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Abstract. We develop a new methodology for utilizing the prior tech-
niques to prove selective security for functional encryption systems as
a direct ingredient in devising proofs of full security. This deepens the
relationship between the selective and full security models and provides
a path for transferring the best qualities of selectively secure systems
to fully secure systems. In particular, we present a Ciphertext-Policy
Attribute-Based Encryption scheme that is proven fully secure while
matching the efficiency of the state of the art selectively secure systems.

1 Introduction

Functional encryption presents a vision for public key cryptosystems that pro-
vide a strong combination of flexibility, efficiency, and security. In a functional
encryption scheme, ciphertexts are associated with descriptive values x, secret
keys are associated with descriptive values y, and a function f(x, y) determines
what a user with a key for value y should learn from a ciphertext with value x.
One well-studied example of functional encryption is attribute-based encryption
(ABE), first introduced in [30], in which ciphertexts and keys are associated
with access policies over attributes and subsets of attributes. A key will decrypt
a ciphertext if and only if the associated set of attributes satisfies the associ-
ated access policy. There are two types of ABE systems: Ciphertext-Policy ABE
(CP-ABE), where ciphertexts are associated with access policies and keys are
associated with sets of attributes, and Key-Policy ABE (KP-ABE), where keys
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are associated with access policies and ciphertexts are associated with sets of
attributes.

To achieve desired flexibility, one strives to construct ABE systems for suit-
ably expressive types of access policies over many attributes. Current construc-
tions allow boolean formulas or linear secret sharing schemes as access policies.
This high level of flexibility means that keys and ciphertexts have rich structure,
and there is a very large space of possible access policies and attribute sets. This
presents a challenge to proving security, since a suitable notion of security in
this setting must enforce collusion resistance, meaning that several users should
not be able to decrypt a message that none of them are individually authorized
to read. Hence a security proof must consider an attacker who can collect many
different keys, just not a single one that is authorized to decrypt the ciphertext.

This requires security reductions to balance two competing goals: the simu-
lator must be powerful enough to provide the attacker with the many keys that
it adaptively requests, but it must also lack some critical knowledge that it can
gain from the attacker’s success. The first security proofs in the standard model
for ABE systems (e.g. [30, 19, 34]) followed a very natural paradigm for balanc-
ing these two goals known as partitioning. This proof technique was previously
used in the context of identity-based encryption [9, 11, 6, 7, 32]. In a partitioning
proof, the simulator sets up the system so that the space of all possible secret
keys is partitioned into two pieces: keys that the simulator can make and those
that it cannot. To ensure that the keys the attacker requests all fall in the set
of keys the simulator can produce and that any key capable of decrypting the
challenge ciphertext falls in the opposite set, the prior works [30, 19, 34] had to
rely on a weaker security model known as selective security. In the selective se-
curity model, the attacker must declare up front what the challenge ciphertext
will be, before seeing the public parameters.

This notion of selective security is quite useful as an intermediary step, but
is rather unsatisfying as an end goal. In the setting of identity-based encryption,
the need for selectivity was overcome by arranging for the simulator to “guess” a
partition and abort when the attacker violated its constraints [32]. However, the
richer structure of attribute-based systems appears to doom this approach to
incur exponential loss, since one must guess a partition that respects the partial
ordering induced by the powers allocated to the individual keys.

Dual System Encryption With the goal of moving beyond the constraints of the
partitioning paradigm, Waters introduced the dual system encryption method-
ology [33]. In a dual system security proof, the simulator is always prepared to
make any key and any challenge ciphertext. The high level idea of the method-
ology is as follows. There are two types of keys and ciphertexts: normal and
semi-functional. A key will decrypt a ciphertext properly unless both the key
and the ciphertext are semi-functional, in which case decryption will fail with all
but negligible probability. The normal keys and ciphertexts are used in the real
system, while the semi-functional objects are gradually introduced in the hybrid
security proof - first the ciphertext is changed from normal to semi-functional,
and then the secret keys given to the attacker are changed from normal to



semi-functional one by one. Ultimately, we arrive at a security game in which
the simulator only has to produce semi-functional objects and security can be
proved directly.

The most critical step of the hybrid proof is when a key turns semi-functional:
at this point, we must leverage the fact that the key is not authorized to decrypt
the (now semi-functional) challenge ciphertext in order to argue that the attacker
cannot detect the change in the key. However, since we are not imposing a
partition on the simulator, there is no constraint preventing the simulator itself
from creating a key that is authorized to decrypt and testing the nature of the
key for itself by attempting to decrypt the semi-functional ciphertext. In the first
application of dual system encryption to ABE [22], this paradox was averted by
ensuring that the simulator could only produce a key that would be correlated
with the semi-functional ciphertext so that decryption would succeed in the
simulator’s view, regardless of the presence or absence of semi-functionality.
This correlation between a semi-functional key and semi-functional ciphertext
was called nominal semi-functionality. It was argued that this correlation was
hidden information-theoretically from the attacker, who cannot request keys
authorized to decrypt the challenge ciphertext. This provided the first proof of
full security for an ABE scheme in the standard model.

The One-Use Restriction The information-theoretic argument in [22] required
a one-use restriction on attributes in access formulas/LSSS matrices, meaning
that a single attribute could only be used once in a policy. This can be extended
to a system which allows reuse of attributes by setting a fixed bound M on
the maximum number of times an attribute may be used and having separate
parameters for each use. This scales the size of the public parameters by M ,
as well as the size of secret keys for CP-ABE systems3. This approach incurs
a very significant loss in efficiency, and has been inherited by all fully secure
schemes to date ([24, 28] employ the same technique). This loss in efficiency is
costly enough to limit the potential applications of fully secure schemes. As an
example, the recent work of [2] building verifiable computation schemes from
KP-ABE systems only produces meaningful results when one starts with a KP-
ABE scheme that can be proven secure without incurring the blowup of this
encoding technique.

Our work eliminates this efficiency loss and allows unrestricted use of at-
tributes while still proving full security in the standard model. Our main ob-
servation is motivated by the intuition that the information-theoretic step of
the prior dual system proof is ceding too much ground to the attacker, since a
computational argument would suffice. In fact, we are able to resurrect the ear-
lier selective proof techniques inside the framework of dual system encryption in
order to retake ground and obtain a wholly computational proof of full security.

Our Techniques Dual system encryption is typically implemented by designing
a “semi-functional space” where semi-functional components of keys and cipher-
texts will behave like a parallel copy of the normal components of the system,

3 For KP-ABE systems, the ciphertext size instead will grow multiplicatively with M .



except divorced from the public parameters. This provides a mechanism allow-
ing for delayed parameters in the semi-functional space, meaning that relevant
variables can be defined later in the simulation instead of needing to be fixed in
the setup phase. The hybrid structure of a dual system encryption argument is
implemented by additionally providing a mechanism for key isolation, meaning
that some or all of the semi-functional parameters will only be relevant to the
distribution of a single semi-functional key at a time.

In combination, these two mechanisms mean that the semi-functional space
has its own fresh parameters that can be decided on the fly by the simulator
when they become relevant, and they are only relevant for the semi-functional
ciphertext and a single semi-functional key. Previous dual system encryption
arguments have used the isolated use of these delayed semi-functional parameters
as a source of entropy in the attacker’s view to make an information-theoretic
argument. We observe that these mechanisms can also be used to implement
prior techniques for selective security proofs, without needing to impose the
selective restriction on the attacker.

To explain this more precisely, we consider the critical step in the hybrid
security proof when a particular key becomes semi-functional. We conceptualize
the unpublished semi-functional parameters as being defined belatedly when the
simulator first issues either the key in question or the semi-functional ciphertext.
For concreteness, we consider a CP-ABE system. If the ciphertext is issued first,
then the simulator learns the challenge policy before defining the delayed semi-
functional parameters - this is closely analogous to the setting of selective security
for a CP-ABE system. If the key is issued first, then the simulator learns the
relevant set of attributes before defining the delayed semi-functional parameters,
and this is closely analogous to the setting of selective security for a KP-ABE
system. This provides us an opportunity to combine the techniques used to prove
selective security for both CP-ABE and KP-ABE systems with the dual system
encryption methodology in order to obtain a new proof of full security that
maintains the efficiency of selectively secure systems.

Our Results Since our approach utilizes selective techniques for both CP-ABE
and KP-ABE in order to prove full security for either kind of system, we inherit
the kinds of complexity assumptions needed to prove selective security in both
settings. The KP-ABE scheme of [19] is proven selectively secure under the
decisional bilinear Diffie-Hellman assumption, and so we are able to rely on the
relatively simple 3-party Diffie-Hellman assumption for this part of our proof.
The most efficient selectively secure CP-ABE scheme that is known is provided
in [34], and it is proven secure under a q-based assumption (meaning that the
number of terms in the assumption is parameterized by a value q that depends
on the behavior of the attacker). Hence we inherit the need to rely on a q-based
assumption in our security proof as well.

The dual system encryption methodology has previously been implemented
both in prime order bilinear groups (e.g. in [33, 28]) and in composite order
bilinear groups (e.g. in [23, 22]). The two settings provide different but roughly
interchangeable mechanisms for executing delayed parameters and key isolation,



and our techniques are compatible with either setting. We first present a CP-
ABE construction and security proof in composite order groups, relying on a few
instances of the general subgroup decision assumption to execute the delayed
parameters and key isolation mechanisms. In the full version, we also present
an analogous CP-ABE construction and security proof in prime order groups,
relying on the decisional linear assumption for these functions. To translate our
construction from the composite order setting to the prime order setting, we
employ the dual pairing vector space framework developed in [26–28], along
with the relevant observations in [21]. The formal statements of our complexity
assumptions for the composite order setting can be found in Section 2.1, while
those for the prime order setting can be found in the full version. Though we
present only CP-ABE schemes in this work, we expect that our techniques are
equally applicable to the KP-ABE setting.

We view our work as providing a new view of the relationship between the
selective and full security models, as we illustrate a methodology for using tech-
niques in the selective context as direct building blocks for a full security proof.
We suspect that any new improvements in selectively secure systems may now
translate to improvements in the full security setting. In particular, a new proof
of selective security for an efficient CP-ABE system relying on a static (non q-
based) assumption could likely be combined with our techniques to yield a fully
secure scheme of comparable efficiency under similar assumptions. This remains
an important open problem.

Other Related Work The roots of attribute-based encryption trace back to
identity-based encryption (IBE), which was first conceived by Shamir [31] and
then constructed by Boneh and Franklin [9] and Cocks [14]. This concept was
extended to the notion of hierarchical identity-based encryption (HIBE) by Hor-
witz and Lynn [20], and this was first constructed by Gentry and Silverberg [17].
Subsequent constructions of IBE and HIBE can be found in [11, 6–8, 15, 16, 23, 1,
12, 25]. There have been several prior constructions of attribute-based encryption
which have been shown to be selectively secure in the standard model [30, 19,
13, 29, 18, 34] or proven secure in the generic group model [5] (this is a heuristic
model intended to capture an attacker who can only access group operations in
a black-box fashion).

2 Preliminaries

Here we present the relevant background on composite order bilinear groups and
state the complexity assumptions we use in this context. We also give background
on LSSS access structures. Further background on CP-ABE systems and their
formal security definition can be found in the full version.

2.1 Composite Order Bilinear Groups and Complexity Assumptions

We will first construct our system in composite order bilinear groups, which were
introduced in [10]. We let G denote a group generator - an algorithm which takes



a security parameter λ as input and outputs a description of a bilinear group G.
We define G’s output as (N,G,GT , e), where N = p1p2p3 is a product of three
distinct primes, G and GT are cyclic groups of order N , and e : G2 → GT is a
map such that:

1. (Bilinear) ∀g, f ∈ G, a, b ∈ ZN , e(ga, f b) = e(g, f)ab

2. (Non-degenerate) ∃g ∈ G such that e(g, g) has order N in GT .

We refer to G as the source group and GT as the target group. We assume
that the group operations in G and GT and the map e are computable in poly-
nomial time with respect to λ, and the group descriptions of G and GT include a
generator of each group. We let Gp1 , Gp2 , and Gp3 denote the subgroups of order
p1, p2, and p3 in G respectively. We note that these subgroups are “orthogonal”
to each other under the bilinear map e: if fi ∈ Gpi and fj ∈ Gpj for i 6= j, then
e(fi, fj) is the identity element in GT . If g1 generates Gp1 , g2 generates Gp2 ,
and g3 generates Gp3 , then every element f of G can be expressed as gc11 g

c2
2 g

c3
3

for some values c1, c2, c3 ∈ ZN . We will refer to gc11 as the “Gp1 part of f”, for
example.

We now present the complexity assumptions we will use in composite order

bilinear groups. We use the notation X
R←− S to express that X is chosen

uniformly randomly from the finite set S. We will consider groups G whose orders
are products of three distinct primes. For any non-empty set Z ⊆ {1, 2, 3}, there
is a corresponding subgroup of G of order

∏
i∈Z pi. We denote this subgroup by

GZ . Our first assumption has been previously used in [23, 22], for example, and
holds in the generic group model:

Assumption 1 Given a group generator G, we define the following distribution:

G = (N = p1p2p3, G,GT , e)
R←− G,

g1
R←− Gp1 , g2, X2, Y2

R←− Gp2 , g3
R←− Gp3 , α, s

R←− ZN ,

D = (G, g1, g2, g3, gα1X2, g
s
1Y2), T0 = e(g1, g1)αs, T1

R←− GT .

We define the advantage of an algorithm A in breaking this assumption to
be:

Adv1G,A(λ) :=
∣∣Pr[A(D,T0) = 1]− Pr[A(D,T1) = 1]

∣∣.
We say that G satisfies Assumption 1 if Adv1G,A(λ) is a negligible function of λ
for any PPT algorithm A.

We next define the General Subgroup Decision Assumption for composite
order bilinear groups with three prime subgroups. This was first defined in [4]
more generally for groups with an arbitrary number of prime order subgroups,
but three will be sufficient for our purposes. We will only use a few specific
instances of this assumption, but we prefer to state its full generality here for
conciseness. We note that for our prime order construction, Assumption 1 and
all instances of the General Subgroup Decision Assumption will be replaced by
the Decisional Linear Assumption.



The General Subgroup Decision Assumption We let G denote a group generator
and Z0, Z1, Z2, . . . , Zk denote a collection of non-empty subsets of {1, 2, 3} where
each Zi for i ≥ 2 satisfies either Z0 ∩Zi 6= ∅ 6= Z1 ∩Zi or Z0 ∩Zi = ∅ = Z1 ∩Zi.
We define the following distribution:

G = (N = p1p2p3, G,GT , e)
R←− G,

gZ2

R←− GZ2 , . . . , gZk
R←− GZk

D = (G, gZ2
, . . . , gZk), T0

R←− GZ0
, T1

R←− GZ1
.

Fixing the collection of sets Z0, . . . , Zk, we define the advantage of an algo-
rithm A in breaking this assumption to be:

AdvSDG,A(λ) :=
∣∣Pr[A(D,T0) = 1]− Pr[A(D,T1) = 1]

∣∣.
We say that G satisfies the General Subgroup Decision Assumption if AdvSDG,A(λ)
is a negligible function of λ for any PPT algorithm A and any suitable collection
of subsets Z0, . . . , Zk. This can be thought of as a family of assumptions, param-
eterized by the choice of the sets Z0, . . . , Zk. All of these individual assumptions
hold in the generic group model, assuming it is hard to find a non-trivial factor
of N . We will assume that 1

pi
is negligible in the security parameter for each

prime factor pi of N . In particular, this means we may assume (ignoring only
negligible probability events) that when an element is randomly chosen from a
subgroup of G, it is in fact a generator of that subgroup.

We next introduce an assumption that we call The Three Party Diffie-
Hellman Assumption in a Subgroup. This is a close relative of the standard
Decisional Bilinear Diffie-Hellman Assumption, but it has a challenge term re-
maining in the source group and takes place in a prime order subgroup of a
composite order bilinear group. These adjustments from the usual DBDH as-
sumption allow us to use our assumption in the semi-functional space for a
particular key - without affecting the normal space or the other keys.

The Three Party Diffie-Hellman Assumption in a Subgroup Given a group gen-
erator G, we define the following distribution:

G = (N = p1p2p3, G,GT , e)
R←− G,

g1
R←− Gp1 , g2

R←− Gp2 , g3
R←− Gp3 , x, y, z

R←− ZN ,

D = (G, g1, g2, g3, gx2 , g
y
2 , g

z
2), T0 = gxyz2 , T1

R←− Gp2 .

We define the advantage of an algorithm A in breaking this assumption to
be:

Adv3DHG,A (λ) :=
∣∣Pr[A(D,T0) = 1]− Pr[A(D,T1) = 1]

∣∣.
We say that G satisfies The Three Party Diffie-Hellman Assumption ifAdv3DHG,A (λ)
is a negligible function of λ for any PPT algorithm A.



We next introduce a q-based assumption that we call The Source Group
q-Parallel BDHE Assumption in a Subgroup. This is a close relative of The
Decisional q-parallel Bilinear Diffie-Hellman Exponent Assumption introduced
in [34], except that its challenge term remains in the source group and it takes
place in a prime order subgroup of a composite order bilinear group. In the full
version, we prove that the prime order variant of this assumption holds in the
generic group model (the proof for this version follows analogously). Below, we
use the notation [q], for example, to denote the set {1, 2, . . . , q}.

The Source Group q-Parallel BDHE Assumption in a Subgroup Given a group
generator G and a positive integer q, we define the following distribution:

G = (N = p1p2p3, G,GT , e)
R←− G,

g1
R←− Gp1 , g2

R←− Gp2 , g3
R←− Gp3 , c, d, f, b1, . . . , bq

R←− ZN ,

The adversary will be given:

D = (G, g1, g3, g2, gf2 , g
df
2 , g

c
2, g

c2

2 , . . . , g
cq

2 , g
cq+2

2 , . . . , gc
2q

2 ,

g
ci/bj
2 ∀i ∈ [2q] \ {q + 1}, j ∈ [q],

g
dfbj
2 ∀j ∈ [q], g

dfcibj′/bj
2 ∀i ∈ [q], j, j′ ∈ [q] s.t. j 6= j′).

We additionally define

T0 = gdc
q+1

2 , T1
R←− Gp2 .

We define the advantage of an algorithm A in breaking this assumption to
be:

AdvqG,A(λ) := |Pr[A(D,T0) = 1]− Pr[A(D,T1) = 1]| .

We say that G satisfies The Source Group q-Parallel BDHE Assumption in a
Subgroup if AdvqG,A is a negligible function of λ for any PPT algorithm A.

2.2 Access Structures

Definition 1. (Access Structure [3]) Let {P1, . . . , Pn} be a set of parties. A
collection A ⊆ 2{P1,...,Pn} is monotone if ∀B,C: if B ∈ A and B ⊆ C, then C ∈
A. An access structure (respectively, monotone access structure) is a collection
(respectively, monotone collection) A of non-empty subsets of {P1, . . . , Pn}, i.e.,
A ⊆ 2{P1,...,Pn}\{}. The sets in A are called the authorized sets, and the sets
not in A are called the unauthorized sets.

In our setting, attributes will play the role of parties and we will consider only
monotone access structures. One can (inefficiently) realize general access struc-
tures with our techniques by having the negation of an attribute be a separate
attribute (so the total number of attributes doubles).



Linear Secret-Sharing Schemes Our construction will employ linear secret-sharing
schemes (LSSS). We use the following definition adapted from [3].

Definition 2. (Linear Secret-Sharing Schemes (LSSS)) A secret sharing scheme
Π over a set of parties P is called linear (over Zp) if

1. The shares for each party form a vector over Zp.

2. There exists a matrix A called the share-generating matrix for Π. The matrix
A has ` rows and n columns. For all j = 1, . . . , `, the jth row of A is labeled
by a party ρ(j) (ρ is a function from {1, . . . , `} to P). When we consider the
column vector v = (s, r2, . . . , rn), where s ∈ Zp is the secret to be shared and
r2, . . . , rn ∈ Zp are randomly chosen, then Av is the vector of ` shares of the
secret s according to Π. The share (Av)j belongs to party ρ(j).

We note the linear reconstruction property: we suppose that Π is an LSSS for
access structure A. We let S denote an authorized set, and define I ⊆ {1, . . . , `}
as I = {j|ρ(j) ∈ S}. Then the vector (1, 0, . . . , 0) is in the span of rows of A
indexed by I, and there exist constants {ωj ∈ Zp}j∈I such that, for any valid
shares {λj} of a secret s according to Π, we have:

∑
j∈I ωjλj = s. These con-

stants {ωj} can be found in time polynomial in the size of the share-generating
matrix A [3]. For unauthorized sets, no such constants {ωj} exist. For our com-
posite order group construction, we will employ LSSS matrices over ZN , where
N is a product of three distinct primes.

3 CP-ABE Construction

We now present our CP-ABE scheme in composite order groups. This closely
resembles the selectively secure CP-ABE scheme in [34], but with a one extra
group element for each key and ciphertext. This extra group element is helpful
in performing a cancelation during our security proof (when we are dealing with
Phase II queries). We note that the freshly random exponent t for each key serves
to prevent collusion, since it “ties” together the user’s attributes. Our main
system resides in the Gp1 subgroup, while the Gp2 subgroup is reserved as the
semi-functional space, and the Gp3 subgroup provides additional randomness on
keys that helps to isolate keys in the hybrid argument. We assume that messages
to be encrypted as elements of the target group GT . The notation [`] denotes
the set {1, . . . , `}.

Setup(λ,U)→ PP,MSK The setup algorithm chooses a bilinear groupG of order
N = p1p2p3 (3 distinct primes). We let Gpi denote the subgroup of order pi in
G. It then chooses random exponents α, a, κ ∈ ZN , and a random group element
g ∈ Gp1 . For each attribute i ∈ U , it chooses a random value hi ∈ ZN . The
public parameters PP are N, g, ga, gκ, e(g, g)α, Hi = ghi∀i. The master secret
key MSK additionally contains gα and a generator g3 of Gp3 .



KeyGen(MSK, S,PP)→ SK The key generation algorithm chooses random ex-
ponents t, u ∈ ZN , and random elements R,R′, R′′, {Ri}i∈S ∈ Gp3 (this can be
done by raising a generator of Gp3 to random exponents modulo N). The secret
key is: S, K = gαgatgκuR, K ′ = guR′, K ′′ = gtR′′, Ki = Ht

iRi ∀i ∈ S.

Encrypt((A, ρ),PP,M)→ CT For A an `×n matrix and ρ a map from each row
Aj of A to an attribute ρ(j), the encryption algorithm chooses a random vector
v ∈ ZnN , denoted v = (s, v2, . . . , vn). For each row Aj of A, it chooses a random
rj ∈ ZN . The ciphertext is (we also include (A, ρ) in the ciphertext, though we
do not write it below):

C0 = Me(g, g)αs, C = gs, C ′ = (gκ)s, Cj = (ga)Aj ·vH
−rj
ρ(j) , Dj = grj ∀j ∈ [`].

Decrypt(CT,PP,SK)→M For a secret key corresponding to an authorized set
S, the decryption algorithm computes constants ωj ∈ ZN such that

∑
ρ(j)∈S ωjAj =

(1, 0, . . . , 0). It then computes:

e(C,K)e(C ′,K ′)−1/
∏

ρ(j)∈S

(
e(Cj ,K

′′)e(Dj ,Kρ(j))
)ωj

= e(g, g)αs.

Then M can be recovered as C0/e(g, g)αs.

Correctness We observe that e(C,K)e(C ′,K ′)−1 = e(g, g)αse(g, g)sat. For each
j, e(Cj ,K

′′)e(Dj ,Kρ(j)) = e(g, g)atAj ·v, so we have:∏
ρ(j)∈S

(
e(Cj ,K

′′)e(Dj ,Kρ(j))
)ωj

= e(g, g)at
∑
ρ(j)∈S ωjAj ·v = e(g, g)sat.

4 Security Proof

We now prove the following theorem:

Theorem 1. Under Assumption 1, the general subgroup decision assumption,
the three party Diffie-Hellman assumption in a subgroup, and the source group
q-parallel BDHE assumption in a subgroup defined in Section 2.1, our CP-ABE
scheme defined in Section 3 is fully secure.

Our security proof is obtained via a hybrid argument over a sequence of
games. We let Gamereal denote the real security game in the standard definition
of full security for CP-ABE schemes (see the full version for a complete descrip-
tion). To describe the rest of the games, we must first define semi-functional keys
and ciphertexts. We let g2 denote a fixed generator of the subgroup Gp2 .

Semi-functional Keys To produce a semi-functional key for an attribute set S,
one first calls the normal key generation algorithm to produce a normal key
consisting of K,K ′,K ′′, {Ki}i∈S . One then chooses a random element W ∈ Gp2
and forms the semi-functional key as: KW,K ′,K ′′, {Ki}i∈S . In other words, all
of the elements remain unchanged except for K, which is multiplied by a random
element of Gp2 .



Semi-functional Ciphertexts To produce a semi-functional ciphertext for an
LSSS matrix (A, ρ), one first calls the normal encryption algorithm to pro-
duce a normal ciphertext consisting of C0, C, C

′, {Cj , Dj}. One then chooses
random exponents a′, κ′, s′ ∈ ZN , a random vector w ∈ ZnN with s′ as its first
entry, a random exponent ηi ∈ ZN for each attribute i, and a random expo-
nent γj ∈ ZN for each j ∈ [`]. The semi-functional ciphertext is formed as:

C0, Cg
s′

2 , C
′gs
′κ′

2 , {Cjg
a′Aj ·w
2 g

−ηρ(j)γj
2 , Djg

γj
2 }.

We observe that the structure of the elements in Gp2 here is similar to the
structure in Gp1 , but is unrelated to the public parameters. More specifically, s′

plays the role of s, w plays the role of v, a′ plays the role of a, κ′ plays the role of
κ, ηρ(j) plays the role of hρ(j), and γj plays the role of rj . While the values of a,
κ, and the values hρ(j) are determined modulo p1 by the public parameters, the
values of a′, κ′, ηρ(j) are freshly random modulo p2. These values a′, κ′, {ηi} are
chosen randomly once and then fixed - these same values will also be involved
in additional types of semi-functional keys which we will define below.

We let Q denote the total number of key queries that the attacker makes.
For each k from 0 to Q, we define Gamek as follows.

Gamek In this game, the ciphertext given to the attacker is semi-functional,
as are the first k keys. The remaining keys are normal.

The outer structure of our hybrid argument will progress as follows. First, we
transition from Gamereal to Game0, then to Game1, next to Game2, and so on.
We ultimately arrive at GameQ, where the ciphertext and all of the keys given
to the attacker are semi-functional. We then transition to Gamefinal, which is
defined to be like GameQ, except that the ciphertext given to the attacker is a
semi-functional encryption of a random message. This will complete our security
proof, since any attacker has a zero advantage in this final game.

The transitions from Gamereal to Game0 and from GameQ to Gamefinal are
relatively easy, and can be accomplished directly via computational assumptions.
The transitions from Gamek−1 to Gamek require more intricate arguments. For
these steps, we will need to treat Phase I key requests (before the challenge
ciphertext) and Phase II key requests (after the challenge ciphertext) differently.
We will also need to define two additional types of semi-functional keys:

Nominal Semi-functional Keys These keys will share the values a′, κ′, ηi modulo
p2 with the semi-functional ciphertext. To produce a nominal semi-functional
key for an attribute set S, one first calls the normal key generation algorithm
to produce a normal key consisting of K,K ′,K ′′, {Ki}i∈S . One then chooses
random exponents t′, u′ ∈ ZN and forms the nominal semi-functional key as:

Kga
′t′+κ′u′

2 , K ′gu
′

2 , K ′′gt
′

2 , Kig
t′ηi
2 ∀i ∈ S. We note that a nominal semi-

functional key still correctly decrypts a semi-functional ciphertext, since the
terms in the Gp2 will cancel out upon completion of the decryption algorithm.

Temporary Semi-functional Keys These keys will still share the values ηi modulo
p2 with the semi-functional ciphertext, but the Gp2 component attached to K
will now be randomized. More formally, to produce a temporary semi-functional



key for an attribute set S, one first calls the normal key generation algorithm
to produce a normal key consisting of K,K ′,K ′′, {Ki}i∈S . One then chooses
a random W ∈ Gp2 and random exponents t′, u′ ∈ ZN . The temporary semi-

functional key is formed as: KW, K ′gu
′

2 , K
′′gt
′

2 , Kig
t′ηi
2 ∀i ∈ S.

For each k from 1 to Q, we define the following additional games:
GameNk This is like Gamek, except that the kth key given to the attacker is

a nominal semi-functional key. The first k − 1 keys are still semi-functional in
the original sense, while the remaining keys are normal.

GameTk This is like Gamek, except that the kth key given to the attacker is
a temporary semi-functional key. The first k− 1 keys are still semi-functional in
the original sense, while the remaining keys are normal.

The fact that the values a′, κ′, ηi are shared among semi-functional cipher-
texts, nominal semi-functional keys, and temporary semi-functional keys means
that these values are fixed whenever they first appear in a security game. This
could be when the semi-functional ciphertext is generated, when a nominal semi-
functional key is generated, or in the case of the ηi values, when a temporary
semi-functional key is generated. The structure of temporary semi-functional
keys is designed to fit the outcome of applying selective proof techniques to a
single key and ciphertext pair within our hybrid game sequence.

In order to get from Gamek−1 to Gamek in our hybrid argument, we will tran-
sition first from Gamek−1 to GameNk , then to GameTk , and finally to Gamek. The
transition from GameNk to GameTk will require different computational assump-
tions for Phase I and Phase II key queries. We let Q1 denote the number of Phase
I queries, and we will address this transition separately for k ≤ Q1 and k > Q1.
Our handling of Phase I queries will closely resemble the selective security proof
strategy for KP-ABE in [19], while our handling of Phase II queries will closely
resemble the selective security proof strategy for CP-ABE in [34].

The original versions of these arguments in [19, 34] relied on assumptions very
close to ours, with the main difference being that the assumptions in [19, 34] had
challenge terms in the target group GT instead of G. This is because the selective
security arguments could afford to deal with all keys at once, and hence could use
an assumption with a challenge in the target group to change the ciphertext to
an encryption of a random message. This kind of change simultaneously affects
the interaction of the ciphertext with all keys. In our hybrid framework, we need
to handle keys individually, and hence we use an assumption with a challenge in
the source group to change the nature of individual keys one at a time, saving
our progress incrementally until we arrive at the final step and can afford to
change to an encryption of a random message.

Our hybrid argument is accomplished in the following lemmas. Due to space
constraints, some of the more standard lemma proofs are omitted here, but can
be found in the full version.

Lemma 1. Under the general subgroup decision assumption, no polynomial time
attacker can achieve a non-negligible difference in advantage between Gamereal
and Game0.



Lemma 2. Under the general subgroup decision assumption, no polynomial time
attacker can achieve a non-negligible difference in advantage between Gamek−1
and GameNk for any k from 1 to Q.

The proofs of these first two lemmas can be found in the full version.

Lemma 3. Under the three party Diffie-Hellman assumption in a subgroup (and
assuming it is hard to find a non-trivial factor of N), no polynomial time attacker
can achieve a non-negligible difference in advantage between GameNk and GameTk
for an k from 1 to Q1 (recall these are all the Phase I queries).

Proof. Given a PPT attacker A achieving a non-negligible difference in advan-
tage between GameNk and GameTk for some k between 1 and Q1, we will create
a PPT algorithm B to break the three party Diffie-Hellman assumption in a
subgroup. B is given g1, g2, g3, g

x
2 , g

y
2 , g

z
2 , T , where T is either gxyz2 or a random

element of Gp2 . B will simulate either GameNk or GameTk with A depending on
the nature of T .
B first chooses random exponents α, a, κ, {hi} ∈ ZN and sets the public

parameters as: PP = {N, g = g1, g
a = ga1 , g

κ = gκ1 , e(g1, g1)α, Hi = ghi1 ∀i}. It
gives these to A. We note that B knows the MSK, and hence can use the normal
key generation algorithm to make normal keys in response to A’s key requests
from the k+ 1 request and onward. To respond to A’s first k− 1 key requests, B
creates semi-functional keys by first creating a normal key and then multiplying
K by a random element of Gp2 (this can be obtained by raising the generator
g2 to a random exponent modulo N).

We let S denote the attribute set requested in the kth key query by A. Since
we are assuming the kth key query occurs in Phase I, S is declared before B must
produce the challenge ciphertext. This allows B to define the values ηi modulo
p2 to be shared by the kth key and the semi-functional ciphertext after learning
the set S. To set these values, B chooses random exponents ηi ∈ ZN for each
i ∈ S. For i /∈ S, it implicitly sets ηi modulo p2 to be equal to xη̃i modulo p2,
where random exponents η̃i ∈ ZN are chosen for each i /∈ S. It also implicitly
sets a′ equal to xy modulo p2.

To form the kth key, B first calls the normal key generation algorithm to
produce a normal key, K,K ′,K ′′, {Ki}i∈S . It then chooses random exponents
κ′, u′ ∈ ZN and implicitly sets t′ modulo p2 equal to z modulo p2. It sets the key
as: Kgκ

′u′

2 T, K ′gu
′

2 , K
′′gz2 , Ki = (gz2)ηi ∀i ∈ S. We observe that if T = gxyz2 ,

this is a properly distributed nominal semi-functional key, and when T is random
in Gp2 , this is a properly distributed temporary semi-functional key.

To create the semi-functional challenge ciphertext for an `×n access matrix
(A, ρ) and message Mb, B first runs the normal encryption algorithm to produce
a normal ciphertext, C0, C, C

′, {Cj , Dj}j∈[`]. We note the attribute set S cannot
satisfy the access policy of (A, ρ). As a result, B can efficiently find a vector
w̃ ∈ ZnN such that w̃ · Aj = 0 modulo N for all j such that ρ(j) ∈ S and the
first entry of w̃ is nonzero modulo each prime dividing N . Such a vector will
exist as long as (1, 0, . . . , 0) is not in the span of {Aj}ρ(j)∈S modulo each of
p1, p2, p3. We may assume this holds with all but negligible probability, since



we are assuming it is hard to find a non-trivial factor of N . This vector w̃ can
be efficiently found by performing row reduction modulo N (we note that if
one encounters a nonzero, non-invertible element of N during this process, then
one has found a nontrivial factor of N). Once w̃ is found, its first entry can be
randomized by multiplying the vector by a random value modulo N . Thus, we
may assume the first entry of w̃ is random modulo p2. We call this first entry s′.
B also chooses a random vector w′ ∈ ZnN with first entry equal to 0. It will

implicitly set the sharing vector w modulo p2 so that a′w = xyw̃ + w′ (i.e.
w = w̃+ (xy)−1w′). We note that w is randomly distributed since the first entry
of w̃ is random and the remaining entries of w′ are random. B also chooses
random values γj ∈ ZN for each j such that ρ(j) ∈ S, and random values
γ̃j ∈ ZN for each j such that ρ(j) /∈ S. For these j’s such that ρ(j) /∈ S, it will
implicitly set γj = yη̃−1ρ(j)Aj · w̃+ γ̃j . We note that all of these values are properly

distributed modulo p2.
It forms the semi-functional ciphertext as:

C0, Cg
s′

2 , C
′gs
′κ′

2 , Cjg
Aj ·w′
2 g

−ηρ(j)γj
2 , Djg

γj
2 ∀j s.t. ρ(j) ∈ S,

Cjg
Aj ·w′
2 (gx2 )−η̃ρ(j)γ̃j , Dj(g

y
2 )
η̃−1
ρ(j)

Aj ·w̃g
γ̃j
2 ∀j s.t. ρ(j) /∈ S.

To see that this is a properly formed semi-functional ciphertext, note that for j
such that ρ(j) /∈ S:

a′Aj ·w−ηρ(j)γj = Aj ·(xyw̃+w′)−xη̃ρ(j)(yη̃−1ρ(j)Aj · w̃+ γ̃j) = Aj ·w′−xη̃ρ(j)γ̃j .

Here, B has embedded a y into the γj term and used the x embedded in the
ηρ(j) term to cancel out the xy term in a′Aj · w that it cannot produce.

When T = gxyz2 , B has properly simulated GameNk , and when T is random in
Gp2 , B has properly simulated GameTk . Hence B can leverage A’s non-negligible
difference in advantage between these games to achieve a non-negligible advan-
tage against the three party Diffie-Hellman assumption in a subgroup.

Lemma 4. Under the source group q-parallel BDHE assumption in a subgroup
(and assuming it is hard to find a non-trivial factor of N), no polynomial time
attacker can achieve a non-negligible difference in advantage between GameNk
and GameTk for a k > Q1 using an access matrix (A, ρ) of size ` × n where
`, n ≤ q.

Proof. Given a PPT attacker A achieving a non-negligible difference in advan-
tage between GameNk and GameTk for some k such that Q1 < k ≤ Q using
an access matrix with dimensions ≤ q, we will create a PPT algorithm B to
break the source group q-parallel BDHE assumption in a subgroup. Our B is

given: g1, g3, g2, g
f
2 , g

df
2 , g

ci

2 ∀i ∈ [2q] \ {q + 1}, gc
i/bj

2 ∀i ∈ [2q] \ {q + 1}, j ∈ [q],

g
dfbj
2 ∀j ∈ [q], g

dfcibj′/bj
2 ∀i ∈ [q], j, j′ ∈ [q] such that j 6= j′, and T , where T

is either equal to gdc
q+1

2 or is a random element of Gp2 . B will simulate either
GameNk or GameTk with A, depending on T .



B chooses random exponents α, a, κ, {hi} ∈ ZN , and sets the public param-
eters as PP = {N, g = g1, g

a = ga1 , g
κ = gκ1 , e(g1, g1)α, Hi = ghi1 ∀i}. It gives

these to A. We note that B knows the MSK, and hence can use the normal key
generation algorithm to make normal keys in response to A’s key requests from
the k + 1 request and onward. To make the first k − 1 semi-functional keys, B
can first make a normal key and then multiply the K by a random element of
Gp2 (this can be obtained by raising g2 to a random exponent modulo N).

Since we are assuming the kth key query is a Phase II key query,A will request
the challenge ciphertext for some `×n access matrix (A, ρ) before requesting the
kth key. This allows B to define the exponents a′, κ′, {ηi} after seeing (A, ρ). B
chooses random values κ̃, {η̃i} ∈ ZN . It will implicitly set a′ = cd modulo p2 and
κ′ = d+ κ̃ modulo p2. For each attribute i, we let Ji denote the set of indices j
such that ρ(j) = i. B define gηi2 as:

gηi2 = gη̃i2
∏
j∈Ji

(
g
c/bj
2

)Aj,1
·
(
g
c2/bj
2

)Aj,2
· · ·
(
g
cn/bj
2

)Aj,n
.

We note that all of these terms g
c/bj
2 , . . . , g

cn/bj
2 are available to B, since we are

assuming n, ` ≤ q. We note that a′ is uniformly random because d is random, κ′

is randomized by κ̃, and each ηi is randomized by η̃i.
To form the challenge ciphertext, B chooses random exponents {γ̃j} ∈ ZN . It

creates the normal components of the ciphertext as in the encryption algorithm.
To create the semi-functional components (the parts in Gp2), it implicitly sets
s′ = f modulo p2 and γj = dfbj + γ̃j for each j from 1 to `. We note that these
values are properly distributed because f, γ̃j are random. It also chooses random
values y2, . . . , yn ∈ ZN and implicitly sets the sharing vector w as:

w := (f, fc+ y2(a′)−1, . . . , fcn−1 + yn(a′)−1).

This is properly distributed as a random vector up to the constraint that the
first entry is s′ = f (note that a′ is nonzero with all but negligible probability).

For each j from 1 to `, we observe that

a′Aj · w − ηρ(j)γj = df(cAj,1 + . . .+ cnAj,n) + y2Aj,2 + . . .+ ynAj,n (1)

−dfbj

 ∑
j′∈Jρ(j)

cAj′,1/bj′ + . . .+ cnAj′,n/bj′

 (2)

−dfbj η̃ρ(j) − γ̃j η̃ρ(j) − γ̃j

 ∑
j′∈Jρ(j)

cAj′,1/bj′ + . . .+ cnAj′,n/bj′

 (3)

Since j ∈ Jρ(j), the first quantity in (1) will be canceled by (2). What is left of
(2) will be terms of the form dfcibj/bj′ , where i ≤ n ≤ q and j 6= j′. We note
that B is given all of these in the exponent of g2 in the assumption. B also has

g
dfbj
2 for all j from 1 to q ≥ ` and g

ci/bj′
2 for all j′ ∈ Jρ(j), i ≤ n ≤ q. Thus, B can



form g
a′Aj ·w−ηρ(j)γj
2 for each j. It can also compute gs

′

2 = gf2 , gs
′κ′

2 = gdf2

(
gf2

)κ̃
,

and g
γj
2 = g

dfbj
2 g

γ̃j
2 . B multiplies these Gp2 components by the normal ciphertext

to produce the semi-functional ciphertext, which it gives to A.
Now, when A later requests the kth key for some attribute set S not satisfying

(A, ρ), B responds as follows. It first creates a normal key by calling the usual key
generation algorithm. To create the semi-functional components, it first chooses
a vector θ = (θ1, . . . , θn) ∈ ZnN such that θ · Aj = 0 modulo N for all j such
that ρ(j) ∈ S and the first entry of θ is nonzero modulo each prime dividing N .
Such a vector will exist as long as (1, 0, . . . , 0) is not in the span of {Aj}ρ(j)∈S
modulo each of p1, p2, p3. As in the proof of the previous lemma, we may assume
this holds with all but negligible probability and we note that such a θ can be
efficiently computed.
B chooses a random value ũ ∈ ZN and implicitly sets

u′ = −θ2cq − θ3cq−1 − . . .− θncq−n+2 + fũ,

t′ = θ1c
q + θ2c

q−1 + . . .+ θnc
q−n+1.

We note that these are random modulo p2 because ũ and θ1 are random (and
c, f are nonzero with all but negligible probability). We observe that B can now
form gu

′

2 and gt
′

2 as follows:

gu
′

2 =
(
gc
q

2

)−θ2 (
gc
q−1

2

)−θ3
. . .
(
gc
q−n+2

2

)−θn (
gf2

)ũ
,

gt
′

2 =
(
gc
q

2

)θ1 (
gc
q−1

2

)θ2
. . .
(
gc
q−n+1

2

)θn
.

For each attribute i ∈ S, we recall that the vector θ is orthogonal to Aj for
all rows j such that ρ(j) = i (i.e. all j ∈ Ji). Thus, we observe:

t′ηi = t′η̃i +
∑
j∈Ji

n∑
m1,m2=1
m1 6=m2

θm1Aj,m2b
−1
j cq+1+m2−m1 .

Since q + 1 + m2 −m1 is always in the set [2q] \ {q + 1}, B can compute gt
′ηi
2

from the terms it is given in the assumption. We also have that

a′t′ + k′u′ = θ1dc
q+1 − κ̃

(
θ2c

q + . . .+ θnc
q−n+2

)
+ dfũ+ fκ̃ũ.

Therefore, B creates the semi-functional term for key component K as:

T θ1
(
gc
q

2

)−κ̃θ2
. . .
(
gc
q−n+2

2

)−κ̃θn (
gdf2

)ũ (
gf2

)κ̃ũ
.

If T = gdc
q+1

2 , then this is a properly distributed nominal semi-functional key.
If T is a random element of Gp2 , this is a properly distributed temporary semi-
functional key. Hence, B has properly simulated either GameNk or GameTk , de-
pending on T , and can therefore leverage A’s non-negligible difference in advan-
tage to break the source group q-parallel BDHE assumption in a subgroup.



Lemma 5. Under the general subgroup decision assumption, no polynomial time
attacker can achieve a non-negligible difference in advantage between GameTk and
Gamek for any k from 1 to Q.

Lemma 6. Under Assumption 1, no polynomial attacker can achieve a non-
negligible difference in advantage between GameQ and Gamefinal.

The proofs of these last two lemmas can be found in the full version. This
completes the proof of Theorem 1.
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