revealing any information about the parties’ secret inputs and outputs. Then,
very informally, given a communication network in the real world, without any
trusted functionality, a protocol π securely realizes a multi-party computation
if any successful attack by an adversary of π can be translated into a successful
attack in the ideal world. Since the latter is trivially secure this means π is secure
in the real world as well.

Therefore, the real-world/ideal-world paradigm [10] allows one to prove the
security of protocols in a simulation-based fashion, with strong security guaran-
tees. This turns out to be very useful when protocols are used as subprotocols
and provides robust security when the ideal functionality is correctly designed.
All the fundamental primitives have been defined in terms of ideal functionalities
and thus they can be securely realized in the real-world/ideal-world paradigm
using the general results of [10].

However the current state-of-the art still does not properly address the issue
of considering the size of the input of a player as information to be kept private.
Here we consider the problem of hiding the input size in one of the most basic
primitives: a commitment scheme.

Secure Database Commitments. Here we address the case where a player
wants to commit to a large set of data, and then to partially open that commit-
ment, both without revealing the size of the committed set. More specifically, we
consider the setting where a party (the sender) may want to commit to a large
elementary database composed by key-value pairs, without revealing its size.
Then in the opening phase, the sender might want to reveal part of his database
one item at a time depending on queries of the receiver. In particular, the re-
ceiver will ask for some keys, and the sender wants to convince the receiver of
the value associated to each requested key. These partial opening queries should
reveal no information about the rest of the database, including the size.

The main question: feasibility of Secure Database Commitments. Fol-
lowing the above discussion, and the fact that we have general results for achiev-
ing secure multi-party computation, One could ask the following natural ques-
tion: “Why should we focus on the design of protocols for secure database com-
mitments if we can use the known constructions for secure two-party computa-
tion?”. There is a crucial difference between this problem, and the one considered
in [10] and in all subsequent work (to the best of our knowledge). Our notion
of secure database commitment critically requires that the size of the prover’s
input must be hidden. In contrast, the [10] definition, according to [9] and to
the known constructions, allows a party either at the beginning of or during
the computation, to learn the size of the other party’s input. This information
is actually revealed in all known protocols, mainly because many of the tools
used to allow extraction of the adversary’s implicit input (e.g. zero-knowledge
proofs of knowledge) have communication that depends directly on the size of
the input.

Consequently, traditional results for secure two-party computation cannot
be used to obtain secure database commitments, and we need to develop new
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tools and a significantly new approach. This presents the following interesting
open problem: Is the notion of secure database commitment and more generally
a meaningful notion of input-size hiding secure computation achievable?

Difficulties in achieving input-size hiding secure computation with
standard assumptions. We stress that the main challenge in size-hiding secure
computation is as follows: when proving security against a real world adversarial
prover, we need to design a simulator which can extract the input from the
adversary so that it can provide it to the ideal functionality. At the same time,
we can not assume any fixed polynomial upper bound for the size of the set (the
protocol should work for any polynomial sized input), and we can not allow the
amount of communication to vary with the size of the input.

The real difficulties lie in obtaining a standard security notion (showing an
efficient ideal adversary from an efficient real-world adversary), therefore avoid-
ing controversial (sometimes not even falsifiable) conjectures such as random
oracles, non-black-box extraction assumptions (e.g., the Diffie-Hellman knowl-
edge of exponent assumption and its variations [11]), complexity leveraging (i.e.,
hardness assumptions against super-polynomial time adversaries) and so on.

Relationship to Zero-Knowledge Sets. We note that the requirements de-
scribed for secure database commitments are essentially those given in [14] where
Micali, Rabin and Kilian introduced the concept of a zero-knowledge set (ZKS).
This primitive allows a party to first commit to a database, and later to answer
queries on that database and to prove that the responses are consistent with the
original commitment, as in the secure database commitments described above.

However, the definition given by [14] and by all subsequent papers is a
property-based definition that requires: 1) soundness: the commitment should
be binding, i.e., for each query there should be only one response for which the
prover can give a convincing proof; and 2) zero-knowledge: both the commitment
and the proofs should not reveal any information about the rest of the database
(beyond the information that is asked in the query), not even the number of
elements it contains.

Furthermore, we argue that the constructions they provide (and later con-
structions for ZKS, see [7,5,8,6,15,13]) do not satisfy a typical real-world/ideal-
world definition in the spirit of “secure computation”. To see this, note that
all previous schemes for ZKS included a non-interactive commitment of the set.
As mentioned above, we do not consider non-black-box extraction assumptions;
moreover, standard non-black-box techniques introduced in [2] so far have been
successfully used only in conjunction with interaction.

However, we argue that black box extraction is impossible for a scheme which
is size hiding and has a non-interactive commitment phase. This follows because
such a scheme must allow for sets of any polynomial size, which means there
will be at least 2superpoly(k) possible sets; at the same time, the length of the
non-interactive commitment must be bounded by a fixed polynomial in k. Thus,
a simple counting argument shows that there is no way (based on standard
assumptions and security notions) that a simulator can correctly identify the
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committed set given only the single commitment message. Note that this argu-
ment also holds in the CRS model, as long as the CRS is of length polynomial
in k, as even in this case the simulator still gets only poly(k) bits of information
to identify one database out of 2superpoly(k). Therefore, no previous construction
of zero-knowledge sets can be proved to be a secure realization of the database
commitment functionality (with a black box simulator).

Looking ahead, in our construction we will avoid these limitations by allow-
ing an interactive commitment phase. The possibility of using interaction was
already mentioned in some previous work, but only for the query/proof phase,
thus without making any contribution towards addressing this extraction prob-
lem. Instead, our goal is to use interaction in the commitment phase, still keeping
the query/answer phase essentially non-interactive.

Other related work. Recently similar issues have been considered by Ateniese
et al. in [1] for the problem of Private Set Intersection. However their solution
uses random oracles, and obtains security with respect to semi-honest adversaries
only. The goal of our work is to obtain security against malicious players as
required in secure computation, and we will obtain this result in the standard
model using only standard complexity-theoretic assumptions.

Timing attacks. We note that there may be some cases in which any attempt
to hide the size of inputs is vulnerable to timing attacks as discussed in [12] (in
which an adversary can guess the size of the input depending on the amount of
the time required to perform computations). However, there are many settings
where these attacks will have only limited impact. Notice that since the adver-
sary does not necessarily know the amount of resources of the other player (the
committer could perform his computation by distributing the workload among
computing devices in number proportional to the size of the input) the timing
may in fact give very little information.

1.1 Our Results

In this work we first put forth the notion of secure database commitment. Fol-
lowing the traditional notion of “secure computation” we define the natural ideal
functionality for database commitment FDbCom and observe that it implies all
required security guarantees needed by zero-knowledge sets.

We then present a constant-round protocol that securely realizes the FDbCom

functionality. The protocol is interactive, and is secure in the standard model
(i.e., we do not require any set-up assumptions) based on the existence of families
of collision-resistant hash functions (CRHFs, for short) (notice that CRHFs are
implied by the existence of ZK sets [5]).

We stress that our protocol has optimal amortized round complexity, as
queries and answers are essentially non-interactive. In addition, the use of the
real-world/ideal-world paradigm, and the simulation in polynomial time should
make it much easier to use this primitive as part of a larger protocol.

Our construction is based on a special universal argument that enjoys a new
proof of knowledge property which is closer to the traditional proof of knowledge
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property. We define this new property, give a construction which satisfies it
based on CRHFs, and show how it can be used to implement secure database
commitments. (However, we stress that there were many other subtle issues to
address, and our stronger notion of universal argument alone is not sufficient for
directly obtaining input-size hiding secure computation.)

Techniques. As described above, the biggest challenge is in defining a simulator
that can extract a witness whose length can be any polynomial, from only a
fixed polynomial amount of communication. Note that the standard approach
does not work in this setting: it might seem that a simple solution would be
to ask the sender to give a commitment to the database, and an interactive
zero-knowledge proof of knowledge of the database contained in the provided
commitment. However, in general such proofs may reveal the size of the witness,
which in this case means the size of the database.

Instead, we use a different tool, namely a witness indistinguishable universal
argument of quasi knowledge (UAQK). A universal argument is a (computationally-
sound) proof system which guarantees that the communication is only propor-
tional to the size of the statement. At the same time, it guarantees that the
honest prover can run in time polynomial in the size of the witness, which is the
best that we can hope for.

Universal arguments were introduced by Barak [2] as part of the design of a
non-black-box simulator. Barak showed a construction based on CRHFs which
satisfied a weak proof of knowledge property. However, there are some inherent
challenges in defining a standard proof of knowledge for universal arguments,
and the extraction guarantees of his definition do not seem to be sufficient for
our application. To deal with this we define a new proof of knowledge property
which we call “quasi knowledge” which provides a functionality somewhat closer
to that of a standard proof of knowledge. We show that it can be used in our
application to implement the traditional commitment and proof of knowledge
strategy described above. (Of course we are glossing over many issues here, and
the application is not straightforward at all - see Section 4 for details.)

Finally, we note that this is of additional interest, because we use universal ar-
guments for a completely different purpose than the one that motivated Barak’s
original construction [2], which was the design of a non-black-box simulator.

Universal Arguments: from weak proof of knowledge to proof of quasi
knowledge. The standard proof of knowledge property guarantees that if a
prover can convince a verifier of the truthfulness of a theorem with some prob-
ability, then one can efficiently obtain an NP witness for that theorem with the
same probability (up to negligible factors).

When one focuses instead on universal languages (i.e., when one would like
to prove that a Turing machine accepts the provided input within a given — not
necessarily polynomial — number of steps), then one can not always efficiently
obtain a corresponding witness since its length can be superpolynomial. In this
case a restricted proof of knowledge property might instead focus on extracting
an implicit representation of the witness, in the form of a polynomial-sized circuit
that when evaluated on input i provides the i-th bit of the witness.
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Unfortunately there is no known construction of a universal argument with
such a property. The current state of the art, [4], shows how to get a weak proof
of knowledge property that includes one more restriction: when a prover proves a
theorem with probability 1/q, one can efficiently get an implicit representation of
a circuit with probability 1/q′ that is polynomially related to 1/q. This essentially
means that one can efficiently get a candidate implicit representation of a witness,
with non-negligible probability when 1/q is non-negligible. However, there is no
guarantee that the candidate implicit representation is actually correct (one can
not simply test the circuit asking for all bits of the witness since the size of a
witness can be superpolynomial).

Furthermore, there is an additional subtlety in the way this weak proof of
knowledge property is defined. For any polynomial q, there is guaranteed to be
a polynomial time extractor that can extract candidate representations of the
witness from any prover that proves a theorem with probability 1/q, and this
extractor is guaranteed to succeed with the related probability 1/q′; however,
the choice of this extractor and its running time may depend on q. This has two
disadvantages: (1) in order to use an extractor, we must first determine which
q we are interested in, and (2) an efficient extractor is required to exist only for
polynomials q, while nothing is required when q is super polynomial. (In fact,
in the construction given in [4], the running time of the extractor is roughly qd

where d is some constant greater than 1, therefore when q is superpolynomial the
running time of the extractor increases quickly and its expected running time
is not polynomial). As a result of these disadvantages, converting a weak proof
of knowledge system into a proof system with the standard proof of knowledge
property is very non-trivial, even when one is happy with the extraction of an
implicit representation of the witness. (This is because the standard proof of
knowledge property requires that, regardless of the success probability of the
adversarial prover, the extractor must run in expected polynomial time.)

In this paper we remove the above additional restriction of the weak proof
of knowledge property and replace it with a more standard proof of knowledge
property, requiring that an extractor outputs in expected polynomial time a
correct implicit representation of the witness. The only caveat is that, while we
require that the extracted implicit representation must correspond to some true
witness, we do allow it to contain a few errors, as long as those errors are unlikely
to be noticed by any polynomial time process. (Note that if the witness is poly-
nomial sized, then this still implies the standard proof of knowledge property.)
We will say that an argument system is an argument of “quasi” knowledge if it
enjoys this property.

Finally, we construct a constant-round witness-indistinguishable universal
argument of quasi-knowledge under standard complexity-theoretic assumptions.

2 Universal Arguments of Quasi Knowledge

A universal argument is an interactive argument system for proving membership
in NEXP. For the formal definition, see [4]. We will use the following result.



Secure Database Commitments and UAQKs 7

Theorem 1. ([4,3], informal) Suppose there exists a hash function ensemble
that is collision-resistant against polynomial-sized circuits. Then there exists a
universal argument system that is constant-round, public-coin and witness indis-
tinguishable.

Moreover, there exists a construction which satisfies two additional proper-
ties. First, the construction of this extractor is parameterized by a lower bound
α(n) on the success probability of the adversarial prover P ?n . The resulting extrac-
tor, that we denote by E(α(n), ·, ·) has the property that there is a fixed constant
d such that, E(α(n), y, ·) has expected running time at most ( n

α(n) )
d for any n-bit

instance y.
Furthermore, it has the property that there is a fixed known polynomial q?

such that for any polynomial-sized prover P ?n that succeeds in causing verifier
V (y) to accept with probability q(n) for n-bit instance y, and for any α < q(n),
the probability that the extractor EP

?
n (α, y, ·) succeeds in extracting bits of a valid

witness is at least α
q?(n) . For a more formal statement, see the full version. For

details of the construction and proof, see the proof of Lemma A.2.5 in [3].

2.1 A New Notion: Quasi-Knowledge

As described in Section 1.1, we aim to construct a universal argument with a
more standard proof of knowledge property. The resulting proof of knowledge
will resemble the standard proof of knowledge property with two exceptions.

The first is that the extractor will produce only an implicit representation of
a witness. This is necessary since UAs are used to prove statements that are not
necessarily in NP, therefore the length of the witness may not be polynomial, but
still we want our extractor to run in (expected) polynomial time. We formalize
this saying that the extractor will be a circuit which on input i will produce a
candidate for the i-th bit of the witness w.

The second difference is that even when the extractor is successful, we do not
require that the extracted witness be perfectly correct. We may allow some small
fraction of the extracted bits to be incorrect, as long as this will be negligible
when the proof is used in any polynomial-time process. We formalize this by
saying that for any (potentially adversarially generated) polynomial sized set of
indices I, it must be the case that with all but negligible probability, all of the
associated bits produced by the extractor will be correct with respect to some
valid witness ŵ.

Thus, our definition requires an extractor which satisfies two properties. The
first is that, for any PPT (and potentially adversarial) sampling algorithm S
which chooses a set of indices I, with all but negligible probability over the
choice of random tape r, the extractor Er with oracle access to P ? will output
a set of bits {wi}i∈I that are consistent with some valid witness ŵ. Note that
we allow S to choose these indices adaptively, after querying E on indices of it’s
choice. This allows for the fact that in a larger application, which positions of
the witness need to be extracted may depend on the values of the bits which
have been seen so far.
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The second property requires that the expected running time of E be within
a polynomial factor of 1

p(|y|) where p(|y|) is the success probability of the adver-

sarial prover P ∗. There is a slight issue here in that, even if the expected running
time of E(y, i) was guaranteed to be polynomial for each i, it might still be pos-
sible that for any choice of random tape r, an adversarial and adaptive sampling
algorithm S could find at least one index that causes Er(y, i) to run in super-
polynomial time. Thus we also require that the running time be independent of
i; this implies that the expected running time of E on any set of inputs (even
those that are chosen adversarially and adaptively) will also be polynomially
related to 1

p(|y|) . For our application this will be particularly useful, as it implies

that E can be converted into a circuit which implicitly describes the witness
and whose expected size is polynomially related to the positive success probabil-
ity of P ∗ (and therefore the expected size of E is polynomial whenever P ∗ has
non-negligible success probability). (We will see more details in Section 4.)

Definition of universal argument of quasi knowledge (UAQK). We
construct a universal argument 〈P (·, ·), V (·)〉 such that the efficient verification,
completeness and computational soundness properties hold as usual, but the
weak proof of knowledge property is replaced as follows.

Definition 1. A universal argument system 〈P (·, ·), V (·)〉 for the universal lan-
guage LU is a universal argument of quasi knowledge (UAQK) if there exists an
algorithm E and a constant c such that for any polynomial-size circuit family
{P ?n}n∈N , there exists a negligible function ν such that for any y ∈ LU ∩{0, 1}n,
the following two properties hold.

1. If Prob[ outV (〈P ?n , V (y)〉) = 1 ] is non-negligible, then for any polynomial-
time sampling algorithm S,

Probr[ I ← SE
P?
n

r (y,·)(y); {wi ← E
P?

n
r (y, i)}i∈I :

∃ŵ = ŵ1, . . . ŵs, (ŵ, y) ∈ RU ∧ (wi = ŵi ∀i ∈ I) ] ≥ 1− ν(|y|).

where the probability is over the choice of the coins r used by E. (Note that
the same coins are used for all i ∈ I.)3

2. The running time of EP
?
n (y, i) is independent of the choice of i, and if we

let p(|y|) = Prob[ outV (〈P ?n , V (y)〉) = 1 ] > 0, then the expected running

time of EP
?
n (y, ·) is O( |y|

c

p(|y|) ), where again the expectation is over the choice

of the coins r used by E.

Note that if LU is a language with polynomial-size witnesses, then this prop-
erty implies the standard proof of knowledge property. The standard proof of
knowledge extractor will first run 〈P ?n , V (y)〉 once: if V rejects, it will output
⊥, otherwise it will choose a random string r to be used as randomness to run
EP

?

r (y, i) for each bit i of the witness, and then output the result. This extractor

3 Here we assume for simplicity that if a witness w is expanded by appending any
sequence of zeros, the resulting value is still a valid witness, so that ŵi is always
defined for all i ∈ I.



Secure Database Commitments and UAQKs 9

will have success probability negligibly far from p|y|, and expected running time

O(p(|y|) · |y|
c

p(|y|) ) = O(|y|c), which is clearly polynomial.

Note also that we could have given a definition that explicitly requires the
extractor to run in expected polynomial time, essentially resembling the defini-
tions of the standard proof of knowledge and weak proof of knowledge properties.
However, we prefer the above formulation as it makes clear that we can differ-
entiate between (item 1) runs on which the extractor inadvertently produces a
bad witness (recall that when the witness is not polynomial-sized, it may not be
possible to efficiently identify invalid witnesses) and (item 2) runs on which the
extractor aborts (e.g., when the interaction with P ?n produces an invalid proof).

2.2 CRHFs ⇒ Constant-Round UAQK

Our approach will be to construct a UAQK out of a UA with the weak proof of
knowledge property. As mentioned in Section 1.1, there are two difficulties when
using the weak proof of knowledge property: (1) we must somehow estimate a
lower bound on the success probability of the prover in order to determine which
extractor to use, and (2) the running time of the extractor may grow faster than
what we would like as compared with the success probability of the prover (here
we will use the UA construction of [4], which gives an extractor with running

time O(( |y|
α(|y|) )

d) where α(|y|) is a lower bound on the success probability of P ?).

The first issue we will deal with within the design of our extractor; it essen-
tially requires balancing the accuracy of the estimate with the need to compute
it in expected polynomial time. In order to address the second issue, we will
attempt to increase the success probability of the adversarial prover. Essentially,
we will run many instances of that UA sequentially, and accept only if all in-
stances are accepted by the verifier. Then, if the prover succeeds in all instances
with probability p, we will argue that there must be at least one instance in
which it succeeds with significantly higher probability. If we use this instance,
then we can run the extractor with a higher lower bound, and thus obtain a
more efficient extractor.

The resulting construction goes as follows. We first ask the prover to commit
to a Merkle hash of its witness, and then we run the UA several times sequen-
tially. In each UA, the prover proves both that the statement is true, and that
the witness used is consistent with the given commitment, i.e. it proves weak
knowledge of a witness and an authentication chain for each bit of the witness.
(This will allow us to verify that parts of the witness are consistent with the
initial commitment without having to extract the entire witness.)

The actual UAQK. Our construction uses as a subprotocol a universal ar-
gument 〈PUA(·, ·), VUA(·)〉 satisfying the conditions described in Theorem 1 for
the universal language LU . Let ` = d + 2 where d is the value of the constant
defined in Theorem 1 for this UA. We construct a UAQK 〈Pnew(y, w), Vnew(y)〉
for language LU as depicted in Fig. 1.
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Players: prover Pnew, verifier Vnew.
Common input: the statement y ∈ LU , such that |y| = n.
Input of Pnew: witness w for y ∈ LU .
Tools: a family {Hn} of CRHFs, a statistically hiding trapdoor commitment
scheme (SHTGen, SHCom, SHVer, SHTCom, SHTDec), a constant-round statisti-
cal ZKAoK 〈Pszk(·, ·), Vszk(·)〉 for NP, a constant-round WI universal argument
〈PUA(·, ·), VUA(·)〉 (as defined in Theorem 1) with parameter d.

1) Vnew → Pnew: Vnew picks h
R← {Hn}, computes (η, t)

R← SHTGen(1n) and
sends (h, η) to Pnew.

2) Vnew ↔ Pnew: Vnew runs Pszk to prove to Pnew running Vszk knowledge of a
trapdoor t for η.

3) Pnew → Vnew: Pnew encodes the witness w as follows: Let s = |w| be the
length of the original witness w, and let w = w1, . . . , ws be the bitwise
representation of w. Then Pnew uses h to form a Merkle hash tree over all
the bits of w treating each bit as a leaf node in the tree. Let root be the
root of this tree, and for bit wi of witness w, let authi be the appropriate
authentication chain (i.e., all of the values on the path from wi to root, and
all of the siblings of those values).
Next Pnew computes (Cs, decs) ← SHComη(s) and (Croot, decroot) ←
SHComη(root).
Finally, Pnew forms the new witness w′ = s◦decs ◦ root◦decroot ◦w1 ◦auth1 ◦
. . .◦ws ◦auths. Now, let y′ = Cs ◦Croot ◦y and let L′U be the language which
accepts (y′, w′) iff w′ = s ◦ decs ◦ root ◦ decroot ◦ w1 ◦ auth1 ◦ . . . ◦ ws ◦ auths
such that (1) s < 2|y|, (2) (s, decs) is a valid decommitment for Cs and
(root, decroot) is a valid decommitment for Croot with parameter η, (3) for all
i = 1 . . . s, authi is a valid authentication chain for wi with respect to root
and hash function h, and (4) w = w1 . . . , ws is such that (y, w) ∈ LU .
Pnew sends (Cs, Croot) to the verifier.

4) Pnew ↔ Vnew:
For j = 1, . . . , ` = d+ 2, sequentially:
4.j) Pnew and Vnew run the universal argument 〈PUA(·, ·), VUA(·)〉 for this

new language L′U . Pnew will run PUA(w′, y′) while Vnew will run VUA(y′),
where y′ = Cs ◦ Croot ◦ y.

Vnew outputs 1 iff all instances of VUA(y′) accept.

Fig. 1. Universal Argument of Quasi Knowledge 〈Pnew(·, ·), Vnew(·)〉.

2.3 Proving the Quasi-Knowledge Property

Intuition. At a high level, the proof proceeds as follows: Let p be the probability
that the adversarial prover P ? convinces Vnew to accept. Then for j = 1, . . . , `, let
pj be the probability that Vnew accepts the j-th internal UA instance conditioned
on the event that it accepted all previous instances. Then the key observation is
that p =

∏`
j=1 pj , so we are guaranteed that for some j∗, pj∗ ≥ p1/`. Now, if we

could estimate pj∗ , and identify a UA instance where P ? succeeds with proba-
bility roughly pj∗ , then we could run the UA extractor with this lower bound,

and obtain an extractor with success probability roughly p1/`

q(|y|) (here q is the
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polynomial referred to as q? in the discussion in Theorem 1), and running time

roughly O(( |y|pj∗ )d) = O( |y|
d

pd/`
). However, we need an extractor with overwhelm-

ing success probability, so we will run this extractor approximately q(|y|)
p1/`

times,

to ensure that at least one run will produce bits of a valid implicit witness.4

The final result will have success probability nearly 1, and running time roughly

O( |y|
d

pd/`
· q(|y|)
p1/`

) = O( |y|
dq(|y|)

p(d+1)/` ) = O( |y|
dq(|y|)
p ) (the last equality follows from our

choice of `). 5

The main challenge in this process is finding a UA instance where P ? has
success probability roughly p1/`, and estimating this probability. Essentially, for
each j, we want to find a starting state where P ? is about to begin the j-th UA,
and where P ?’s success probability in that proof is roughly pj ; then we need to
identify and take the best of these states (i.e., pj∗). We do this as follows: First,
for each j, we record many states for P ? where P ? has successfully completed
the first j − 1 UAs and has a reasonable chance of completing the next UA. In
the full version we show that with overwhelming probability, one of these states
will be such that P ? has probability at least pj/2 of successfully completing the
next UA, and at the same time that the time required to collect all these states
is at most O(poly(|y|)/p). Next, we attempt to identify one such state, and to
estimate the corresponding success probability. We do this by running P ? from
each state many times, and counting how long it takes for P ? to complete |y|
proofs starting from that state. We interleave the counting for all of the states
corresponding to the j-th proof to ensure that we can stop as soon as one has
resulted in |y| successful proofs. (This allows us to avoid running for too long
just because one candidate state was bad.) Finally, we consider the best states
for j = 1, . . . , `, select the one with the highest estimated success probability,
and use it as described above.

Our extractor. To summarize, our extractor works as follows:

1. For each j = 1, . . . , `:
(a) Collect n = |y| candidate states, where P ? has successfully completed the

first j − 1 proofs and has a reasonable chance of successfully completing
the next one.

(b) Repeatedly run the next UA from all the above n states, and identify the
state beststatej that is the first one that reaches n accepting executions

4 There is some subtlety here in that we must guarantee that we can always recognize
which set of extracted bits is the correct one (the one which is consistent with some
valid witness). To do this we make use of the prover’s initial commitment to the
witness - if the extracted bits are consistent with the initial commitment, then we
assume that they are the correct ones.

5 In fact this is slightly inaccurate, as we also need to guarantee, even when we run this
extractor many times and boost P ?’s success probability a bit more, none of these
times takes too long. We do this by estimating a reasonable upper bound for the
running time of E based on our estimate of P ∗’s success probability, and stopping
E early if it runs more than this number of steps. As a result, we have to run E a
few more times, and we set ` = d+ 2.
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of the next 〈PUA(·, ·), VUA(·)〉. Let mj be the number of such executions
from that state.

2. Given the above mj for j = 1, . . . , `, let ĵ be the index of the UA where mĵ

is minimal. n
2mĵ

is an estimate of a lower bound on the adversarial prover’s

success probability pĵ in state beststateĵ .
3. Run approximately q(|y|)/pĵ instances of the UA extractor. Return the result

that agrees with the initial commitment sent by the prover.

A more formal description of the extractor and a more detailed analysis can
be found in the full version of the paper. We also note that for technical reasons,
we also need a statistically hiding trapdoor commitment scheme and a statistical
zero-knowledge argument of knowledge of the trapdoor, which help us to prove
the witness indistinguishability of our construction.

Theorem 2. Under the assumption that a family of collision-resistant hash
functions exists, then the protocol depicted in Fig. 1 is a constant-round wit-
ness indistinguishable UAQK.

3 Secure Database Commitments

We consider the notion of a secure database commitment such that each element
x appears at most once. As in [14], we will consider a formulation that captures
both sets and databases. For a set S, we can define Db[x] to be 1 if x appears
in the set and ⊥ if it does not. More generally, for a database of pairs (x, y), we
define Db[x] to be y if x appears in the set, and y otherwise. Since the difference
between the two primitives is almost cosmetic, we will use the terms of sets and
database interchangeably. We will assume that each element x belongs to {0, 1}L
and L is polynomial in the security parameter k. Thus, by the requirements
above, this means that the database contains at most 2L entries. We will make
no other requirement on the size of the database.

The functionality in question is FDbCom and is the natural extension of the
standard commitment functionality, but in FDbCom we must hide the size of the
committed message and we also have to deal with queries and responses. (These
responses must hide all other information about the database, thus there are
also similarities with the zero-knowledge functionality.)

Ideal functionality FDbCom . The database commitment functionality consists
of two phases: one in which a prover commits to a database, and a second in
which the prover answers queries about that database. Here we will generalize
this definition to say that the prover can commit to any database for which
he knows an implicit representation. In particular, we will allow the prover to
commit to a circuit which evaluates the desired database: it takes as input a
string x, and returns Db[x] (which will be ⊥ if x is not in the database).

The formal specification is given in Fig. 2. For simplicity we assume that all
queries made by the honest verifier V are fixed in advance. The definition can be
generalized to adaptive queries, where the next query depends on the output of
the previous ones. Our construction will satisfy this stronger definition as well.
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Remark. Note that our definition of FDbCom does not exclude the possibility
that a player is able to commit to a very large (e.g. superpolynomial sized)
set, for which he only knows some implicit representation. However, this would
not violate any intuitive security requirement of secure database commitments
since the critical requirement is that the prover is committed to some database
(whose size is not a priori upperbounded by any fixed polynomial) at the end
of the commitment phase, and that it must answer correctly according to this
database during the query phase. We will show a construction in Section 4
that will require that the honest sender knows an explicit representation of the
database he is committing to (i.e., the honest sender runs on input the sequence
of elements it wants to commit to) (Note that an explicit representation can
always be efficiently converted into an implicit representation CDb.) Obtaining a
scheme where a real-world honest prover is allowed to have as input a polynomial-
sized implicit representation that corresponds to a super-polynomial number of
elements is also an interesting direction, and we defer it to future research.

Defining security. In the ideal execution, when initiated with input, parties
interact with FDbCom . The adversary Sim has control of a party and thus can
deviate from the prescribed computation, while the other player HP follows the
prescribed computation. We denote by IDEALFDbCom

HP ,Sim
(k, z) the output of Sim

on input an auxiliary input z, security parameter k and uniform randomness.
Moreover we denote by {IDEALFDbCom

HP ,Sim
(k, z)} the corresponding ensemble of

distributions, with k ∈ N and z ∈ {0, 1}∗.
In the real execution parties run a given protocol π. Let HP be the honest

party and A be the adversary, which has control of the other party. We denote
by EXECπHP ,A(k, z) the output of A on input an auxiliary input z, security pa-
rameter k and uniform randomness. Moreover we denote by {EXECπHP ,A(k, z)}
the corresponding ensemble of distributions, with k ∈ N and z ∈ {0, 1}∗.

Definition 2. A protocol π securely realizes the functionality FDbCom if for any
real-world adversary A there exists an ideal-world adversary Sim such that for
every sufficiently large k, and for every z ∈ {0, 1}∗, {EXECπHP ,A(k, z)} and

{IDEALFDbCom

HP ,Sim
(k, z)} are computationally indistinguishable.

4 Constant-Round Secure Database Commitments

In this section we present a constant-round protocol that securely realizes the
FDbCom functionality. Our construction uses a constant-round zero-knowledge
argument of knowledge (ZKAoK) for all NP, a constant-round WI universal ar-
gument of quasi knowledge, a 2-round trapdoor commitment scheme, and a
zero-knowledge set scheme with two additional properties. As all of these in-
gredients can be instantiated through CRHFs, this gives a secure realization of
FDbCom based only on CRHFs. An additional feature of our protocol is that
the amortized round complexity of a proof is optimal (i.e., proofs are actually
non-interactive).
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Functionality FDbCom

Players: Prover P , Verifier V .
Input of P : circuit CDb. Input

a of V : x1, . . . , xm with m = poly(k).
Computation of FDbCom :

1. Upon receiving (Commit, CDb) from P , if (Commit, CDb) was already received
then ignore, otherwise record (CDb), send (Receipt) to V .

2. Upon receiving (Query, x) from V , if (Commit, CDb) was previously received
from P , then send (Query, x) to P , otherwise ignore.

3. Upon receiving (Open, 1, x) from P , if (Query, x) was not previously sent
to P then ignore, otherwise evaluate the circuit CDb on input x to obtain
output Db[x], and send (Open, x,Db[x]) to V .

4. Upon receiving (Open, 0, x) from P , if (Query, x) was not previously sent to
P then ignore, otherwise send (Open-Abort, x) to V .

5. Upon receiving (Halt) from V , if the same message was previously received
from V then ignore, otherwise send (Halt) to P .

Computation of P :

1. Upon activation, send (Commit, CDb) to FDbCom .
2. Upon receiving (Query, x) from FDbCom , send (Open, 1, x) to FDbCom .
3. Upon receiving (Halt) from FDbCom go to Output.

Computation of V :

1. Upon receiving (Receipt) from FDbCom send (Query, x1) to FDbCom .
2. Upon receiving (Open, xi, yi) from FDbCom , if 0 < i < m then send

(Query, xi+1) to FDbCom .
3. Upon receiving (Open, xm, ym) or (Open-Abort, x) from FDbCom , send (Halt)

to FDbCom and go to Output.

Output:

P : Output (x1, . . . , xt) where t = poly(k) and xi for 0 < i ≤ t is such that
(Query, xi) is the i-th message received from FDbCom .

V : Output ((x1, y1), . . . , (xm′ , ym′)), where each xi for 0 < i ≤ m′ was part of
a message (Query, xi) sent to FDbCom , and yi for 0 < i ≤ m′ was part of a
message (Open, xi, yi) received from FDbCom while yi is the empty string in
case (Open-Abort, xi) has been received from FDbCom .

a We stress that inputs can also be computed adaptively.

Fig. 2. Ideal computation of functionality FDbCom .

Zero-knowledge sets. We start by reviewing a major building block for our
construction: zero-knowledge sets. At a high level, a non-interactive zero-knowledge
set scheme is composed of four algorithms as follows: an algorithm ZKSSetup,
which generates some parameters, an algorithm ZKSCom, which commits to a
database in a size independent way, an algorithm ZKSProve, which allows the
owner of the database to prove that a particular query response was consistent
with the committed database, and an algorithm ZKSVerify for verifying such
proofs. We will also use “ZKS proof system” to refer to the interaction between
ZKSProve and ZKSVerify.
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We will use non-interactive zero-knowledge sets as a building block in our
construction of secure database commitment. In the full version of this work we
give a definition for zero-knowledge sets which is similar to that in [7]. We also de-
fine a somewhat stronger hiding property (which we call special zero knowledge),
in which zero knowledge holds for all valid parameters output by the simulator
set-up algorithm, and the simulated commitment is an honest commitment to
an empty database. In the full version we will discuss how to achieve these
properties based on CRHFs. We finally stress that even though non-interactive
zero-knowledge sets have been defined in common reference string model, we will
use them in the standard model by using interaction.

Intuition for our protocol. The basic idea behind this construction is fairly
straightforward: we give a concise commitment to the database (using the ZKS
commitment algorithm), and use a universal argument of quasi knowledge to
prove knowledge of a valid opening. Then we can use the ZKS proof system
to respond to queries. However, we need a few additional properties from the
ZKS proof system to make this work. The issue is that when we are dealing
with a corrupt prover, we need to be able to extract a circuit representation of
the committed database from the UAQK (by which we mean a circuit which
on input x returns Db[x]). On the other hand, the UAQK only guarantees an
extractor which, given i, returns the ith bit of a valid witness. So we augment the
definition of ZKS with an additional property which will allow us to construct
an implicit database representation from a special witness string. In particular,
we need to guarantee that the witness will be in a format such that we can
efficiently extract Db[x] for any x given only the UAQK extractor which allows
queries to individual bits of the witness. Furthermore, in order to argue that the
responses in the query phase must be consistent with the extracted database,
we also need to be able to efficiently extract a ZKS proof for each x. This must
still be done by just querying the circuit representation. Therefore the mere use
of UAQK is not sufficient to securely realize FDbCom , and we will provide the
needed additional ingredients.

Definition 3. A ZKS proof system (ZKSSetup,ZKSCom,ZKSProve,ZKSVerify)
allows local witnesses if there exist additional polynomial time deterministic algo-
rithms FormWitness,TMVer,Eval,PfGen such that the following properties hold:
Witness verifiability. For any sufficiently large k, for all polynomial sized Db,

and random strings r,

Pr[ZKSPAR← ZKSSetup(1k); zks ← ZKSCom(ZKSPAR,Db, r);

w ← FormWitness(ZKSPAR,Db, r) : TMVer(ZKSPAR, zks, w) = 1] = 1.

Local evaluation. There exists a polynomial q such that for any sufficiently large

k, for any x ∈ {0, 1}k and w ∈ {0, 1}2k , Eval(x,w) only accesses q(k) bits of
w and runs in time polynomial in k.

Local verification. There exists a polynomial q′ such that for any sufficiently

large k, x ∈ {0, 1}k and w ∈ {0, 1}2k , PfGen(x,w) only accesses q′(k) bits
of w and runs in time polynomial in k. Moreover for any x ∈ {0, 1}k and

w ∈ {0, 1}2k and polynomial sized zks,
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Pr[ZKSPAR← ZKSSetup(1k) : TMVer(ZKSPAR, zks, w) = 1∧
∧ ZKSVerify(ZKSPAR, zks, x,Eval(x,w),PfGen(x,w)) = 0] = 0.

The intuition of the above definition is that there must exist a procedure
FormWitness that transforms the witness while still preserving the content of
the database (indeed this is verifiable through TMVer). Moreover one can extract
the membership or non membership of an element and the corresponding proof
by accessing only a polynomial number of bits of this witness, according to the
algorithms Eval and PfGen. The reason why we allow w to be of superpolynomial
size is that the adversary can bypass the procedure FormWitness and produce a
circuit that implicitly represent a superpolynomial sized witness. The interesting
property of our definition is that even in this case, Eval and PfGen will be efficient.
We now show that standard constructions of ZKS ([14,7,5]) have this property.

Previous ZKS schemes allow local witnesses. We will use ideas from the
ZKS construction of [14,7]. We summarize only the main properties we need.

The constructions work by building a tree. For each x in the database, we
parse x as bits b1, . . . , bL. Then at position b1, . . . , bL in the tree (where bi = 0
denotes the left branch and bi = 1 denotes the right branch at height i), we store
a commitment vx to the corresponding y (all commitments here use a special
commitment scheme). We construct the tree from the bottom up. For every
ancestor x′ = b1, . . . , bi of such an x, we compute a commitment to a hash of
the two children: vx′ = Com(h(vx′||0, vx′||1)). If one of the children has not yet
been specified (it is the root of a subtree with no leaves in the database), we set
that child node to Com(⊥).

Then a proof for value (x, y) ∈ Db can be formed by producing all sibling
and ancestor nodes and openings for all ancestor commitments. A proof for value
x /∈ Db is more complex, but it can be formed by first finding the root of the
largest empty subtree containing x. The value of this root node (call it x⊥)
should be ⊥. Then the proof will include all sibling and ancestor nodes of x⊥,
special openings of all ancestor commitments, and an additional value which can
be constructed given x and the randomness used to form the commitment at x⊥.

More formally we have that for every empty subtree, there exists a polynomial
sized string info, such that for all leaves x in this subtree, PfGen(x, info) produces
output identical to ZKSProve. It is also possible to efficiently verify that info is
formed correctly for a given subtree.

We now sketch the necessary algorithms as defined in Definition 3:
FormWitness : will first form the ZKS tree as described above. Then we will

transform this into a single linear witness. For each nonempty, non-⊥ node
x in the tree we will form an entry consisting of the value of vx, the values
of its children, the opening of the commitment vx, and the positions of the
children nodes in the tree. For each ⊥ node, we form an entry with the
commitment v⊥ and the extra info necessary to open the commitment. The
witness will begin with the bit position of the entry corresponding to the
root commitment.

TMVer: will traverse the entire tree, and verify all commitments and hashes.
This algorithm can easily be described by a polynomial sized TM.
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Eval(x): will follow the path through the tree corresponding to x, beginning
with the root and continuing until it reaches either ⊥ or a leaf node with
value y, and return the result.

PfGen: will follow the path through the tree corresponding to x until it reaches
an empty subtree or a leaf. If it is a leaf, it will return all of the ancestor
and sibling nodes and the openings, as described above. If it is an empty
subtree, it reads the accompanying value info, runs PfGen(x, info)→ π and
returns π and all the ancestor and sibling nodes and openings. In both cases
the output for an honestly generated witness will be identical to the output
of ZKSProve.

PfVer: will verify each of the hashes and commitments in the chain. If the final
node is ⊥, it will verify the accompanying proof π.

Our construction. We will use a constant-round zero-knowledge argument of
knowledge (ZKAoK) 〈P(·, ·),V(·)〉, a constant-round WI UAQK 〈UAP(·, ·),UAV(·)〉,
a 2-round trapdoor commitment scheme (TGen,Com,TCom,TDec,Ver), and a
special ZKS (ZKSSetup,ZKSCom,ZKSProve,ZKSVerify) which allows local verifi-
cation with zero knowledge simulator (ZKSSimSetup,ZKSSimCom,ZKSSimProve).
A description of our scheme is found in Fig. 3.

Security Parameter: k.
Input to P : Db = ((x1, y1), . . . , (xs, ys)) where s = poly(k) and xi ∈ {0, 1}k for
0 < i ≤ s.
Input to V : x′1, . . . , x

′
m, where m = poly(k) and x′i ∈ {0, 1}k for 0 < i ≤ m.

Commitment Phase:

1. V → P : set (ZKSPAR, ZKSTRAP)← ZKSSimSetup(1k), (crs, aux)← TGen(1k)
and send (ZKSPAR, crs) to P .

2. V ↔ P : V proves knowledge of ZKSTRAP, aux (i.e., V and P run
P((ZKSPAR, crs), (ZKSTRAP, aux)) and V((ZKSPAR, crs)) respectively). If P
rejects the proof, then it aborts.

3. P → V : pick r ∈ {0, 1}k, set (c, dec) = Com(crs, zks =
ZKSCom(ZKSPAR,Db, r)) and send c to V .

4. P ↔ V : P execute FormWitness(ZKSPAR,Db, r) to generate witness w,
and then execute the code of UAP on input c||ZKSPAR||crs with witness
zks||dec||w. V executes the code of UAV on input c||ZKSPAR||crs. If UAV
rejects, V aborts. UAP proves quasi knowledge of a witness of the form
zks||dec||w, where zks, dec is a valid opening for commitment c under crs,
and w is such that TMVer(ZKSPAR, zks, w) accepts.

5. P → V : open the commitment c by sending zks, dec to V . If the opening is
not correct, V aborts.

Query/Answer Phase:

For i = 1, . . . ,m do:
6. V → P : send x′i to P .
7. P → V : send (y′i = Db[x′i], π = ZKSProve(ZKSPAR, x′i,Db[x′i],Db, r)) to
V . V outputs (x′i, y

′
i) if ZKSVerify(ZKSPAR, zks, x′i, y

′
i, π) = 1 and (x′i,⊥)

otherwise.

Fig. 3. Our scheme for secure database commitments.
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Round optimality. We stress that simply by inspection one can observe that
the query/proof phase is non-interactive (optimal).

Security. The protocol depicted in Fig. 3 securely realizes the FDbCom func-
tionality, i.e., it is a constant-round protocol for secure database commitment.
For lack of space the proof is presented in the full version.

Theorem 3. If 〈P(·, ·),V(·)〉 is a ZKAoK, 〈UAP(·, ·),UAV(·)〉 is a WI UAQK,
(TGen,Com,TCom,TDec,Ver) is a 2-round trapdoor commitment scheme, and
(ZKSSetup,ZKSCom,ZKSProve,ZKSVerify) is a special zero-knowledge set scheme
which allows local witnesses, then the protocol depicted in Fig. 3 securely realizes
the FDbCom functionality.

Corollary 1. Under the assumption that there exists a family of CRHFs, then
there exists an efficient protocol which securely realizes the FDbCom functionality.
This follows from the fact that all of the primitives mentioned in Theorem 3 can
be realized based on CRHFs.
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