
Adaptively Secure Multi-Party Computation
with Dishonest Majority

Sanjam Garg and Amit Sahai

University of California, Los Angeles, USA
{sanjamg,sahai}@cs.ucla.edu

Abstract. Adaptively secure multiparty computation is an essential
and fundamental notion in cryptography. In this work we focus on the
basic question of constructing a multiparty computation protocol secure
against a malicious, adaptive adversary in the stand-alone setting with-
out assuming an honest majority, in the plain model. It has been believed
that this question can be resolved by composing known protocols from
the literature. We show that in fact, this belief is fundamentally mis-
taken. In particular, we show:

- Round inefficiency is unavoidable when using black-box sim-
ulation: There does not exist any o(n

logn
) round protocol that adap-

tively securely realizes a (natural) n-party functionality with a black-
box simulator. Note that most previously known protocols in the
adaptive security setting relied on black-box simulators.

- A constant round protocol using non-black-box simulation:
We construct a constant round adaptively secure multiparty com-
putation protocol in a setting without honest majority that makes
crucial use of non-black box techniques.

Taken together, these results give the first resolution to the question of
adaptively secure multiparty computation protocols with a malicious dis-
honest majority in the plain model, open since the first formal treatment
of adaptive security for multiparty computation in 1996.

1 Introduction

The notion of secure computation is central to cryptography. Introduced in the
seminal works of [1, 2], secure multi-party computation (MPC) allows a group
of (mutually) distrustful parties P1, . . . , Pn, with private inputs x1, . . . , xn, to
jointly compute any functionality f in such a manner that the honest parties
obtain correct outputs and no group of malicious parties learns anything beyond
their inputs and prescribed outputs. In this setting we can consider an adversary
that can adaptively corrupt parties throughout the protocol execution depending
on its view during the execution. Adaptively secure multiparty computation is
an essential and fundamental notion in cryptography. We refer the reader to
([3], Section 1) for further discussion on the importance of considering adaptive
adversaries.

Canetti, Feige, Goldreich and Naor [3] constructed the first adaptively secure
MPC protocol in the standalone setting, assuming the presence of an honest

majority. Beaver constructed an adaptively secure zero-knowledge protocol [4]
(see also [5]) and an adaptively secure OT protocol [6]. Similar results for general
two-party computation were established in [7, 8]. Assuming a trusted common
random string (CRS), Canetti, Lindell, Ostrovsky and Sahai [9] gave the first
adaptively secure MPC protocol without honest majority in the two-party and
the multi-party setting, in fact under an even strong notion of security called the
UC security (which can be achieved only with a trusted setup). In this paper,
we focus on the following basic question:

Is it possible to construct multiparty computation protocols in the standalone
setting (without any trusted setup) secure against a malicious, adaptive

adversary that may corrupt any number of parties?

Previous work on this question: Choi, Dachman-Soled, Malkin and Wee [10, 11]
give a construction of an adaptively secure multi-party computation protocol
when given access to an ideal commitment (more formally, in the commitment
hybrid model). At the same time, many adaptively secure protocols for securely
realizing the commitment functionality (e.g. [12]) are known. And we know that
it is possible to compose protocols by the composition theorem of Canetti [13],
which holds in the adaptive security setting.

Surprisingly, however, it turns out that a straightforward application of these
results does not (in fact as we argue, it cannot) achieve adaptive security in
the multiparty setting!1 We stress that all the results stated in the previous
paragraph (with proper formalization) are correct, and yet still the conclusion
does not follow.

Adaptively Secure Composition: More than Meets the Eye. Somewhat surpris-
ingly, a 2-party adaptively secure protocol fails to guarantee security when exe-
cuted in the setting of n-parties, even if only two of the parties are ever talking
to each other. (Thus, the 2-party adaptively secure commitment protocol of [12]
is not necessarily adaptively secure in the n-party setting.) Indeed Canetti [13]
(Theorem 10, Page 38) requires that in order to obtain an n-party adaptively
secure protocol via the composition theorem, all the protocols being composed
must be secure in the n-party setting to begin with. Nevertheless, this might
seem surprising, and we demonstrate this issue by considering an example. We
know that the vast majority of the simulators for MPC protocols are black-box.
Now, consider an adaptively secure protocol in the 2-party case with a black-
box simulator. Suppose that this 2-party protocol is executed in the setting of n
parties out of which only two of them communicate. The black-box simulator for
the 2-party protocol must rely on “rewinding” for the proof of security. However,

1 Indeed, this composition seemed so “obvious” that in [11], Corollaries 2 and 3 claimed
a result for adaptively secure multi-party computation in the plain model, and were
given without proof. After seeing our work, the authors of [11] have corrected their
paper to only refer to the two-party case in their corollaries. We stress that the
corollaries of [11] do apply to the two-party setting, and that nothing in this paper
should be taken to imply that any of the proofs given in [11] are incorrect.

in the adaptive n-party setting an adversary can also corrupt parties that do not
communicate during the execution of the protocol. What if this happens during
a rewinding? This case is never handled in the simulation for the 2-party case,
and thus the proof of composition security breaks down. Indeed this seemingly
small issue turns out to be a fundamental barrier to constructing adaptively
secure MPC protocols. Not only does the proof break down, but as we show
below, there are explicit impossibility results possible in the black-box setting.
Thus, we show that in the setting without honest majority, we need to com-
pletely rethink the techniques used to construct adaptively secure multi-party
computation protocols.

1.1 Our results:

We consider an asynchronous multi-party network2 where the communication is
open (i.e. all the communication between the parties is seen by the adversary)
and delivery of messages is not guaranteed. (For simplicity, we assume that deliv-
ered messages are authenticated. This can be achieved using standard methods.)
The two main results of the paper are:

Round inefficiency with a black-box simulation: There does not exist any
o(n

logn) round protocol that adaptively securely realizes a natural n-party

functionality (more specifically an extension of the commitment functional-
ity to the setting of n parties) with a black-box simulator. This result holds
in the standalone setting in the plain model. We stress that all protocols
that deal with adaptive security in the standalone model that we are aware
of employ a black-box simulator. This implies that the techniques previously
used to build adaptively secure multiparty protocols must incur a substantial
efficiency loss.

A round efficient protocol with non-black box simulation: On the other
hand, we show that non-black-box techniques can be used to circumvent the
above described impossibility result. Assuming collision resistant hash func-
tions, trapdoor permutations, augmented non-committing encryption [3, 9]
and dense cryptosystems [14] we construct a constant round adaptively se-
cure n-party protocol where the adversary is allowed to corrupt up to n− 1
parties in the non-erasure model. If security against corruption of all n par-
ties is desired then our construction yields a protocol with round complexity
that is proportional to the depth of the circuit being evaluated. Alternatively,
in the setting where all n parties can be corrupted, we can get a constant-
round protocol if data erasures are allowed. This result shows a new area
where non-black-box techniques can allow us to overcome round efficiency
barriers that would otherwise exist.

2 The fact that the network is asynchronous means that the messages are not neces-
sarily delivered in the order which they are sent.

Discussion: The negative result leaves open the question of constructing adap-
tively secure protocols with black-box simulation, but with poor round complex-
ity. We find this direction not very interesting in light of our positive result
constructing round-efficient protocols using non black-box techniques. Never-
theless, we provide a sketch of a round-inefficient black-box construction in the
full version, which is nearly tight with respect to our impossibility result.

On erasures: Our positive results include round efficient protocols both in the
setting of erasures and non-erasures. On the other hand our negative result holds
even when parties are allowed to erase everything except their input. (Note that
for our positive result with erasures, honest parties are certainly not required
to erase their inputs.) From the earliest works on adaptive security [15] with
erasures, it has been a major design goal to reduce the amount of erasures nec-
essary. We refer the reader to ([13], Section 5.2) for a more general discussion on
how trusted erasures may be a problematic assumption. Nevertheless, in light
of our negative result we may also want to consider protocols that allow honest
parties to erase their inputs during the protocol. We argue that it is particu-
larly unreasonable to consider such protocols: Consider, for example, a setting
where many hospitals are collaborating on some research involving their patient
records. In order to do this research, they execute an MPC protocol, where each
hospital’s input is its database of patient records. We do not expect any hospital
to be willing to erase all of its patient records (even from backup facilities, as
backup facilities could also be adaptively corrupted), even temporarily, just to
enable an MPC computation for research purposes. Worse, any protocol in the
dishonest majority setting that requires honest parties to erase its inputs would
enable an adversary, simply by aborting the protocol, to cause all honest parties
to lose all of their inputs forever. While the example of hospital patient records
underscore how undesirable erasure of inputs can be, this issue would be quite
problematic in most contexts. Thus, we do not consider protocols where inputs
can be erased3. Recall, however, that we can achieve round-efficient adaptive
security without requiring erasures at all using non-black-box techniques.

1.2 Our Techniques

The central idea for our impossibility result is to argue that a black-box simulator
of an o(n

logn) round protocol for an n-party functionality does not gain anything
via “rewindings” in the adaptive setting. Now we elaborate on this. Consider
an r round (such that r is o(n

logn)) protocol for an n-party functionality with a
black-box simulator. Consider an adversary that behaves completely honestly in

3 It is not hard to see that if we were to allow erasure of inputs, then the following
solution would be possible: The parties first non-malleably secret share their inputs
among all parties. Subsequently, all parties erase everything except their own share
(and the shares they receive from other parties). Finally, they run the protocol on
the shares as inputs instead. However, we again stress that we find this solution
highly unsatisfactory in light of the discussion above.

the protocol itself, however, after each round of the protocol it corrupts roughly
ω(log n) parties. Furthermore, the parties to be corrupted are chosen randomly
(in fact pseudo-randomly based on the protocol messages so far) among the
uncorrupted parties so far. On corruption of an honest party, the simulator
is obliged to provide to the adversary the input of the party just corrupted.
In its “main thread” execution with the adversary, to help the simulator in
simulation, the simulator is also provided with these inputs. However, every time
the simulator “rewinds” the adversary, the adversary will (with overwhelming
probability) choose to corrupt at least one party that is not among the ones
corrupted in the main thread. The simulator therefore will be unable to proceed
in any “rewinding.” Note that the only additional power awarded to a black-box
simulator is essentially the ability to “rewind” the adversary which is essentially
useless in our context. We therefore conclude that no such simulator can exist.

As is clear from the impossibility result just described, the problem of round
inefficiency will be inherent to any simulator that “rewinds.” In order to get
around this problem, we turn to the non black-box simulation technique of
Barak [16]. However, Barak’s protocols are far from being adaptively secure.
To achieve adaptive security, we adapt and make use of a technique developed
in the context of concurrently secure computation [17–19].

Technical overview for the construction of our constant round protocol: Now we
give a detailed technical overview of our construction. We will start by giving
a high level idea of the final protocol and then delving into the details of sub-
protocol (along with specifics of constructions) that need to be built. Throughout
the following description, we advise the reader to keep in mind that our goal is
to construct a round efficient protocol and as is clear from the negative result
stated above this cannot be done with a simulator that “rewinds.” Therefore we
will restrict ourselves to a “straight-line” or a “non-rewinding” simulator.

- Reducing the problem of adaptively secure MPC to generation of
common random strings. The starting point of our construction is the
observation that an adaptively secure MPC protocol (Theorem 3, [20])4 for
any functionality can be realized in OT-hybrid (oblivious transfer) model.
Note that in this construction each OT call is made between two parties.
Further note that for an OT call between two parties security is required
only if at least one of the two parties is honest. Additionally, note that we
can adaptively securely realize OT functionality in the CRS hybrid (common
random string) model (e.g., using [9]). Therefore in order to construct an
adaptively secure protocol it suffices for us to adaptively securely realize the
CRS functionality between every pair of parties where the CRS generated
by a pair of parties is required to be honestly generated only if at least one
of the two parties is honest.

- Generating a common random string between a pair of parties. Now
we are left with the goal of adaptively securely realizing CRS between every
pair of parties. We start by giving intuition for a protocol that adaptively

4 We refer the reader to Remark 2 of [20] for discussion on variants of this result.

securely realizes CRS between two parties and then sketch the extension to
the setting of multiple parties. We do this by constructing a coin flip-
ping protocol secure in the adaptive setting in which the simulator can
simulate in a straight-line manner. In order to construct such a coin flipping
protocol our simulator will need the ability to equivocate on its commitments.
In other words, we will need that our simulator can open its commitments
to any value of its choice even after it has made those commitments. Look-
ing ahead the simulator will also need the ability to extract (the reasons
for which we see later) from the commitments made by the adversary. More
specifically, we will need that the simulator can extract the values commit-
ted to by the adversary. Next we will first describe a mechanism that allows
a straight-line simulator to equivocate on its commitments in the adaptive
setting. Subsequently, we will see how equivocation can be used in setting
up coin flipping (and the need of extractability in the process).

- Equivocal commitment scheme in the adaptive setting. We consider
the public-coin zero-knowledge protocol5 of Barak [16]. Even though this
protocol is secure against adaptive corruptions of the verifier, it is far from
being adaptively secure if we were to consider adaptive corruption of the
prover. We will modify Barak’s protocol as follows. For every bit sent by the
prover in the Barak’s protocol, we will require that our prover instead sends
a random string of appropriate (length of a pseudorandom bit commitment)
length. Note that in this modified protocol no actual proof is given. Fur-
thermore, all the messages sent by an honest prover and an honest verifier
in this modified protocol are just random bits and thus adaptive corruption
of parties participating in an execution of this modified protocol does not
help the adversary in any way. However, a key idea is that we can define an
NP-relation that accepts a transcript if only if there exist decommitments of
the prover messages such the decommitted prover messages along with the
verifier messages form an accepting transcript of an execution of the Barak’s
protocol. Roughly speaking our modified protocol has two properties, with
respect to this NP-relation:

• No adaptively corrupted cheating prover interacting with an honest ver-
ifier in our modified protocol can output a witness for the transcript
generated.

• Consider any execution in which the prover is honest. In this execution
our simulator (simulating the prover) can internally use the simulator of
Barak’s protocol and always output a witness for the transcript gener-
ated.

We can reduce this transcript to a graph (can be constructed using an NP-
reduction) that is Hamiltonian if and only if there exits a witness corre-
sponding to the above NP-relation. Furthermore, given the witness we can
also deduce the Hamiltonian cycle in the obtained graph. This graph can
now be used to generate commitments such that a party with access to a

5 In a public-coin zero-knowledge protocol all messages of the verifier correspond to
random bits (“coin flips”).

cycle in the graph can open them in any way. We refer the reader to Section 3
for more details on this.

Note that an execution of the modified Barak’s protocol guarantees equiv-
ocability of commitments sent on behalf of only one of the two parties.
Therefore we will have to set up two equivocal commitments. This can be
easily achieved by execution modified Barak’s protocol twice between the
two parties switching the roles the two parties play in the two executions of
the modified Barak’s protocol.

- Coin flipping protocol secure in the adaptive setting. Next using
equivocal commitments, we construct a coin flipping protocol between two
parties A and B. One standard approach for constructing such a coin flipping
protocol is to have the two-parties commit to random strings (via equivocal
commitments) which they subsequently open one by one. The output of the
protocol corresponds to the exclusive or of the two strings. Lets consider the
case in which A opens first. The key technical problem that arises in this
case is that if B is corrupted then the straight-line simulator (simulating A)
without knowledge of the value committed to by B will not be able to force
the output of the protocol to a value of its choice.

We solve this problem by doing two coin flips both of which roughly follow
the same outline as above. The first coin flipping is done in-order to setup
a public key of a public key encryption scheme (with pseudorandom public-
keys and pseudorandom ciphertexts). In this protocol we require that B
opens first and this allows the simulator to force the output of the protocol
to a value of its choice (in a straight-line manner) as long as A is honest.
Subsequently the parties execute a second coin flipping protocol in which we
require that B (B opens later now), in addition to the commitment it sends,
is required to send encryption of the randomness used in generating the
commitment using the public key generated in the first coin flipping. This
allows the simulator to extract the value committed by B (if B is corrupted)
even before A needs to open its committed value and thereby allowing it
to simulate in a straight line manner. However, in case B is honest then
the simulator will have to explain the encryptions as if they were honestly
generated. We achieve this in a way similar to [9].

- Setting up multiple common random strings. Additionally other well
known issues relating to non-malleability arise in constructing of constant
round protocols [21] because of the need to execute different protocol in-
stances in parallel. We deal with issue using the two-slot technique of [17].
Concretely we consider Pass’ [22] family of non-black-box zero knowledge
protocols with strong simulation soundness properties, i.e., any one of these
protocols continues to remain sound even when all the other protocols in the
family are being simulated. We prove that modifying these protocols just like
we modified the Barak’s protocol above suffices for our purposes.

Roadmap. We start by providing our impossibility result for black-box simu-
lation in Section 2. Next we recall some very basic notions and setup notation

in Section 3. Finally we provide the construction of our constant round protocol
in Section 5 using sub-protocols constructed in Section 4.

2 Round inefficiency with a black-box simulation is
unavoidable

In this section, we show the existence of a deterministic n-party functionality for
which there does not exist any o(n

logn) round adaptively secure protocol, with a
black-box simulator.

Before proceeding to the formal proof, we first give some intuition behind
our impossibility result. The central idea to our proof is to argue that a black-
box simulator (say) S of an o(n

logn) round protocol does not gain any thing
via “rewindings” in the adaptive setting. Informally speaking, this means that
the simulator fails to get any useful information from any look-ahead thread
and even in this setting it must still be able to extract the adversary’s input.
However, a simulator must have some additional power over a real adversary,
and the only additional power awarded to a black-box simulator is essentially the
ability to rewind the adversary. We therefore conclude that black-box simulators
cannot exist for any o(n

logn) round protocol, as stated in Theorem 1 below.

Theorem 1. There exist a deterministic n-party functionality for which there
does not (assuming one way functions) exist any o(n

logn) round adaptively secure
protocol with respect to black-box simulators.

Proof. We will organize our proof into two main parts.

1. First, we consider the commitment functionality F , where there are two spe-
cial parties – the committer C and the receiver R, and n−2 dummy parties.
Let Π be any o(n

logn)-round n-party protocol that adaptively securely re-
alizes F with respect to a black-box simulator. Then, for large enough n,
we first construct an adversary A for Π, that corrupts C, such that every
black-box simulator S for Π gets full participation from the adversary in the
“main thread,” but fails to get any “useful” information from the rewind-
ings. Our adversary A, has the inputs of dummy parties hard-coded inside
itself and it acts in the following way. It starts by corrupting the committer
C. It follows the honest committer strategy on behalf of C, except that af-
ter each round of Π it corrupts roughly ω(log n) parties. Furthermore, the
parties to be corrupted are chosen randomly (in fact pseudo-randomly based
on the protocol messages so far) among the uncorrupted parties so far. On
corruption of an honest party, the simulator is obliged to provide to the ad-
versary the input of the party just corrupted. In its “main thread” execution
with the adversary, to help the simulator in simulation, the simulator is also
provided with these inputs. However, every time the simulator “rewinds”
the adversary, the adversary will (with overwhelming probability) choose to
corrupt at least one party that is not among the ones corrupted in the main

thread. The simulator therefore will be unable to proceed in any “rewind-
ing.” However, by security of the protocol such a simulator must still be able
to extract the input of C. Proving this is in fact the crux of our proof.

2. Next, we consider another real-life adversary A′, that corrupts all parties
except C, uses the black-box simulator S (constructed above) and actually
succeeds in extracting the input of the honest committer. This contradicts
the assumption that Π securely realizes F .

Combining the two parts, we conclude that for the n-party commitment func-
tionality F (as described above), there does not exist any o(n

logn)-round protocol
that adaptively securely realizes F with respect to black-box simulators. We note
that this is sufficient to prove Theorem 1. We give more details on both parts of
the proof in the full-version.

3 Building Blocks for our Constant Round Protocol

In this section we recall and define some very basic notions and setup notation.
Let k denote a security parameter. We say that a function is negligible in the
security parameter k if it is asymptotically smaller than the inverse of any fixed
polynomial. Otherwise, the function is said to be non-negligible in k. We say that
an event happens with overwhelming probability if it happens with a probability
p(k) = 1−ν(k) where ν(k) is a negligible function of k. In this section, we recall
the definitions of basic primitives studied in this paper. We now discuss the main
cryptographic primitives that we use in our construction.

Underlying standard commitment. The basic underlying commitment scheme
Com is the standard non-interactive commitment scheme based on a one-way
permutation f and a hard-core predicate b of f . That is, in order to commit to
a bit σ, one computes Com(σ) = 〈f(Uk), b(Uk) ⊕ σ〉, where Uk is the uniform
distribution over {0, 1}k. Note that Com is computationally secret, and pro-
duces pseudorandom commitments: that is, the distributions Com(0), Com(1),
and Uk+1 are computationally indistinguishable. Let the length of the commit-
ment, for one bit message, generated by the pseudorandom commitment scheme
be `C(k) (k + 1 in the above case). For simplicity of exposition, in the sequel,
unless necessary, we will assume that random coins are an implicit input to the
commitment function. Furthermore, we will sometimes abuse notation and use
the same notation to generate commitments to strings, which can be thought of
as a concatenation of commitments of individual bits.

The modifier graph based commitment scheme IDComG. We use the
notation of [19] and some of the text has been taken verbatim from there [19].

To commit to a 0, the sender picks a random permutation π of the nodes of
G, and commits to the entries of the adjacency matrix of the permuted graph
one by one, using Com. The sender also commits (using Com) to the permutation
π. These values are sent to the receiver as c = IDComG(0). To decommit, the
sender decommits to π and decommits to every entry of the adjacency matrix.
The receiver verifies that the graph it received is π(G).

To commit to a 1, the sender chooses a randomly labeled q-cycle, and for all
the entries in the adjacency matrix corresponding to edges on the q-cycle, it uses
Com to commit to 1 values. For all the other entries, including the commitment
to the permutation π, it simply produces random values from Uk+1 (for which
it does not know the decommitment!). These values are sent to the received as
c = IDComG(1). To decommit, the sender opens only the entries corresponding
to the randomly chosen q-cycle in the adjacency matrix.

This commitment scheme has the property of being computationally secret,
i.e. the distributions IDComG(0) and IDComG(1) are computationally indistin-
guishable for any graph G. Also, given the opening of any commitment to both
a 0 and 1, one can extract a Hamiltonian cycle in G. Finally, as with the scheme
of [23], given a Hamiltonian cycle in G, one can generate commitments to 0 and
then open those commitments to both 0 and 1.

Furthermore, here if the simulator has knowledge of a Hamiltonion cycle in
G, it can also produce a random tape for the sender explaining c = IDComG(0) as
a commitment to both 0 and 1. If, upon corruption of the sender, the simulator
has to demonstrate that c is a commitment to 0 then all randomness is revealed.
To demonstrate that c was generated as a commitment to 1, the simulator opens
the commitments to the edges in the q-cycle and claims that all the unopened
commitments are merely uniformly chosen strings (rather than commitments to
the rest of G). This can be done since commitments produced by the underlying
commitment scheme Com are pseudorandom.

In this setting as well, we will sometimes abuse notation and use the same
notation to generate commitments to strings. In particular, we will use the no-
tation c = IDComG(m; r) to denote the function that generates a commitment
to m using random coins r. Furthermore a commitment c = IDComG(0κ; r′) to
the zero string of length κ can be explained to any value m using the function
r = IDOpenG(m, r′,w), where w is a Hamiltonian cycle in the graph G.

Dense cryptosystems. In our construction we will need an the encryption
scheme that has pseudo-random public keys. More specifically, we require that
the public key is indistinguishable from a random string. Such an encryption
scheme can be constructed from dense cryptosystems [14]. Furthermore, we will
require that the scheme has pseudorandom ciphertexts. More formally:

Definition 1 (Encryption with pseudorandom ciphertexts). A public-
key cryptosystem (G,E,D) has pseudorandom ciphertexts of length `E(k) if for
all non-uniform polynomial time adversaries A we have

Pr
[
(pk, sk)← G(1k) : AEpk(·)(pk) = 1

]
≈ Pr

[
(pk, sk)← G(1k) : ARpk(·)(pk) = 1

]
, (1)

where Rpk(m) runs c← {0, 1}`E(k) and every time returns a fresh c. We require
that the cryptosystem has errorless decryption.

Barak’s Non-Black Box technique. We use the non black-box simulation
technique of Pass [22] (which in turn builds on the work of Barak [16]). Consider

a “special” NTIME(T (k)) relation RSim as follows.6 Let k ∈ N and let T : N →
N be a “nice” function that satisfies T (k) = kω(1). Let {Hk}h∈{0,1}k be hash

function family where h ∈ Hk maps {0, 1}∗ to {0, 1}k. Let the triple 〈h, c, r〉 be
the input to RSim. Further, consider a witness that consists of a program Π, a
string y ∈ {0, 1}(|r|−k), and string s. Then RSim(〈h, c, r〉, 〈Π, s, y〉) = 1 if and
only if:

1. c = Com(h(Π); s).
2. Π(c, y) = r within T (k) steps.

Witness Indistinguishable Universal Argument. The function T (k) cor-
responding to the above describe relation RSim is super-polynomial in k. This
implies that the language corresponding to RSim does not lie in NP (but rather
in NTIME(T (k))). Such languages are beyond the scope of the “standard” wit-
ness indistinguishable proof systems (designed to handle NP-languages only),
and will thus require the usage of a Witness Indistinguishable Universal Ar-
gument (WI-UARG) [24]. We note that the WI-UARG protocol of Barak and
Goldreich [24] is public coin and the running time of the verifier in the protocol
is bounded by a fixed polynomial.

4 Sub-Protocols Used in our Constant Round Protocol

In the construction of our final adaptively secure MPC protocol will use a con-
currently secure trapdoor generator protocol 〈P, V 〉 and a coin flipping protocol
〈A,B〉. In this section we will give a constructions of these protocols. Further-
more, we will prove special properties about these protocols that are useful for
us in our final construction.

4.1 Trapdoor Generator Protocol

In this section we describe a family of trapdoor generator protocols 〈P, V 〉i where
i ∈ {1 . . .m}. 〈P, V 〉i is a two party protocol between Pi and Vi and at the end of
the protocol both parties output a Graph (let’s say G). Consider the setting in
which one protocol instance of each of the protocols 〈P, V 〉1, 〈P, V 〉2 . . . 〈P, V 〉m
is being executed concurrently in between n parties – Q1, . . . Qn with inputs
x1 . . . xn.7 We stress that in these protocol executions each Qi could

6 The relation presented is slightly oversimplified and will make Barak’s protocol work
only when the hash function family is collision resistant against “slightly” super-
polynomial sized circuits [16]. However, this can be modified to work assuming colli-
sion resistance against polynomial sized circuits only. It does not affect the analysis
in this paper and we refer the reader to [24] for details.

7 As we will see later that we only need security in the setting of parallel composition.
However, in this section we will stick with the notion of concurrent composition and
argue security in this setting. From this it follows immediately that our protocol is
also secure in the less demanding setting of parallel composition.

potentially be playing the role of multiple Pj’s and Vk’s where j, k ∈
{1 . . .m}. In this setting we consider an adversary A that adaptively corrupts
parties (an honest party reveals its input and random coins to the adversary on
corruption).

However, for simplicity of exposition, we will model this instead as a setting
of n+2m parties – Q1, . . . Qn with inputs x1 . . . xn and P1, . . . Pm, V1, . . . Vm with
no inputs. Furthermore, parties Pi and Vi execute an instance of the protocol
〈P, V 〉i. In this setting, we will consider an adversary that adaptively corrupts
any of these parties.We stress that any adversary in the original setting where
each Qi could potentially be playing the role of multiple Pj’s and Vk’s can always
be used to construct an adversary in this setting. This follows from the fact that
in the original setting when an adversary corrupts a party Qi it additionally
corrupts multiple Pj ’s and Vk’s. Analogously in this setting our adversary can
continue to corrupt all the parties playing the roles of Qi and Pj ’s and Vk’s.
Throughout the rest of this sub-section we will stick to this setting.
Very informally, assuming collision resistant hash functions, we will require that
our protocol satisfies the following security properties:

1. For every such adversary A that adaptively corrupts parties, there exists a
non-black box simulator S〈P,V 〉 (that obtains the inputs of parties adaptively
corrupted by A) such that the view of the adversary A in its interaction with
honest parties and the view of the adversary A in its interaction with S〈P,V 〉
are computationally indistinguishable.

2. For every i ∈ [m] such that Pi is not corrupted, S〈P,V 〉 outputs a Hamiltonian
cycle in the graph that the execution of 〈P, V 〉i yields.

3. For every i ∈ [m] such that Vi is not corrupted, A cannot output a Hamil-
tonian cycle in the graph that parties Pi and Vi executing 〈P, V 〉i output.
Furthermore, we require that the A cannot output a Hamiltonian cycle even
when for every i ∈ [m] such that Pi is not corrupted it is additionally pro-
vided with the Hamiltonian cycle in the graph that the execution of 〈P, V 〉i
yields.

4. Finally, since we are in the adaptive setting, on corruption, an honest party
(or, the simulator on behalf of the honest party in the simulated setting)
must provide its input and random coins to the adversary. We will require
that all the above properties hold even when this additional communication
happens with the adversary.

Next we build some notation that will be useful in the formal description of
our protocol 〈P, V 〉i (in Figure 1).

Shadow version of WI-UARG. Recall that in the WI-UARG protocol V
only sends random bits. Finally at the end of the protocol V outputs 1 or 0. We
will modify the WI-UARG protocol into what we call the shadow version of the
WI-UARG protocol. The prover in the shadow protocol, for every bit sent by the
prover in the original protocol, sends a random string in {0, 1}`C(k) (recall that
`C(k) is the length of a pseudorandom commitment). Furthermore, the behavior
of the verifier V remains unmodified. We will denote this modified protocol by

Com is a pseudo-random commitment scheme with output from {0, 1}`C(k).a We also
use the “shadow version” of the 5-round public-coin WI-UARG protocol which we
denote by sWI-UARG. Further let µ(k) = (m(k) · 4k3 + `(k) + k).

Setup : Vi sends h
$← Hk to Pi.

Slot 1 :

1. Pi sends a random string in c1
$← {0, 1}k·`C(k) to Vi.

2. Vi sends a challenge string r1
$← {0, 1}iµ(k).

Slot 2 :

1. Pi sends a random string in c2
$← {0, 1}k·`C(k) to Vi.

2. Vi sends a challenge string r2
$← {0, 1}(m+1−i)µ(k).

Main Proof Stage : Pi and Vi engage in the shadow version of the WI-UARG pro-
tocolb in which Pi proves to Vi the following statement:

- there exists Π, s, y, b such that RSim(〈h, cb, rb〉, 〈Π, s, y〉) = 1.
Output Stage : Let transcript be the transcript of the above execution. Let G be

a graph (can be constructed using an NP-reduction) that is Hamiltonian if and
only if ∃w such that Ruarg(transcript, w) = 1. Both parties output G.

a We use commitments based on one-way permutation just for simplicity of exposi-
tion. At the cost of a small complication, the one-message scheme could have been
replaced by the Naor’s [25] 2-message commitment scheme, which can be based on
“ordinary” one-way functions.

b As already pointed, we advise the reader to keep in mind that both the honest
prover and the honest verifier of the shadow version of the WI-UARG protocol just
send random bits and that no real proof in an honest execution is ever given.

Fig. 1: 〈P, V 〉i (the ith protocol in the family of m(k) protocols).

sWI-UARG. Consider an instance of execution of the sWI-UARG protocol with
transcript transcript. Note that this transcript contains messages sent by the
prover and the messages sent by the verifier. Further note that every `C(k) bit
string sent by the prover could be interpreted (if they really are) as a commit-
ment to a bit using the commitment scheme Com. Let w be the de-commitment
information (if it exists) corresponding to all the `C(k) bit strings in transcript

that are sent by the prover. Also let transcript′ = unshadow(transcript, w)8

denote the transcript obtained by replacing every `C(k) bit string in transcript

that is sent by P with the corresponding committed bit (as per Com). Let
Ruarg(transcript, w) = 1 if and only if V (unshadow(transcript, w)) = 1.

We stress that in the shadow version of the WI-UARG protocol both the
honest prover and the honest verifier just send random strings and that no
real proof is actually given. However, we also consider a modification of the
prover strategy of shadow version of the WI-UARG protocol called the simulated
shadow prover. The simulated shadow prover additionally obtains a witness for

8 Note that the function unshadow is inefficient and is used just to define the NP-
Relation.

the statement being proven and corresponding to every bit sent by the prover in
the original WI-UARG protocol instead sends a commitment to that bit using the
Com commitment scheme. Note that transcript transcript generated when the
prover follows the simulated shadow prover strategy is such that there exists w
such that Ruarg(transcript, w) = 1. Finally, note that the messages generated
by a simulated shadow prover are computationally indistinguishable from the
messages generated by an honest prover of the shadow version of the WI-UARG
protocol. We will use this shadow prover strategy in our proof.

Common Parameters. All parties receive two parameters m(k) and `(k) as
input. m(k) corresponds to the size of the family of 〈P, V 〉 protocols. In the
adaptive setting, on corruption a party reveals its input to the adversary. We
need a bound of this additional information sent to the adversary. This bound
`(k) corresponds to the sum of the lengths of inputs of parties Q1, . . . , Qn.

Discussion about the protocol. Observe that the entire protocol as described
in Figure 1 involves only random strings from honest Pi and honest Vi. Also note
that the main proof stage involves an execution of the shadow version of the WI-
UARG protocol. As already pointed out an honest execution of this protocol does
not involve any actual proof being given. Therefore, the graph generated in an
honest execution of 〈P, V 〉i will essentially never be Hamiltonian. We provide
full details on our simulator for the family of 〈P, V 〉 protocols and the proofs of
the security properties in the full version.

4.2 Coin-flipping protocol.

Now we describe our coin flipping protocol. 〈A,B〉 is a protocol between two
parties A and B. Both A and B in the 〈A,B〉 protocol get graphs G1 and G2 as
common input and output a random string of length `′(k). We assume that no
PPT adversary can output a Hamiltonian cycle in G1 if B is honest. Similarly,
we assume that no PPT adversary can output a Hamiltonian cycle in G2 if A is
honest. Consider the setting in which an instance of the 〈A,B〉 protocol is being
executed. In this setting we consider an adversary A that adaptively corrupts
parties (an honest party reveals its input and random coins to the adversary on
corruption) and (assuming dense cryptosystems [14]) require that:

1. For every adaptive adversary A, there exists a simulator S〈A,B〉 which gets
as input a Hamiltonian cycle in G1 if A is honest (before the start of the
protocol), a Hamiltonian cycle in G2 if B is honest (before the start of the
protocol) and a string crs (sampled from the uniform distribution) of length
`′(k). Furthermore, S〈A,B〉 obtains the input of every party that A corrupts.
In this setting we require that the view of the adversary A in its interaction
with the honest parties and the view of the adversray A in its interaction
with S〈A,B〉 are computationally indistinguishable.

2. The output of the protocol execution is crs as long as either A or B is not
corrupted till the end of the protocol.

Our protocol 〈A,B〉. (IDCom, IDOpen) is a graph based commitment scheme.
And, (G,E,D) is an encryption scheme with pseudorandom ciphertexts and

pseudo-random public keys (of length `1(k)). Both parties get graphs G1 and
G2 as common input.

1. A generates a commitment c = IDComG1
(α; r1), where α is a random string

in {0, 1}`1(k) and r1 are the random coins. It sends c to B.
2. B sends a random string β ∈ {0, 1}`1(k) to A.
3. A sends (α, r1) to B.
4. B aborts the protocol if c 6= IDComG1(α; r1).
5. Both parties set pk := α⊕ β.
6. A generates a commitment d = IDComG1

(γ; r2), where γ is a random string
in {0, 1}`′(k) and sends it to B.

7. B generates commitments fi = IDComG2
(δi; si), where δ is a random string

in {0, 1}`′(k) and δi is the ith bit of δ. It also generates ei,δi = Epk(si; ti)
and ei,1−δi as a random string in {0, 1}`2(k) (where `2(k) is the appropriate
length). Finally it sends fi, ei,0 and ei,1 for all i ∈ [`′(k)] to A.

8. A sends (γ, r2) to B.
9. B aborts if d 6= IDComG1

(γ; r2). Next, B sends δi, si, ti for every i ∈ [`′(k)]
to A.

10. A aborts if for some i ∈ [`′(k)], fi 6= IDComG2
(δi; si) or ei,δi 6= Epk(si; ti).

11. Both parties output γ ⊕ δ as the output of the protocol.

Intuition behind the proof. If B is honest before Step 9, then S〈A,B〉 equivo-
cates in the messages (sent on behalf of B) and thereby forcing the output of the
protocol to a value of its choice. Now consider the case in which B is corrupted
before Step 9. In this case we need to force the output of the protocol only if A is
not corrupted. In this case the simulator S〈A,B〉 will be able to force the value pk
generated in Step 3 of the protocol to a value of its choice. Subsequently it can
force the output of the protocol to a value of its choice by extracting the values
committed by B in Step 7 and then later equivocating in Step 8. Further note
that the simulation itself is straight line. However in proving indistinguishability
of simulation from real interaction we do rewind the adversary.9 We provide full
details on our simulator for the 〈A,B〉 protocols and the proof of the security
properties in the full version.

5 Our Constant Round Protocol

Let f be any adaptively well-formed10 functionality. In this section we will give
a constant round protocol Π that adaptively-securely realizes f . Let Q1, . . . , Qn
be n parties that hold inputs x1, . . . xn respectively. Let f be the function that
they wish to evaluate on their inputs. Furthermore, let `(k) = |x1|+ |x2| . . . |xn|.

We start by describing a protocol that adaptively securely realizes the Fn−crs
functionality (Figure 2). Note that whenever a party is corrupted then it reveals

9 This is not a problem as rewinding is used only in the proof in order to reach a
contradiction.

10 We require[9] that the functionality reveals its random input in case all parties are
corrupted.

its input and random coins to the adversary. In our construction we use a family
of trapdoor generator protocols 〈P, V 〉i where i ∈ {1 . . .m} (Section 4.1) and a
coin flipping protocol 〈A,B〉 (Section 4.2). The protocol proceeds as follows.

1. Trapdoor Creation Phase: Qi ↔ Qj : For all i, j ∈ [n], such that i 6= j, Qi
and Qj engage in an execution of the protocol 〈P, V 〉t (with common input
n2 and `(k) where t = i · (n− 1) + j), where Qi plays the role of Pt and Qj
places the role of the Vt. Let Gi,j be the output of the protocol. All these
executions are done in parallel.

2. Coin Flipping Phase: Pi ↔ Pj : For all i, j ∈ [n], such that i < j, Qi
and Qj engage in an execution of the protocol 〈A,B〉, denoted as 〈A,B〉i,j ,
where Qi plays the role of A and Qj plays the role of B with common input

Gi,j and Gj,i. Qi and Qj output the output of 〈A,B〉i,j as crsi,j . All these
executions are done in parallel.

Common input: Let Q1, . . . , Qn be n parties that hold inputs x1, . . . xn respectively.
Furthermore, let `(k) = |x1| + |x2| . . . |xn|. Fn−crs sets up a list L that is initially set
to be empty. Let S be the ideal world adversary and let A at any point be the set of
corrupted parties.

1. On receiving a messages (crs, i, j) from party Q (including S), Fn−crs:
- If ∃(crs, i, j, crsi,j) ∈ L: Sends crsi,j to Q.
- If (crs, i, j, ·) 6∈ L and if at least one of Qi or Qj is not in A: Samples a random

string crsi,j ∈ {0, 1}`
′(k), adds (crs, i, j, crsi,j) to L and sends crsi,j to Q.

- If both Qi, Qj ∈ A: Obtain crs from S and send the obtained crs to Q.
2. On receiving a message (corrupt, Qi) from A, Fn−crs adds Qi to A and sends xi

to S.

Fig. 2: Fn−crs

Theorem 2. Assuming collision resistant hash functions and dense cryptosys-
tems [14], the constant round protocol just described above adaptively securely
evaluates Fn−crs (Figure 2).

The formal proof of the above theorem appears in the full version.

Realizing all functionalities. Now we elaborate on how we can construct an
adaptive secure protocol for any functionality.

Theorem 3. Assuming collision resistant hash functions, trapdoor permuta-
tions, augmented non-committing encryption and dense cryptosystems, for any
n ≥ 2, there exists an n-party constant round MPC protocol that is secure against
any malicious adversary which may adaptively corrupt at most n− 1 parties

Recall that we have already constructed a protocol that adaptively securely
realizes Fn−crs ideal functionality. Therefore we are left with just constructing
a protocol secure in the Fn−crs-hybrid model. This is implied by the following
proposition.

Proposition 1. Assuming trapdoor permutations and augmented non-committing
encryption, for any n ≥ 2, there exists an n-party constant round MPC protocol
in the Fn−crs-hybrid model that is secure against any malicious adversary which
may adaptively corrupt at most n− 1 parties.

Remark on the above proposition. Note that if security against corruption
of all n parties is desired then a proposition (similar to the one above) that yields
a protocol with round complexity that depends on the depth of the circuit being
evaluated still holds. Additionally in this setting we can get a constant-round
protocol if data erasures are allowed. We refer the reader to Remark 2 in [20]
for discussion on this.

Proof sketch. The proof of the above proposition is implicit in a number of
previous works. For concreteness, we will describe one way of constructing such

a protocol. Observe that the Fn−crs ideal functionality can be split into n(n−1)
2

ideal functionalities each generating a common random string for each pair of
parties (each of these ideal functionalities works correctly as long as at least one
of the two parties it is serving is honest). Next note that, using [9], given access
to a common random string, we can construct an adaptively secure OT protocol.
Using this protocol and applying the UC composition theorem [26] (Composing
Different Setups, Page 61), multiple times, we can construct a protocol that
achieves adaptively secure OT11 between every pair of parties (as long as at
least one of the two parties it is serving is honest). Finally, using these OT
channels [20] we can adaptively securely realize any functionality.

Acknowledgements

Research supported in part from a DARPA/ONR PROCEED award, NSF grants
1136174, 1118096, 1065276, 0916574 and 0830803, a Xerox Faculty Research
Award, a Google Faculty Research Award, an equipment grant from Intel, and an
Okawa Foundation Research Grant. This material is based upon work supported
by the Defense Advanced Research Projects Agency through the U.S. Office of
Naval Research under Contract N00014-11-1-0389. The views expressed are those
of the author and do not reflect the official policy or position of theDepartment
of Defense or the U.S. Government.

We gratefully thank Abhishek Jain, Yuval Ishai, Manoj Prabhakaran, and
Akshay Wadia for valuable discussions about this work. We would also like to
thank Divya Gupta and the anonymous reviewers of CRYPTO 2012 for their
comments on the previous drafts of this paper.

References

1. Yao, A.C.: How to generate and exchange secrets. In: Proc. 27th FOCS. (1986)
162–167

11 [9] assume trapdoor permutations and augmented non-committing encryption in
their construction.

2. Goldreich, O., Micali, S., Wigderson, A.: How to play any mental game or a
completeness theorem for protocols with honest majority. In: STOC. (1987) 218–
229

3. Canetti, R., Feige, U., Goldreich, O., Naor, M.: Adaptively secure multi-party
computation. In: STOC. (1996) 639–648

4. Beaver, D.: Adaptive zero knowledge and computational equivocation (extended
abstract). In: STOC. (1996) 629–638

5. Lindell, Y., Zarosim, H.: Adaptive zero-knowledge proofs and adaptively secure
oblivious transfer. J. Cryptology 24(4) (2011) 761–799

6. Beaver, D.: Equivocable oblivious transfer. In: EUROCRYPT. (1996) 119–130
7. Beaver, D.: Adaptively secure oblivious transfer. In: ASIACRYPT. (1998) 300–314
8. Katz, J., Ostrovsky, R.: Round-optimal secure two-party computation. In:

CRYPTO. (2004) 335–354
9. Canetti, R., Lindell, Y., Ostrovsky, R., Sahai, A.: Universally composable two-

party and multi-party secure computation. In: STOC. (2002) 494–503
10. Choi, S.G., Dachman-Soled, D., Malkin, T., Wee, H.: Improved non-committing

encryption with applications to adaptively secure protocols. In: ASIACRYPT.
(2009) 287–302

11. Choi, S.G., Dachman-Soled, D., Malkin, T., Wee, H.: Simple, black-box construc-
tions of adaptively secure protocols. In: TCC. (2009) 387–402

12. Pass, R., Wee, H.: Black-box constructions of two-party protocols from one-way
functions. In: TCC. (2009) 403–418

13. Canetti, R.: Security and composition of multi-party cryptographic protocols.
Cryptology ePrint Archive, Report 1998/018 (1998) http://eprint.iacr.org/.

14. De Santis, A., Persiano, G.: Zero-knowledge proofs of knowledge without interac-
tion. In: Proceedings of the 33rd Annual Symposium on Foundations of Computer
Science. SFCS ’92, Washington, DC, USA, IEEE Computer Society (1992) 427–436

15. Beaver, D., Haber, S.: Cryptographic protocols provably secure against dynamic
adversaries. In: EUROCRYPT. (1992) 307–323

16. Barak, B.: How to go beyond the black-box simulation barrier. In: Proc. 42nd
FOCS. (2001) 106–115

17. Pass, R., Rosen, A.: Bounded-concurrent secure two-party computation in a con-
stant number of rounds. In: FOCS. (2003) 404–413

18. Pass, R., Rosen, A.: New and improved constructions of nonmalleable crypto-
graphic protocols. SIAM J. Comput. 38(2) (2008) 702–752

19. Barak, B., Sahai, A.: How to play almost any mental game over the net - concurrent
composition via super-polynomial simulation. In: FOCS. (2005) 543–552

20. Ishai, Y., Prabhakaran, M., Sahai, A.: Founding cryptography on oblivious transfer
- efficiently. In: CRYPTO. (2008) 572–591

21. Katz, J., Ostrovsky, R., Smith, A.: Round efficiency of multi-party computation
with a dishonest majority. In: EUROCRYPT. (2003) 578–595

22. Pass, R.: Bounded-concurrent secure multi-party computation with a dishonest
majority. In: Proc. 36th STOC. (2004) 232–241

23. Feige, U., Shamir, A.: Zero knowledge proofs of knowledge in two rounds. In:
CRYPTO. (1989) 526–544

24. Barak, B., Goldreich, O.: Universal arguments and their applications. SIAM J.
Comput. 38(5) (2008) 1661–1694

25. Naor, M.: Bit commitment using pseudorandomness. Journal of Cryptology 4(2)
(1991) 151–158 Preliminary version in CRYPTO’ 89.

26. Canetti, R.: Universally composable security: A new paradigm for cryptographic
protocols. (2000) http://eprint.iacr.org/.

