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Abstract. In collusion-free protocols, subliminal communication is im-
possible and parties are thus unable to communicate any information
“beyond what the protocol allows.” Collusion-free protocols are inter-
esting for several reasons, but have specifically attracted attention be-
cause they can be used to reduce trust in game-theoretic mechanisms.
Collusion-free protocols are impossible to achieve (in general) when all
parties are connected by point-to-point channels, but exist under certain
physical assumptions (Lepinksi et al., STOC 2005) or when parties are
connected in specific network topologies (Alwen et al., Crypto 2008).
We provide a “clean-slate” definition of the stronger notion of collusion
preservation. Our goals in revisiting the definition are:

To give a definition with respect to arbitrary communication re-
sources (including as special cases the communication models from
prior work). We can then, in particular, better understand what types
of resources enable collusion-preserving protocols.

To construct protocols that allow no additional subliminal communi-
cation when parties can communicate via other means. (This property
is not implied by collusion-freeness.)

To support composition, so protocols can be designed in a modular
fashion using sub-protocols run among subsets of the parties.

In addition to proposing the definition, we explore implications of our
model and show a general feasibility result for collusion-preserving com-
putation of arbitrary functionalities. We formalize a model for concur-
rently playing multiple extensive-form, mediated games while preserving
many important equilibrium notions.

1 Introduction

Subliminal channels [28,29,30] in protocols allow parties to embed “disallowed”
communication into protocol messages, without being detected. (For example, a
party might communicate a bit b by sending a valid message with first bit equal
to b.) The existence of subliminal channels is often problematic. In a large-
scale distributed computation, for instance, subliminal channels could allow two
parties to coordinate their actions (i.e., to collude) even if they were not aware of
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each other in advance. In other settings, parties may be disallowed or otherwise
unable to communicate “out-of-band,” and it would be undesirable if they could
use the protocol itself to convey information.

More recently, subliminal channels have arisen as a concern in the context
of cryptographic implementations of game-theoretic mechanisms. Here, infor-
mally, there is a game in which parties send their types/inputs to a trusted
party which then computes an outcome/result. One might naturally want to
replace the trusted party with a cryptographic protocol executed by the par-
ties [13,15,8,23,24,25,21,1,2,19,20]. Using protocols for secure multi-party com-
putation (e.g., [17]) can preserve Nash equilibria; however, such protocols do not
suffice for implementing general equilibria precisely because they have sublimi-
nal channels and thus enable collusion in the real world even if such collusion is
impossible in the original game.

This realization has motivated the investigation of collusion-free protocols
that do not allow subliminal communication [23,24,25,21,19,5,3,20]. Collusion-
free protocols for computing non-trivial functions are impossible when parties are
connected by pairwise communication channels, and so researchers have turned
to other communication models. Collusion-free computation of arbitrary func-
tionalities is possible if parties have access to a semi-trusted “ballot box” and
can communicate publicly via (physical) envelopes [24,21,19,20], or if parties are
connected (via standard communication channels) to a semi-trusted entity in a
“star network” topology [5,3].

1.1 A New Definition: Collusion Preservation

The works of Izmalkov et al. [24,21,19,20] and Alwen et al. [5,3] give incompara-
ble definitions of collusion freeness, each tailored (to some extent) to the specific
communication models under consideration. We revisit these definitions, and
propose a stronger notion called collusion preservation. Intuitively, collusion-
free protocols ensure that parties can communicate no more with the realizing
protocol then using only the ideal functionality, whereas collusion-preserving
protocols provide a stronger guarantee: the parties can communicate no more
when running the protocol and using arbitrary fixed external channels, than
they could using the ideal functionality and the same external channels. Our
aim here is to provide a clean, general-purpose definition that better handles
composition, both when collusion-preserving protocols are run as sub-routines
within some larger protocol, as well as when collusion-preserving protocols are
run concurrently with arbitrary other protocols (whether collusion-preserving or
not). In what follows, we give an overview of our definition and expound further
on the above points.

Overview of our definition. We follow the simulation-based definitional paradigm
used by Alwen et al. [5,3]: In the real-world execution of a protocol, different
adversaries can corrupt different parties. Importantly, these adversaries cannot
communicate directly; instead, all parties are connected in a “star network”



topology with a semi-trusted mediator. (This is in contrast to usual crypto-
graphic definitions, which assume a “monolithic” adversary who controls all
corrupted parties and can coordinate their actions.) Two notions of stand-alone
security [16] are then defined, depending on whether or not the mediator is
honest:
1. Conditional collusion freeness: When the mediator is honest, collusion

freeness is required.

2. Fallback security: When the mediator is dishonest, we cannot hope for
collusion freeness any more. Nevertheless a strong notion of security can be
achieved; namely real/ideal adversaries are allowed to communicate arbitrarily,
and the protocol is required to satisfy the standard (stand-alone) security
definition [16].

We strengthen and extend the definition of collusion freeness in several ways.
Firstly, rather than considering a specific “star network” topology with a spe-
cial party (the mediator) in the center [5,3], or the specific physical assumptions
of [24,21,19,20], we consider a general resource to which the parties have access
in the real world. This resource is the only means of “legal” communication in
the real world (though as we will see in a moment there may be other “illicit”
means of communication available). In addition to being more general, our defini-
tion allows us to characterize the minimal properties of resources which achieve
collusion-preserving computation. Secondly, we formulate our definitions in a
universally composable (UC) [9] fashion, where there is an environment control-
ling the entire execution.3 This has significant ramifications, since the environ-
ment itself can now act as a communication channel for the adversaries. If the
environment chooses to allow no communication between the adversaries, then
our definitions essentially “default” to the previous setting of collusion freeness.
Crucially, however, if the environment allows the adversaries to communicate c
bits of information “for free”, then a collusion-preserving protocol ensures that
the adversaries cannot communicate more than c bits (on top of the communica-
tion allowed by the ideal functionality) by running the protocol in the presence
of the stated resource. (We show below a simple counter-example demonstrat-
ing that collusion freeness does not imply collusion preservation.) Moreover,
we prove a universal composition theorem, thereby improving upon the results
of [5,3], which do not claim nor realize any form of composition, as well as the
results of [24,21,19,20] which obtain only a limited sort of composition; see below.

Collusion preservation is stronger than collusion freeness. We motivate the need
for a composable definition with an example: Consider a protocol π that is
collusion-free in the mediated (star network) setting of [5,3]. We obtain a new
protocol π′, identical to π except for the following two modifications to the
mediator’s behavior (where λ is the security parameter):
1. The mediator takes a special message m ∈ {0, 1}2λ from P1. In response, the

mediator chooses a random r ∈ {0, 1}λ, sends it to P1, and stores (r,m).

3 Actually, we use the generalized UC (GUC) framework [10] as our starting point.



2. The mediator takes a special message r′ ∈ {0, 1}λ from P2. If the mediator
has a stored tuple of the form (r′,m), it sends m to P2 (and otherwise simply
ignore r).

It is not hard to see that π′ remains collusion-free: intuitively, this is because P2

can guess r′ = r with only negligible probability.4 However, π′ is not collusion
preserving. Specifically, if P1 and P2 have access to a λ-bit channel then they
can use π′ to communicate 2λ bits!

The above counter-example can be interpreted in several ways. One could
imagine that π′ is run in a setting in which P1 and P2 have access to a physical
channel that only allows communication of λ bits. Alternately, the parties might
be running π′ while they are concurrently running some other protocol that is
not collusion-free and enables the parties to (subliminally) communicate λ bits.
Either way, the implication is the same: a collusion-free protocol may potentially
allow additional communication than the corresponding ideal specification.

In the following we give an overview of the main results on the paper.
Protocol composition. The protocols of Izmalkov et al. [24,21,19,20] are
collusion-free only when at least one party running the protocol is honest. The
reason is that in their communication model parties have the ability to com-
municate arbitrary information (but their protocols guarantee that if an honest
party is watching then it will detect any such communication). This limitation
may not appear to be a problem, since one typically does not care to provide any
guarantees once all parties are malicious. It becomes a problem, however, when
collusion-free protocols are used as sub-routines within some larger protocol.
Consider, for example, a collusion-free protocol Π for three parties P1,P2,P3 in
which each pair of parties runs some collusion-free sub-protocol π between them-
selves. If P1 and P2 are malicious, then π may provide no guarantees which means
that they may now be able to communicate an unlimited amount of information;
this could clearly be problematic with regard to the “outer protocol” Π.5

Necessary assumptions. The main criticism on the mediated model of [5,3]
concerns the strength of the mediator as an assumption. In particular, an open
question is whether or not one can reduce the power/complexity of the media-
tor without sacrificing collusion-freeness. Justifying the tightness of our model,
we show that any recourse which allows for realizing arbitrary (well-formed)
functionalities in a collusion preserving (or even collusion-free) manner satisfies
three essential properties referred to as isolation, independent randomness, and
programmability. Intuitively, the mediator is one of the simplest digital resources
having all these properties, simultaneously. Note that the physical assumptions
of [23,24,25,21] also implicitly satisfy these properties.
General feasibility with GUC fallback. Complementing and motivating
our definitional work, we provide a completeness result for strong realization of
4 In particular the simulators for π′ can behave just as for π with the only modification

that the simulator for P1 responds with a random message r when it receives the
special message m from it’s adversary.

5 Izmalkov et al. implicitly avoid this issue by having every party observe all sub-
protocols that are run.



a large class of functionalities. More concretely, for any functionality in this class
we provide a protocol compiler and a particular resource which satisfies a univer-
sally composable version of the security definition from [3]: the compiled protocol
provides Collusion Preserving (CP) security when executed with this particular
resource, and, as a strong fallback, when executed with an arbitrary resource, it
achieves GUC-type security, i.e., emulation by “monolithic” simulators.

Synchronization pollution. The types of correlation ruled out by collusion-
free protocols fall into two categories: the first is due to “subliminal channels”
(i.e. means of communication not present in the ideal world) and the second is
due to “randomness pollution” (i.e. publicly visible correlated randomness gen-
erated during the protocols execution). We observe and mitigate, a new type
of correlation between split adversaries (called synchronization pollution) which
is crucial to achieving concurrent (and thus universal) composability. Synchro-
nization pollution arises for example, in settings where a multi-round (or, more
generally, a multi -stage6) protocol is used to CP-realize a non-reactive function-
ality but the parties have no means, external to the protocol, of synchronizing
their actions, e.g., there are no synchronized clocks. In fact, the problem can
arise for any security notion with split adversaries, where the relative order of
events occurring in different parties interfaces is observable. Intuitively, an en-
vironment witnessing the execution of such a protocol could keep track of these
events as they occur (say by instructing the adversaries to corrupt all players,
run the honest protocol and announce each event as it takes place). However, if
the ideal functionality is used instead, a priori the simulators have no means for
coordinating the simulation of the events in the correct order as the functionality
is good only for a single round of communication and otherwise the simulators
have no further means of synchronizing their outputs. In the full version we
demonstrate how the above issue can lead to real attacks when protocols are
executed concurrently.

We resolve this issue by considering ideal functionalities with a means to
provide a (minimal) amount of synchronization, namely output-synchronization.
That is for an interactive CP protocol, at the very least, simulators are allowed
to coordinate when they produce the final output of the computation for the
environment. Surprisingly we are able to show that this is the only additional
synchronization required for good split-simulation in the ideal world. Intuitively
this is because our protocol hides all other properties and events in the execution
(such as at which stage of the protocol the execution is currently in) from adver-
saries even if they corrupt all parties and their ongoing views are combined by
the environment. To the best of our knowledge, this is the first protocol to exhibit
such behavior. For example in the case of the sequence of works [24,21,19,20] all
protocols contain multiple publicly verifiable (i.e. visible) events. Therefore ad-
versaries present during the execution of such protocols obtain significantly more
then mere output synchronization. Moreover, to attain concurrent composability

6 Intuitively, by multi-stage we mean a protocol which results in at least one triplet
of events (E1, E2, E3) such that each is noticeable by at least one party and which
can only occur in a fixed order E1 → E2 → E3.



the ideal worlds would have to be augmented with some means for simulators
to have the same level of synchronicity afforded by those events (similar to the
synchronization wrapper). On the other hand, in previous works dealing with
the mediated model [5,3] the current stage of the protocol execution is not hid-
den from corrupt players. We remark that for both lines of work, the protocols
remain sequentially composable because once the execution has completed, the
simulators can generate appropriate transcripts atomically. The problem arises
only if the transcripts are inspected by an on-line distinguisher.

Implications for game theory. We show how to use the results of the CP
framework to adapt the traditional models of algorithmic game theory [27] and
mechanism design to a more practical setting. First we generalize the standard
stand-alone model of game play for (extensive form computational) games to
a concurrent setting in which multiple games with different player sets using
different mechanisms are being played in an arbitrarily interleaved manner. Next
we introduce a strong notion of equivalence between sets of concurrent games
which we call isomorphic game sets7. Intuitively a pair of isomorphic game sets
have equivalent strategies in that they induce approximately the same outcome
(and payoffs). Moreover for any strategy a player may use in one game set and
any action taken in the course of that strategy it is easy for the player to compute
the equivalent action(s) in the isomorphic game set regardless of which strategies
are used by all other players involved and even of the strategy which dictated to
play the original action. We provide evidence that this transformation between
actions of isomorphic game sets preserves, in particular, many desirable notions
of stability such as k-resilience [7], correlated equilibria [6], dominant strategies
and t-immunity [2].

Next we apply our feasibility results for the CP framework to make a second
important step in bringing the field of mechanism design closer to a practical
setting. Leveraging the GUC fallback property we show how to significantly
reduce the type of trust placed in a certain class of mechanisms. Traditionally
game theorists place complete trust in mechanisms not only to enforce such
properties as the isolation of players and fairness of output distribution, but also
to compute outcomes correctly and preserve the players’ privacy.8 We use the
results from the cryptographic section of this work to show how to completely
remove the latter two types of trust while still obtaining an isomorphic game
set. Roughly speaking, this is done by replacing the original mechanism with
a CP secure protocol running over a “less trusted” mechanism such that the
resulting game is equivalent to the original even with respect to an arbitrary set
of concurrently running games. The fact that the isomorphic strategies can be
computed locally and automatically by each player with out considering other
players’ strategies permits both mechanism designer and player to operate in the

7 Our notion of isomorphic game sets is closely related to that of [26].
8 For example in a poker game it is implicitly assumed that the dealer deals from a

uniform random deck and that they don’t reveal the cards exchanged by one player
to another.



more traditional (presumably cleaner) “fully trusted” setting while actual game
play occurs in the more practical setting with reduced trust.

In comparison to results of [18,19,20] which provide information theoretic-
equivalence between games using an unconventional model of computation, the
results in this paper provide only computational equivalence but use a standard
computational model. However, their notion of composition is weaker in two
ways. Conceptually it is not scalable but more concretely it seems to allow for
only rather limited notion of concurrency. In particular protocols that implement
a mechanism must be run atomically with respect to actions in any concurrent
games. In contrast, the notion obtained in this paper is fully UC composable
in the more traditional sense. On the other hand, while our protocols prevent
signaling via aborts as in [18], they do not provide the full robustness to aborts
of [19,20]. Finally, the amount of randomness in the public view of our protocols
is limited to a single pre-computation round which can be run before types
are distributed. From that point on there is no further “randomness pollution”.
This is similar to [22], better then [18] (where even executions of a protocol
produce randomness pollution) but weaker then [19,20] which do not produce
any randomness pollution at all.

Relation to abstract cryptography [26] and to UC with local adversaries [12].
Collusion-preserving computation can be described in the Abstract Cryptogra-
phy (AC) framework by Maurer and Renner [26], but this is beyond the scope
of this paper. Apart from being stated at an abstract level, two relevant aspects
of AC in our context are that there is no notion of a central adversary (and
simulators are local) and that all resources are modeled explicitly, which allows
to capture the absence of resources (e.g. communication channels). In concurrent
and independent work with ours, Canetti and Vald [12] also consider the question
of extending the notion of collusion freeness (local adversaries/simulators) to the
universally composable setting. Although many of our results can be proved also
in their framework, the two models have considerable conceptual and formal
differences. We refer to the full version of our work [4] for a discussion of the
main diferences between the two approaches.

2 Collusion-Preserving Computation

In this section we define our framework for investigating universally composable
collusion freeness, namely collusion-preserving computation. On the highest level
the idea is to combine the strong composability properties of the GUC framework
of [10] with the model of split simulators along the lines of [3].

2.1 Preliminaries and Notation

We denote by [n] the set {1, . . . , n} (by convention [0] = ∅) and for a set I ⊆ [n]
we denote by I the set [n] \ I. Similarly, for element i ∈ [n] we write i to denote
the set [n] \ {i}. Using this notation we denote by AI a set of ITMs {Ai}i∈I .



For input tuple xI = {xi}i∈I we write AI(xI) to denote that for all i ∈ I the
ITM Ai is run with input xi (and a fresh uniform independent random tape).
We assume a passing familiarity with the GUC framework and refer to the full
version of this paper [4] for a description of the main features we use.

An intuitive description. We include an informal description of our CP frame-
work and discuss its basics; a complete description can be found in [4]. Starting
from the GUC model we make the following modifications:
Split adversaries/simulators: Instead of a monolithic adversary/simulator
we consider a set of n (independent) PPT adversaries A[n] = {Ai : i ∈ [n]},
where Ai correspond to the adversary associated with the player i (and can
corrupt at most this party). Moreover, we ask that for each Ai ∈ A[n] there
exists an (independent) simulator Simi.
Corrupted-set independence: We also require that the simulators do not
depend on each other. In other words the code of simulator Simi is the same for
any set of adversaries A[n] and B[n] as long as Ai = Bi.

Resources, shared functionalities, and exclusive protocols. The main dif-
ference between a CP functionality R and a GUC one is that be-
sides the n interfaces to the (honest) parties it also has interfaces
to each of the n adversaries A1, . . . ,An (see Figure 1). In other
words rather then n interfaces a CP functionality has 2n interfaces.9
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Fig. 1. Corruption of player set I ⊆ [n]: GUC
model vs. CP model. (Setup functionalities are
left implicit.)

Moreover, similar to the GUC
framework (but in contrast to
plain UC) we distinguish between
two types of functionalities: re-
sources (i.e., functionalities that
maintain state only with respect
to a single instance of a proto-
col) which we denote with cap-
ital calligraphic font as in “R”
and shared functionalities (i.e.,
functionalities that can maintain
state across protocol instances)
which we denote with an addi-
tional over-line as in “Ḡ”.

The R-hybrid world. A CP execution in the R-hybrid world is defined via a
straightforward generalization to the analogous GUC execution. We denote the
output of the environment Z when witnessing an execution of protocol π := π[n]

9 Intuitively, the reason for having n additional interfaces (one for each adversary)
is that adversaries should not communicate with each other, therefore they cannot
share the same interface; nevertheless, as in all composable frameworks, each of
them should be able to communicate with the assumed resource, e.g., for scheduling
delivery of messages to the corresponding party.



attacked by adversaries A := A[n] in the R-hybrid model as CP-EXECRπ,A,Z .
Finally, we say a protocol π is R-exclusive if it makes use of no other resources
(shared or otherwise) then R.

Bounding the number of calls to resources. A primary difference between how
executions in a R-hybrid world are modeled in the GUC and CP frameworks is
that in CP parties can communicate with at most a single instance of R. This is
in contrast to all other UC like models where the R-hybrid world is understood
to mean that parties can make as many calls as they wish to R instantiating
a new copy for each new invocation of R. Note that, for a composable notion
with split adversaries fixing the number of instances of functionalities/resources
available to adversaries is in fact crucial for capturing the desired intuition of
collusion freeness. For example a primary motivation of this work is to provide a
way for reducing trust on the mediators used in mechanism design by providing
protocols which can be used to replace the interaction with the mediator. If we
do not restrict the number of instances of the mechanism with which parties
can interact then there is no meaningful way to capture a game which calls for
only a single instance. Unless explicitly stated otherwise, in the present work,
whenever we write a functionality we assume a single instance of it. For a longer
discussion we refer to the full version [4].

Definition 1 (Collusion-Preserving Computation). Let Ḡ be a setup, R
and F be n-party resources, π be a {Ḡ,R}-exclusive protocol and φ be a
{Ḡ,F}-exclusive protocol (both n-party protocols). Then we say that π collusion-
preservingly (CP) emulates φ in the {Ḡ,R}-hybrid world, if there exists a col-
lection of efficiently computable transformations Sim = Sim[n] mapping ITMs to
ITMs such that for every set of adversaries A = A[n], and every PPT environ-
ment Z the following holds: CP-EXECḠ,Rπ,A,Z ≈ CP-EXECḠ,Fφ,Sim(A),Z .

Realization, reductions, and the “v” notation. We use the following notation
(for details see [4]). If for functionality F , an R-hybrid protocol π CP-emulates
F 10 then we say that π realizes F (in the R-hybrid world), and denote it by
F vCPπ R, which can intuitively be read as “F CP-reduces to R via protocol π”.
By omitting π in this notation we denote simply the existence of some protocol
for which the relation holds. We also use “vGUC” to denote the analogous relation
but for GUC -realization. To simplify notation and maintain consistency with
previous UC-type works, whenever an explicit protocol for the honest players is
missing in the CP-EXEC notation then it is implicitly assumed that they are
running the dummy F-hybrid protocol DF that forwards all it inputs from Z to
F and vise-versa. For example we might write CP-EXECFA[n],Z when the honest
players are running DF[n].

Composition theorem. As a main motivation for the CP model we put forth the
goal of providing a formal and rigorous notion of composability for collusion-free
10 Formally we would write DF instead of F .



security. We formalize a strong (universally) composable property of CP security
in the following theorem. The proof can be found in the full version [4]. As part
of the proof we provide a useful tool for proving CP security of protocols in the
form of a much simplified security notion which proves to be almost as powerful
yet far easier to work with.

Theorem 1 (Composition). Let R be an arbitrary resource and Ḡ be a global
setup (i.e. shared) functionality. Let ρ, π and φ be n-party protocols in the {Ḡ,R}-
hybrid world such that π and φ are Ḡ-subroutine respecting [10]. If π CP-emulates
φ and ρ uses φ as a subroutine then ρπ/φ CP-emulates ρ in the {Ḡ,R}-hybrid
world.

Relations to existing security notions. The weaker notion of collusion free com-
putation [4,22] can be described as the special case of CP which assumes off-line
environment, i.e., the environment does not interact with the adversaries dur-
ing the computation. In the full version [4] we prove a pair of lemmas relating
CP results to matching GUC results. The first formalizes the intuitive claim
that CP security is at least as strong as GUC security via a lemma stating that
CP realization essentially implies GUC realization. A bit more precisely, we de-
scribe a natural mapping of CP functionalities to analogous GUC functionalities
F 7−→ [F ]. Then we show that if a protocol CP realizes F in the R-hybrid
world, then the same protocol executed in the analogous GUC [R]-hybrid world
GUC realizes the analogous GUC functionality [F ]. The second establishes the
other direction, i.e., translating GUC security statements to statements in CP,
and is useful as a primary building block for our feasibility. To this end we

RINS(i, j)

Ai Aj

PjPi

Fig. 2. Insecure Channel with
split adversaries.

define the Rins functionality which is an adapta-
tion to the CP setting of the standard complete
network of UC insecure channels. The main dif-
ference is that messages from say player Pi to Pj
(as depicted in Figure 2) are first given to Ai and
then Aj before it is delivered to Pj . Adversaries
can modify (or not deliver) the message at will.

3 Necessary Assumptions for Collusion Preservation

Having defined the CP framework and verified it’s composition properties, we
turn to the next major goal of this work: to provide a resource with which we can
(constructively) CP-realize as many functionalities as possible. Ideally we would
like to obtain a CP-complete resource, namely one from which any reasonable
functionality can be realized. Indeed, in the next section we describe just such
a resource which we call the mediator. However, we must first justify the seem-
ingly strong assumptions we will make when defining the mediator by showing
their necessity. To this end, we demonstrate three necessary properties a given
resource must have for it to be CP-complete. As corollaries to these results we
rule out realizing large classes interesting functionalities using virtually all com-
mon communication resources such as fully connected networks and broadcast



channels. Beyond this, due to their generality, we believe that given a target
ideal functionality F (such as an auction mechanism or voting functionality),
these results provide significant insights into the minimal assumptions about
real world communication channels which can be used to CP realize F . In the
following we sketch these properties, and refer to the full version of this paper
for a formal description using the language of our framework

Correlation is not free. Fundamentally, models with a monolithic adversary al-
ready allow perfect coordination between all interfaces connected to corrupt
players. However, when adversaries are split (and a priori isolated) such coordi-
nation is not given to adversaries for free anymore. So the security requirements
in executions where all players are corrupt are still non-trivial. Instead bounds
may still be required on the amount of coordination between the behavior on
different interfaces.11 By analyzing the implications of the security requirements
in such settings we show the necessity of the following properties.
1. (Isolation) Consider a statement of the type F vCP R. Intuitively this

holds only if R can isolate (corrupt) players as much as F . We formalize this
by showing that (roughly speaking) for any amount of communication that
adversaries can obtain from F , it must be that R does not allow any more
communication. More specifically, we define an extremely weak ideal channel
C and show that if F can be used to obtain C by collaborating adversaries con-
trolling all interfaces to F , then R cannot be used to obtain such a channel
with more bandwidth. Given how weak C is and how much power adversaries
have over F for obtaining it somehow, this result has some far reaching con-
sequences with respect to standard communication models. Not only are they
provably not CP-complete but in fact they can not be used to realize almost
any interesting functionalities (other then themselves).

2. (Randomness) The second property states that any CP-complete resource
must have it’s own internal randomness upon which it’s output depends. To
prove this, we show that for any resource R which can be used for CP realizing
ideal coin flipping as well as key agreement, R can not be deterministic.

3. (Programmability) Finally we define the notion of a programmable re-
source and show that any CP-complete resource must be programmable. Intu-
itively a programmable resource can be thought of as being instantiated with
a special parameter upon which it’s behavior depends in a non-trivial way. By
non-trivial we mean that for at least one pair of possible values of the parame-
ter the resulting pair of behaviors can not be CP-reduced to each other. Indeed
the mediator resource in the next section is programmable and our protocol

11 In a stand-alone setting one might ask why this is even an interesting case (for
example the stand-alone notion of [24] explicitly rules it out). But for a composable
security notion (for example with the application of modular protocol design in
mind) it is vital to consider such executions. Moreover in the context of game theory
where there is no such notion of “honest” behavior all players behave as adversaries
in a cryptographic sense.



compiler not only outputs a protocol but also the parameters with which the
mediator must be instantiated.

4 GUC Fallback Security

Without any further requirements CP security, as defined in Definition 1, can
be easily achieved from an appropriate resource. Indeed, because the resource
is completely trusted it could trivially be the functionality we are trying to
compute. However, such trust is a rare commodity and so one might ask for a
better solution. To that end we add a second property which we call “fallback
security”. The goal is to capture what kind of security remains if the protocol is
run not with the resource it was designed for but with an arbitrary (potentially
malicious) resource instead. Note that the trivial solution provides essentially no
fallback security at all. However, we will show, perhaps somewhat surprisingly,
that in fact a very strong type of security can still be achieved; namely GUC-like
realization.

Definition 2 (CP-realization with GUC fallback). For setup Ḡ, function-
alities F and R, we say that a protocol π CP-realizes a functionality F with
GUC fallback in the {Ḡ,R}-hybrid model if it has the following two properties:

CP security: π CP-realizes F when using R, i.e., {Ḡ,F} vCPπ {Ḡ,R}
GUC fallback: For any efficient resource R∗ the protocol π still GUC-
realizes F , i.e., ∀R∗ : {Ḡ,Rins,F} vCPπ {Ḡ,R∗}

Recall that the (G)UC plain model implicitly assumes [Rins]. Thus, by ap-
plying our CP-to-GUC translation from Section 2 (and omitting the redundant
[Rins] term) we have that GUC fallback security directly implies: {[Ḡ], [F ]} vGUCπ

{[Ḡ], [R∗]}. Intuitively this means that π run with (even a single instance of) R∗
and arbitrarily coordinated adversaries still GUC realizes [F ].

We note that as an alternative, by restricting the class of resources R∗ for
which the fallback is desired one could, in turn, hope for weaker but still non-
trivial fallback properties. This could reflect the real world settings where mod-
erate guarantees about the behavior of the resource are given but it is still
undesirable to completely trust the resource. In this sense the feasibility result
in this work demonstrates that, at the very least, GUC fallback can be achieved
even when no moderate guarantees of any type are made.

5 A General Feasibility Result

We are now ready to state and prove a general feasibility result. Roughly speak-
ing we describe an (efficient) programmable resource {MF}F∈{0,1}∗ , called the
mediator, parameterized by descriptions of functionalities, such that for any F
in a large class of functionality, we can design a protocol π (using setup Ḡ) which
CP-realizes F with GUC fallback in the {Ḡ,MF}-hybrid model.



Output-synchronized functionalities. In contrast to previous frameworks, be-
cause we consider split simulators the environment Z has an additional means for
distinguishing between executions. Briefly, Z can measure the amount of on-line
synchronization that taking part in an execution provides to sets of adversaries.
In contrast all actions taken by monolithic adversaries during an execution are
already inherently perfectly synchronized so no such strategy exists in (G)UC
frameworks. We address this by introducing the class of output-synchronized
functionalities. For a arbitrary functionality F we write F̂ to denote the “output
synchronized” version of F . That is F̂ consists of a wrapper (the synchronizing
shell) and inner functionality F . The synchronizing shell works as follows: On
it’s first activation, F̂ sends a request to one of the simulators (e.g. the one with
the smallest ID) to acquire the index of the desired output round. Let R denote
the response of this simulator (if no valid R is received then set R := 1). Subse-
quently, all inputs are forwarded to F . Finally, outputs of F are not immediately
delivered to their recipient. Rather they are recorded are given only upon request
from the recipient and only after R subsequent complete rounds have been ob-
served (each output-request which is issued before that is answered by a default
message ⊥). By a complete round we mean a sequence of at least one activation
from every player (or the corresponding simulator) in an arbitrary order. Intu-
itively this modification provides minimal synchronization between adversaries.
For a more detailed discussion of output synchronization we refer to [4].

To formalize our main feasibility theorem we introduce the following ter-
minology (for a more accurate description we refer to [4]): A functionality is
well-formed [11] if its behavior is independent of the identities of the corrupted
parties, and it is aborting if it accepts a special input ABORT from corrupted
parties, in which case it outputs ABORT to all parties (note that this is the only
type of functionalities we can compute while tolerating a corrupted majority).
A protocol is said to be setup off-line if it precedes all other computation and
communication by it’s only interaction with the setup Ḡ12. We call a setup (i.e.
a CP shared functionality) Ḡ GUC–AuthComplete if in the [Ḡ]-hybrid world:
1. There exists a setup off-line protocol which GUC realizes authenticated chan-

nels from insecure channels

2. Every well-formed functionality can be GUC securely realized (in the stan-
dard GUC model which assumes authenticated channels) by a setup off-line
protocol.

We note that, assuming static adversaries,13 one such setup is the Key-
Registration with Knowledge (KRK) functionality of [10,14] when viewed as
a CP shared functionality (we refer to the last paragraph of the current section
for details). In particular the results of [14] imply Property (1) and the results
of [10] imply Property (2). For the case of adaptive adversaries, one needs to use
a setup which is stronger than KRK; as demonstrated in [14], a sufficient setup
in this case is their so called Key-exchange functionality.

12 All known protocols (in particular the protocols of [10,14]) are of this form.
13 A static adversary chooses the parties to corrupt at the beginning of the protocol.



Ideally, we would like to state our feasibility result for any (albeit efficient)
functionality F . More realistically we require that F have the (standard) prop-
erties sketches above, i.e., be well-formend and aborting.

Theorem 2 (General Feasibility Theorem). Let Ḡ be a GUC-AuthComplete
CP setup. Then there exists a programmable resource M = {MF} such that for
every well-formed aborting functionality F there exists a protocol π which CP-
realizes F̂ with GUC fallback in the MF -hybrid model.

We prove the theorem constructively, i.e., by describing an efficient com-
piler mapping a given aborting well-formed functionality F to a protocol CP(π)
and parameters for resource M. Note that although we have assumed that F̂
is output-synchronized, the GUC property holds, for the same protocol CP(π),
even for the non-synchronized functionality, i.e., the one that results by removing
from F̂ the synchronizing shell. The reason is that in the GUC-fallback setting
the simulators can synchronize output generation by using the insecure channels
R∗ins. The proof of the theorem proceeds in two steps: (1) In the “bootstrapping”
step (Lemma 1) we show how to obtain from a GUC-AuthComplete setup Ḡ, a
setup off-line protocol π which CP realizes F using insecure channels. (2) Then,
in the “adding fallback” step (Lemma 2), we show how to compile π into protocol
CP(π) and resource MF which CP realize F̂ with GUC fallback.

Lemma 1. Let Ḡ be a GUC-AuthComplete CP setup. Then for every well-
formed aborting CP functionality F there exist a setup off-line protocol π such
that {Ḡ,Rins,F} vCPπ {Ḡ,Rins}.

The proof is simple and essentially verifies that the conditions for GUC-to-
CP translation (Section 2) are met; for details we refer to [4]. The bulk of the
work for proving Theorem 2 lies in proving the following lemma which states
that if a protocol exists that CP realizes F from insecure channels then there
exists a protocol and resource which additionally have GUC fallback. Together
with the previous lemma the theorem follows directly.

Lemma 2. Let Ḡ be a GUC-AuthComplete CP setup, let F be a well-
formed aborting functionality, and let π be a setup off-line protocol such that
{Ḡ,Rins,F} vCPπ {Ḡ,Rins}. Then there exists an efficient resource MF (the “me-
diator”) and protocol CP(π) such that CP(π) CP realizes F̂ with GUC fallback in
the MF -hybrid model.

Proof idea. The proof is constructive, i.e., we show how to construct CP(π) and
MF . As a starting point we begin with the ideas of the protocol of [3]. We simplify
it both in terms of exposition (crystalizing the underlying technique of assisted
emulation) and by removing the need for emulation of broadcast. Then we adapt
the resulting protocol such that the (rather minimal) synchronization wrapper
suffices for full simulation (an issue which does not arise in the stand-alone setting
of [3]). This latter step is done by minimizing the amount of synchronization
the protocol affords players by adding explicit instructions for handling dummy



steps. The result being that adversaries remain completely unaware of which
round they are in even in an asynchronous environment where they may be
activated many times (or just once) during any given round. On the highest
level the idea is to have the mediator MF emulate an execution π “in it’s head”
such that the players are oblivious to everything but their input and output of
π. Intuitively this guarantees the CP realization property of Definition 2.

To obtain the GUC fallback property: For each i ∈ [n] the state of the
emulated πi is shared between Pi and MF such that MF can not alter it without
the help of Pi yet both parties learn nothing about the actual value of the
state. For this purpose we describe a pair of 2-party SFE’s run between Pi
and MF which allow for state of πi to be updated as dictated by an honest
execution of π. Intuitively it is the hiding of the states from MF and the security
of the SFE’s which ensure GUC fallback. While enjoying a significantly stronger
security notion, our compiler is also conceptually simpler than the one in [3]. This
stems from our assumption that the input protocol π operates over a network
of insecure channels rather then the broadcast channel used in [3]. As a result,
(1) our compiler does not need to worry about the parties authenticating their
messages, as this is taken care of by π, and (2) we do not need specifically
describe a “mediated” broadcast protocol as in [3]. We refer to the full version
of this paper for a detailed description of the protocol construction and the proof
of security.

5.1 A concrete instance.

Thus far the results have been stated for an abstract GUC-AuthComplete setup.
For a concrete instance we can use the Key Registration with Knowledge (KRK)
setup of [10,14] (assuming a static adversary). Recall the KRK functionality
(henceforth, GUC-KRK) allows the (monolithic) adversary to register and/or
ask for the key of any corrupt player. We modify this to obtain the CP setup
KRK such that the ith adversary is allowed only to register and ask for the keys
of the ith player. One can verify that any protocol which is GUC secure in the
original GUC-KRK hybrid world, is also GUC secure when using setup [KRK].14

Moreover all protocols of [10,14] using GUC-KRK are setup off-line. In [14] the
GUC-KRK is used to register public keys which allow for non-interactive key
agreement. Such public/secret key pairs can easily be constructed based on the
Decisional Diffie-Hellman (DDH) assumption. Therefore we obtain the following
corollary.

Corollary 1. If the DDH assumption holds, there exist (efficient) setup Ḡ and
a programmable resource M = {Mx}x∈{0,1}∗ such that for every well-formed
aborting functionality F , there exists a protocol π which CP-realizes F̂ with GUC
fallback in the {Ḡ,MF}-hybrid model.

14 The only difference is that when the (monolithic) adversary makes a registration or
secret-key request for some party to [KRK], it needs to append the ID of this party
to the message. But this has no effect on the protocol.



6 Implications for Mechanism Design

In this section we translate our results into the language of game theory and
interpret them in terms of reducing trust in mechanisms for games played in a
computational setting.

Concurrent games and reducing trust in mechanisms. On the highest level we
describe a setting where multiple (rational) players are involved in several con-
current games. As a guiding principle for this concurrent model of game-play we
hold that while actions are performed locally to a given game, the intentions and
results should be interpreted globally. This is done to reflect the real world con-
sideration that “winning” in one game may be unimportant to a given player if a
concurrent game is “lost” (or more generally lost by a fellow player).15 Moreover
strategies of concurrent games may depend on each other in a very real sense.16

A bit more formally, we generalizing the powerful mediated games model
of [21]. Here game play involves message exchanges between the players and a
trusted mediator i.e. the mechanism for that game. In line with our guiding
principle we define actions as being local to a particular game. For example
placing a bid in one auction is an independent event from say casting a vote in
some concurrent election. However, strategies (i.e. the decision how much to bid
and for whom to vote) as well as utility functions (i.e. say the cost of loosing
the auction but winning the election) are defined over all games. This leads to
a natural generalization of the equilibria notion(s) spanning concurrent games.

The goal of this section is to provide tools to simplify the task of mechanism
design in a concurrent computational world where trusted entities are a rare
commodity. To that end the tools we develop allow for the following:

The mechanism may be described independently of the setting in which it will
be used. In particular they are defined by a function mapping local actions to
their local outputs.
The mechanism may be designed and analyzed under the assumption it can
be completely trusted.
Yet the resulting (ideal) game can instead be played using a protocol and spe-
cial network resource (in place of the mechanism) which can be implemented
by computers such that:

The resource requires significantly less trust then the original mechanism.
In particular it is only asked to enforce isolation. But it is not required to
ensure that outcomes are computed correctly nor must it maintain any kind
of privacy on behalf of the players. Instead these properties are obtained
“for free”.

15 A telecom company that wins an auction for acquiring a patent for a new wireless
technology may care less about this result if concurrently it lost the bid to use the
wireless spectrum in which it was planning on implementing the technology.

16 A company bidding concurrently for multiple add-spaces may be wiling to bid less
in the first auction as it’s bid in the second auction increases.



Nevertheless, using the resource is equivalent to using the original mech-
anism in a very strong game-theoretic sense. In other words it does not
matter to this or any concurrent game whether the ideal local mechanism
is used as described by the mechanism designer or the protocol and resource
are used. To justify this claim we show that (in particular) many types of
interesting (computational) equilibria are maintained between the two set-
tings. Moreover, finding an equivalent strategy can be done locally by each
player with no interaction or external help.

Overview of results. In light of space constraints we refer the interested reader
to the full version [4] for a formal treatise of these results. There we formalize
our model of concurrent games and define a notion of isomorphic game sets. We
note that the equivalence is both powerful and constructive. An isomorphism
comes equipped with a pair of efficient and locally computable function for each
player. These functions map from actions in Γ to actions in G (and vice versa)
such that any payoff induced by the actions remains essentially unchanged in the
new game. In particular we show that these mappings preserve computational
Nash Equilibria [27] (cNE). In other words (the actions of) any cNE of Γ is
mapped to (the actions of) a cNE in G inducing essentially the same payoffs.
We go on to sketch how to extend this result to the computational versions
of k-resilient equilibria [7], correlated equilibria [6], t-immune equilibria [2] and
dominant strategies.

Next, we show a central theorem tying the notion of CP realization to con-
current games.

Adversary-oblivious functionalities. There is an important subtlety which must
be addressed for such an application of CP-realization to go through. We view
rational parties as taking the role of the adversaries (rather then the honest
parties) in the CP setting. More technically to use CP-realization in a game
theoretic setting we wish to preserve adversarial power, not just that of the
honest players. In one direction (from the real to the ideal) we are given such
power-preservation essentially for free by the CP-realization notion. However, in
the other direction, in general, CP-realizing protocols and resources only guar-
antee preservation of the honest interfaces. This means that the strategy of an
ideal rational player (making non-trivial use of their adversarial interface) may
not have an equivalent strategy in the real world. For this reason we make the
following definition restricting the type of resources about which we can use
CP-realization to make game theoretic equivalence statements.

Definition 3 (informal). An n-player CP functionality (with 2n interfaces) is
called adversary oblivious if the only permitted input/output on any adversarial
interface can be locally simulated given access only to the corresponding honest
interface.

Put simply an adversary oblivious functionality provides no additional (non-
trivial) power to an adversary controlling both interfaces compared to one con-



trolling only the honest player’s interface.17 Intuitively we require this restriction
to guarantee that equilibria are preserved their stability when mapped to be-
tween game sets.

We can now (informally) state the central theorem tying CP-realization to
mechanism design the proof of which can be found in the full version. In a nutshell
it states that a resource which can be used to CP-realize another adversary
oblivious resource can be used in it’s place even in a concurrent game theoretic
context.

Theorem 3 (Replacing Mechanisms). LetM be an adversary oblivious CP-
functionality, π be a protocol and R be a CP-functionality such that MvCP R.
Let Γ be a game set using mechanismM. Then there exists an isomorphic game
set G using R in place of M.

Reducing trust. Finally, we apply the feasibility results for CP realization (The-
orem 2) with GUC fallback to provide a concrete construction for reducing trust
in concurrent used mechanisms. The GUC fallback satisfied by the construction
in Theorem 2 is guaranteed regardless of the behavior of the resource it uses. In
other words neither privacy of players actions, nor the correctness of the output
computed by the mechanism rely on the honest behavior of the mechanism.

Since all players are rational our CP construction must tolerate full corrup-
tion. In this case the best we can hope to achieve is realization “with abort”.
In other words we can only apply our construction to mechanisms which permit
players to abort.

Well Motivated Games. We model mechanisms as having a special input ⊥
signaling the case when a player aborts the game or simply refuses to play. The
construction of Theorem 2 permits simulating a mechanism which handles such
actions by producing outcome ⊥ for all players. However, we opt instead to
place the reasonable assumption on the utility profile of the game ruling out
such behavior as irrational. In particular we call a game set Γ well motivated if
for all i ∈ [n] the expected utility of any outcome obtained with an abort is less
then the utility of all outcomes obtained without an abort.

Corollary 2 (Replacing Mechanisms). Let Ḡ be a functionality satisfying
the conditions of Theorem 2 and let M be the corresponding programmable re-
source. LetM be an output synchronized mechanism18 and c be polynomial in the
security parameter. Then for any well motivated game set Γ using (amongst oth-
ers) mechanism M there exists an isomorphic game set G using MM in place of
M such that MM is not assumed to enforce privacy or compute output correctly.

17 Unlike an honest player, an adversary is not restricted to playing the honest (CP)
protocol nor using the input (type) provided by the environment.

18 i.e. an adversary oblivious CP-functionality with the synchronization wrapper ap-
plied to it.



Human strategies. We observe that the mappings between strategies arising from
the construction in Theorem 2 actually simply compose the original strategy
with a function (namely the protocol ITM) which translates actions “on-the-
fly”. In the context of humans playing games this has qualitative advantages
over simply mapping from one strategy to the other. If actions are translated on
the fly irrespective of the strategy used players need not even know their own
strategy (let alone be aware of some efficient code implementing it) as long as
they can always decide on a next action.
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