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Abstract. This paper takes a new step towards closing the troubling
gap between pseudorandom functions (PRF) and their popular, bounded-
input-length counterparts. This gap is both quantitative, because these
counterparts are more efficient than PRF in various ways, and method-
ological, because these counterparts usually fit in the substitution-permutation
network paradigm (SPN) which has not been used to construct PRF.

We give several candidate PRFFi that are inspired by the SPN paradigm.
This paradigm involves a “substitution function” (S-box). Our main can-
didates are:

F1 : {0, 1}n → {0, 1}n is an SPN whose S-box is a random function
on b bits given as part of the seed. We prove unconditionally that F1

resists attacks that run in time ≤ 2ǫb. Setting b = ω(lgn) we obtain an
inefficient PRF, which however seems to be the first such construction
using the SPN paradigm.

F2 : {0, 1}n → {0, 1}n is an SPN where the S-box is (patched) field
inversion, a common choice in practical constructions. F2 is computable
with Boolean circuits of size n · logO(1) n, and in particular with seed
length n·logO(1) n. We prove that this candidate has exponential security
2Ω(n) against linear and differential cryptanalysis.

F3 : {0, 1}n → {0, 1} is a non-standard variant on the SPN paradigm,
where “states” grow in length. F3 is computable with size n1+ǫ, for any
ǫ > 0, in the restricted circuit class TC0 of unbounded fan-in majority
circuits of constant-depth. We prove that F3 is almost 3-wise indepen-
dent.

F4 : {0, 1}n → {0, 1} uses an extreme setting of the SPN parameters (one
round, one S-box, no diffusion matrix). The S-box is again (patched) field
inversion. We prove that this candidate fools all parity tests that look at
≤ 20.9n outputs.

Assuming the security of our candidates, our work also narrows the gap
between the “Natural Proofs barrier” [Razborov & Rudich; JCSS ’97]
and existing lower bounds, in three models: unbounded-depth circuits,
TC0 circuits, and Turing machines. In particular, the efficiency of the
circuits computing F3 is related to a result by Allender and Koucky
[JACM ’10] who show that a lower bound for such circuits would imply
a lower bound for TC0.
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1 Introduction

This paper takes a new step towards closing the troubling gap between pseudo-
random functions ([17], cf. [16, §3.6]) and their popular, bounded-input-length
counterparts. These counterparts are mostly obtained in two ways. One is to use
bounded-input-length hash functions such as the SHA-1 compression function,
or block ciphers such as the Advanced Encryption Standard (AES) by Daemen
and Rijmen [10]. We note that the latter satisfy the additional constraint of
computing permutation functions.

This gap is both quantitative and methodological. It is quantitative because
all candidate pseudorandom functions (hereafter, PRF) based on complexity-
theoretic assumptions (e.g. [17, 21, 35, 20, 43]) have seed length at least quadratic
in the input length n, which also implies a quadratic lower bound on the circuit
size of such PRF. In contrast, bounded-input-length constructions often have
seed length which equals the input length. This is for example the case with the
128-bit version of AES.

It is methodological because many modern bounded-input-length hash func-
tions and block ciphers are constructed using the substitution-permutation net-
work (SPN) paradigm. This is for example the case with two of the finalists for
the ongoing SHA-3 cryptographic hash function competition, namely Grøstl [13]
and JH [45], and also the AES block cipher. An SPN is computed over a number
of rounds, where each round “confuses” the input by dividing it into bundles and
applying a substitution function (S-box) to each bundle, and then “diffuses” the
bundles by applying a matrix with certain “branching” properties (cf. [42]). No
piece of this structure appears to have been used to construct PRF. In fact, until
the present paper no asymptotic analysis of the SPN structure was given. This is
in stark contrast with the seminal work of Luby and Rackoff [31] that gave such
an analysis for the so-called Feistel network structure (which in particular was
the basis for the block cipher DES, the predecessor to AES). Moreover the SPN
structure is tailored to resist two general attacks on block ciphers which appear
to be ignored in the PRF literature, namely linear and differential cryptanalysis.

In this paper we give several candidate PRF that are inspired by the SPN
structure, though unlike popular constructions we do not require that an SPN
computes a permutation function. Each of the many hash functions and block
ciphers based on the SPN structure (e.g. those mentioned above) suggests dif-
ferent choices for the parameters, S-boxes, and diffusion matrices. As a first step
we choose to follow the design considerations behind the AES block cipher, and
particularly its S-box. We do this for two reasons. First, it is a well-documented,
widely-used block cipher that has been around for over a decade. Second, the
algebraic structure of its S-box lends itself to an asymptotic generalization; we
exploit this fact in some of our results. We hope that future work will system-
atically address other available bounded-input-length constructions.

Some of our candidates have better parameters than previous candidates,
where by parameters we refer to the seed length and the resources required to
compute each function in various computational models:



1. We first consider an SPN with a random S-box (specified as part of the seed).
We prove unconditionally that this resists attacks that run in time less than
the seed length. For example we can set the seed length to nc and withstand
attacks running in time nc′ for sufficiently large c and c′ = Θ(c). (Note
that being a PRF means that the seed length is nc and that the function
withstands all attacks running in time nc′ for any c′.)

This result is analagous to that of Luby and Rackoff, who analyzed the Feistel
network structure when a certain component is instantiated with a random
function, and indeed we prove the same level of security (exponential in the
input size of the random function). The techniques used are similar to those
in the work by Naor and Reingold [34] that followed Luby and Rackoff’s. To
our knowledge this is the first construction of a (provably secure, inefficient)
PRF using the SPN structure.

2. Using the AES S-box and a strengthened version of the AES diffusion matrix,
we give a candidate computable with Boolean circuits of size n · logO(1) n,
and in particular with seed length O(n log2 n). We prove that this candidate
has exponential security 2Ω(n) against linear and differential cryptanalysis
by extending a result due to Kang et al. [26].

3. Again using the AES S-box and a different diffusion matrix, we give a candi-
date computable with size n1+ǫ, for any ǫ > 0, in the restricted circuit class
TC0 of unbounded fan-in majority circuits of constant-depth. The diffusion
matrix used here blows up the state to size O(n), and we output a single bit
by taking the inner product of this state with a random string. We prove
that this candidate is almost 3-wise independent.

4. We give another single-bit output candidate which uses an extreme setting
of the SPN parameters (one round, one S-box, no diffusion matrix). This
can be viewed as a slightly modified version of the Even-Mansour cipher [11]
that uses the AES S-box in place of a random permutation. We prove that
this candidate fools all parity tests that look at ≤ 20.9n outputs.

5. Our final candidate is a straightforward generalization of AES, and may be
folklore. We show that it is computable by size O(n2), depth O(n) Boolean
circuits, and we further show that for each fixed seed k it is computable in
time O(n2) by a single-tape Turing machine with O(n2) states. We do not
have any proof of security, but the (heuristic) arguments underlying AES’s
security also apply to this candidate.

For context, we mention that Hoory, Magen, Myers and Rackoff [24] and
Brodsky and Hoory [8], building on work by Gowers [19], study the random
composition of a family of permutations. The SPN structure can be seen as falling
into this framework, by taking each round as an individual permutation chosen
randomly by the key. However, the permutations constructed in these works do
not have the form of an SPN round, and furthermore the circuit complexity of
the composed permutations is not of interest to them (their constructions have
size and depth Ω(n3)).



Natural proofs. The landscape of circuit lower bounds remains bleak, despite
exciting recent results [44]. Researchers however have been successful in explain-
ing this lack of progress by pointing out several “barriers,” i.e. establishing that
certain proof techniques will not give new lower bounds [4, 39, 1].

Of particular interest to us is the Natural Proofs work by Razborov and
Rudich [39]. They make the following two observations. First, most lower-bound
proofs that a certain function f : {0, 1}n → {0, 1} cannot be computed by
circuits C (e.g., C = circuits of size n2) entail an algorithm that runs in time
polynomial in N := 2n and can distinguish truth-tables of n-bit functions g ∈ C
from truth-tables of random functions (i.e., a random string of length N). (For
example, the algorithm corresponding to the restriction-based proof that Parity
is not in AC0, given f : {0, 1}n → {0, 1}, checks if there is one of the 2O(n) =
NO(1) restrictions of the n variables that makes f constant.) Informally, any
proof that entails such an algorithm is called “natural.”

The second observation is that, under standard hardness assumptions, no
algorithm such as the above one exists when C is a sufficiently rich class. This

follows from the existence of PRF with security 2s
Ω(1)

where s is the seed length
(e.g. [17, 21, 35, 20, 43]) and by setting s := nc for a sufficiently large c.

The combination of the two observations is that no natural proof exists
against circuits of size nc, for some constant c ≥ 2.

Moreover, the PRF construction [35] by Naor and Reingold is implementable
in TC0, pushing the above second observation “closer” to the frontier of known
circuit lower bounds. For completeness we also mention that this PRF achieves
seed length s = O(n2) and is a candidate to having hardness 2Ω(n) under elliptic-
curve conjectures.

The gap between lower bounds and PRF. However, the natural proofs
barrier still has a significant gap with known lower bounds, due to the lack of
sufficiently strong PRF. For example, there is no explanation as to why one
cannot prove superlinear-size circuit lower bounds. For this one would need a
PRF fk : {0, 1}n → {0, 1} that is computable by linear-size circuits (hence in
particular with |k| = O(n)) and with exponential hardness 2n. (So that, given
n, if one had a distinguisher running in time 2O(n), one could pick a PRF on
inputs of length bn for a large enough constant b, to obtain a contradiction.)

A recent work by Allender and Koucký [2] brings to the forefront another
setting where the Natural Proofs barrier does not apply: proving lower bounds
on TC0 circuits of size n1+ǫ and depth d, for any ǫ > 0 and large enough d = d(ǫ).
(As mentioned above, the Naor-Reingold PRF requires larger size.) This setting
is especially interesting because [2] shows that such a lower bound for certain
functions implies a “full-fledged” lower bound for TC0 circuits of polynomial-
size. Moreover even if the first lower bound were natural, the latter would not
be, thus circumventing the Naor-Reingold PRF.

Another long-standing problem is to exhibit a candidate PRF in ACC0.
Of course, circuit models such as the above ones are only some of the models

in which the gap between candidate PRF and lower bounds is disturbing. Other



such models include various types of Turing machines, and small-space branching
programs. For example, there is no explanation as to why the lower bounds for
single-tape Turing machines stop at quadratic time, cf. [30, §12.2].

Assuming the (exponential) security of some of our candidates, our work
narrows this gap in three ways. First, Candidate 2 is computable by quasilinear-
size Boolean circuits. Second, Candidate 3 is computable by TC0 circuits of size
n1+ǫ and depth d = d(ǫ) for any ǫ > 0. Third, for each fixed seed k Candidate 5
is computable in time O(n2) by a single-tape Turing machine with O(n2) states
(note that the fixed-seed setting suffices for the Natural Proofs connection).

1.1 Background on SPNs

To formally define our candidates, we begin by reviewing the SPN structure (refer
to Figure 1). The notation introduced in this section will be used throughout
the paper.

S

b-bit “bundle”

(n = mb)-bit “state”

S S S S S S S

M

kiki = ith round key

M : GF(2b)m → GF(2b)m
Linear transformation

S-boxes

S(x) := x2b−2

Fig. 1. One round of an SPN

An SPN Ck : {0, 1}n → {0, 1}n is indexed by a key k = (k0, . . . , kr) ∈

({0, 1}n)
r+1

, and is specified by the following three parameters and two func-
tions:

– r ∈ N, the number of rounds
– b ∈ N, the S-box input size



– m ∈ N, the number of S-box invocations per round
– S : GF(2b) → GF(2b), the S-box
– M :

(
GF(2b)

)m
→

(
GF(2b)

)m
, the linear transformation.

The input/output size of Ck is given by n := mb. Throughout this paper, we
assume a fixed canonical mapping between {0, 1}b and GF(2b).

Ck is computed over r rounds. The ith round (1 ≤ i ≤ r) is computed over
three steps: (1) m parallel applications of S; (2) application of M to the entire
state; (3) xor of the entire state with the round key ki. Note that each round
is identical except for step (3).1

On input x, Ck(x) gives x ⊕ k0 as input to the first round; the output of
round i becomes the input to round i+ 1 (for 1 ≤ i < r), and Ck(x)’s output is
the output of the rth round.

Security against linear and differential cryptanalysis. We now briefly
review how the security of an SPN is evaluated against two general attacks on
block ciphers: linear and differential cryptanalysis. (See the full version for a
more extensive discussion.) Resistance to these attacks is typically seen as the
main security feature of SPNs. Note that we consider here the basic versions of
these attacks, and we leave to future work understanding the resistance of our
candidates to more sophisticated attacks (such as those considered by Knudsen
[28]).

For both linear and differential cryptanalysis, a crucial property in the se-
curity proof is that the linear transformation M has maximal branch number,
defined as follows.

Definition 1. Let M : Fm → F
m be a linear transformation acting on vectors

over a field F. The branch number of M is

Br(M) = min
α6=0m

(w(α) + w(M(α))) ≤ m+ 1

where w(·) denotes the number of non-zero elements.

Linear cryptanalysis [32] exploits the existence of linear correlations to attack
a block cipher Ck. For a function f : {0, 1}n → {0, 1}n and input/output parities
Γx, Γy ∈ {0, 1}n, define the correlation of f with respect to Γx and Γy as

CorΓx,Γy
(f) := 2 · Pr

x
[〈Γx, x〉 = 〈Γy, f(x)〉] − 1.

For a block cipher Ck, the parameter of interest for linear cryptanalysis is

pLC(Ck) := max
Γx,Γy 6=0

(
Ek

[
CorΓx,Γy

(Ck)
2
])

.

Specifically, the attack requires an expected number of plaintext/ciphertext pairs
proportional to 1/pLC(Ck).

1 SPNs are sometimes defined more generally, e.g. by allowing the S-box to vary across
rounds or by allowing a more complex interaction with k than xor.



Differential cryptanalysis [6] attacks a block cipher Ck by exploiting the rela-
tionship between the xor difference of two inputs to Ck and the xor difference of
the corresponding outputs. For a function fk : {0, 1}n → {0, 1}n parameterized
by a key k, and input/output differences ∆x, ∆y ∈ {0, 1}n, define the difference
propagation probability (DPP) of fk with respect to ∆x and ∆y as

DPP∆x,∆y
(fk) := Pr

x,k
[fk(x)⊕ fk(x⊕∆x) = ∆y].

(If f is not parameterized by a key, k is ignored in this definition). For a block
cipher Ck, the parameter of interest for differential cryptanalysis is

pDC(Ck) := max
∆x,∆y 6=0

(
DPP∆x,∆y

(Ck)
)
.

Specifically, the attack requires an expected number of plaintext/ciphertext pairs
proportional to 1/pDC(Ck).

The following theorem, due to Kang et al. [26], gives a bound on pLC and
pDC for 2-round SPNs with maximal branch number.

Theorem 1. ([26], Thms. 5 & 6) Let Ck : {0, 1}n → {0, 1}n be an SPN with

r = 2 rounds and S-box S. Let q := maxΓx,Γy 6=0

(
CorΓx,Γy

(S)2
)

denote the

maximum squared correlation of S, and let p := max∆x,∆y 6=0

(
DPP∆x,∆y

(S)
)

denote the maximum DPP of S. If Br(M) = m + 1, then pLC(Ck) ≤ qm and
pDC(Ck) ≤ pm.

For typical S-boxes, such as the one used in AES, one can have q = p = 2−b+2,
and so the theorem guarantees security exponential in n = mb. (For completeness
we note that one cannot directly apply the above theorem to AES because it is
a more complicated SPN.)

We extend this result to r > 2 rounds in the following theorem.

Theorem 2. Let Ck : {0, 1}n → {0, 1}n be an SPN with r = 2ℓ rounds for some

ℓ ≥ 1 and S-box S. Let q := maxΓx,Γy 6=0

(
CorΓx,Γy

(S)2
)
denote the maximum

squared correlation of S, and let p := max∆x,∆y 6=0

(
DPP∆x,∆y

(S)
)
denote the

maximum DPP of S. If Br(M) = m+ 1,

1. pLC(Ck) ≤ qℓm · 2(ℓ−1)n. 2. pDC(Ck) ≤ pℓm · 2(ℓ−1)n.

Intuitively, the S-box provides security q (resp. p) against linear (resp. dif-
ferential) cryptanalysis, and this security multiplies across “active” S-boxes (in-
stances of S that are evaluated with a non-zero input). The branch number
Br(M) guarantees that there exist ≥ m + 1 such active S-boxes in any pair
of consecutive rounds, hence the term qℓm = q(r/2)m. We note that the factor
2(ℓ−1)n seems to be an artifact of our extension of [26], and it is open to get
a tighter bound on pLC and pDC for r > 2 rounds ([26] only consider r = 2).
Such an extension has been considered before, for example by Keliher et al. [27]
and Cho et al. [9], but their results only apply in the fixed-parameter setting
because they require extensive computer calculation. We are not aware of any
other “closed form” bound for r > 2.



Security against degree-exploiting attacks. While resistance to linear and
differential cryptanalysis is the main security feature of the SPN structure (and
indeed, “the most important criterion in the design” of AES [10, p. 81]), consid-
erations are usually also taken to prevent attacks that would exploit algebraic
structure in the cipher. In our candidates 2-5, we adopt essentially the same S-

box that is used in AES.2 This S-box is defined by S(x) := x2b−2 and was chosen
to allow the computation to have high degree when considered as a multivariate

polynomial over GF(2). Specifically, the use of x 7→ x2b−2 results in each of S’s
output bits having (near-maximum) degree b−1. Using instead x 7→ x3 would not
diminish resistance to linear and differential cryptanalysis, but it would result
in degree (only) 2 [37, 36, 29].

We need the degree of each output bit of our candidates (as a multivariate
GF(2)-polynomial) to be ≥ ǫn, for some constant ǫ, to resist attacks that ex-
ploit the degree of this polynomial. For completeness we present such an attack,
showing that a PRF that has degree o(n) cannot have hardness 2n.

Theorem 3. Let F = {fk : {0, 1}n → {0, 1}}k be any set of functions such
that, for each key k, the polynomial representation of fk over GF(2) has degree
o(n). Then there is an adversary that runs in time ≤ 2O(n) and distinguishes a

random fk ∈ F from a random function with advantage ≥ 1− 2−2Ω(n)

.

The only non-linear operation in the entire cipher is the S-box, which for
Candidates 2-5 has degree b− 1, and thus the maximum possible degree of each
output bit for these candidates is (b − 1)r. Hence we make sure that

br ≥ n

in each of our candidates. (The distinction between (b− 1)r ≥ ǫn and br ≥ n is
unimportant, as in our candidates we can always increase r by a constant factor,
except in Candidate 4 where we have b = n and r = 1.) We do not know if
br ≥ n is sufficient to guarantee degree Ω(n), and it is an interesting research
direction to understand what restrictions (if any) on the SPN parameters ensure
that the function has high degree.

Finally, although a block cipher’s security is often measured against key-
recovery attacks, we share many researchers’ viewpoint that distinguishing at-
tacks are the correct model. We also note that there is often an intimate connec-
tion between the two types, as many key recovery techniques, including linear
and differential cryptanalysis, construct a distinguishing algorithm which is then
used to select the correct round keys from a set of potential keys.

2 Besides the obvious difference that in AES the value b is fixed to be 8, we omit the
GF(2)b-affine function that is included in the AES S-box. Adding such a function
would not affect the (asymptotic) circuit size of our candidates, and removing it does
not affect resistance to linear/differential cryptanalysis. To our knowledge there are
no known attacks against the AES variant that uses this “reduced” S-box.



2 Our candidates

We now describe our candidates. Candidates 1, 2, and 5 output n bits, while
Candidates 3 and 4 output 1 bit. We use Fi to refer to the function comput-
ing Candidate i. In each candidate, the (r + 1) n-bit round keys are chosen
independently and uniformly at random. (Popular constructions typically em-
ploy a so-called “key schedule” that generates the round keys from a key of size
≪ n(r + 1).)

Candidate 1. Our first candidate F1 is an r-round SPN with an S-box that
is chosen uniformly at random (i.e. specified as part of F1’s key) from the set
of all functions mapping GF(2b) to itself. (Analyzing this candidate when S is
a random permutation is a natural research direction which we do not address
here.) The only restriction we make on F1’s linear transformation M is that it
is invertible and has all entries 6= 0; we observe that this holds for any M with
maximal branch-number. We show that any adversary A has small advantage in
distinguishing F1 from a random function F .

Theorem 4. If A makes at most q total queries to its oracle, then
∣∣∣∣PrF

[
AF = 1

]
− Pr

F1

[
AF1 = 1

] ∣∣∣∣ < O(r2m3q3) · 2−b.

The bound achieved here is similar to that of Luby and Rackoff [31] in the
sense that it is exponentially small in the size of the random function, with a
polynomial loss in the number of queries. (The fact that security degrades with
the number of rounds, contrary to what one might expect, seems to be an artifact
of the proof.) The proof of this theorem is very similar to that of [34, Thm. 3.2],
and proceeds by bounding the collision probability between any two inputs to S
in the final round. However we face an additional hurdle, namely that the inputs
to the random function S in the final round depend on outputs of S in previous
rounds.

By setting b = ω(logn) and r = logn, we get an inefficient PRF (with
security nω(1)). We also note that by setting b = c logn for some sufficiently
large constant c, F1 is computable in time nO(c) and has security nc′ for some
c′ = Ω(c).

Finally, note that Theorem 4 implies corresponding bounds on pLC(F1) and
pDC(F1).

Candidate 2. In this candidate we set b = Θ(log n), and we use the AES S-box

on b bits (recall that it maps x 7→ x2b−2). We use a linear transformation M
with maximal branch number, and M is constructed from an error-correcting
code in a similar manner to the linear transformation in AES. (AES’s linear
transformation does not have maximal branch number however, a choice that was
made to reduce computation time.) We set the number of rounds r = Θ(log n)
(observe that br ≥ n).



We prove that Candidate 2 is computable by Boolean circuits of quasilinear-
size Õ(n) := n · logO(1) n. To show this, note that since r is logarithmic it is
enough to show how to compute each round with these resources. Moreover,
since b is logarithmic, computing the S-boxes comes at little cost.

Our main technical contribution in this candidate is to show how to effi-
ciently compute the linear transformation M ; specifically, we show that it can

be computed with size Õ(n), for a total circuit size of r ·
(
bO(1) + Õ(n)

)
= Õ(n).

A common method for constructing maximal-branch-number linear transfor-
mations is to use the generator matrix G of an m → 2m maximum distance
separable (MDS) code; specifically, if GT = [I |A], then M := A has maximal
branch number. Our method for computing M efficiently has two parts. First,
we use a result by Roth and Seroussi [41] that if G generates a Reed-Solomon
code (which is well-known to be MDS), then M forms a t× t Cauchy matrix (a
type of matrix specified by O(t) elements). We then use a result by Gerasoulis
[15] to compute the product of a vector (consisting of bundles of the state) and
a Cauchy matrix in quasilinear time; this requires a simple adaptation of the
algorithm in [15] to fields of characteristic 2.

By combining Theorem 2 with a theorem of Nyberg [36], we show that this
candidate has exponential security against linear and differential cryptanalysis.

Theorem 5. 1. pLC(F2) ≤ 2−Ω(n). 2. pDC(F2) ≤ 2−Ω(n).

We do not know how to get a candidate computable by circuits of size O(n).

Candidate 3. In the previous candidate, the components S and M remain
essentially unchanged from AES. In Candidate 3, we also keep S the same (aside
from the increase in input/output size), but we modify the linear transformation
M .

Our observation is that the rationale for using a linear transformation with
maximal branch number is just that it allows one to lower bound the number A
of so-called “active” S-boxes, which can be defined as follows. Let C be an SPN
which uses the identity permutation for S and which has ki := 0 for 0 ≤ i ≤ r.
Let wb :

(
{0, 1}b

)m
→ N be the function that counts the number of non-zero

b-bit bundles in its input. Then,

A := min
0n 6=x∈{0,1}n

r∑

i=1

wb(state of C(x) at the beginning of round i).

This number A is crucial in evaluating the security of SPNs against linear and
differential cryptanalysis (cf. [26, 10]). With a simple modification to M , we get
that a constant fraction of the S-boxes in each round are active. Specifically we
use the full generator matrix of an error correcting code with minimum distance
Ω(n), which comes at the expense of expanding the state from n bits to O(n)
bits at each round. To counteract the fact that such codes may have some output
positions fixed to constant values (leading to a simple distinguishing attack), the
computation of Candidate 3 concludes by taking the inner product of the state



with a uniform O(n)-bit vector that is given as part of the seed. Candidate 3
therefore outputs a single bit.

We take b = nǫ and r = O(1/ǫ) for arbitrarily small ǫ > 0, and so each round
is computable in size

n

b
· poly(b) = n1+O(ǫ),

and the whole circuit also in size n1+O(ǫ).
We further show that Candidate 3 is computable even by TC0 circuits of

size n1+O(ǫ) for any ǫ > 0 (with depth depending on ǫ), cf. §“The gap between
lower bounds and PRF” above. The main technical difficulty in implementing
this candidate with the required resources is that the S-box requires computing
inversion in a field of size 2b (recall b = nΩ(1)). To implement this in TC0 we
note (cf. [22]) that inverting the field element α(x) can be accomplished as:

α(x)2
b−2 = α(x)

∑b−1
i=1 2i =

b−1∏

i=1

α(x)2
i

=

b−1∏

i=1

α
(
x2i

)

where the last equality follows from the fact that we are working in characteristic

2. By hard-wiring the ≤ b powers x, x2, . . . , x2b−1

of x in the circuit, and using
the fact that the iterated product of poly(n) field elements is computable by
poly(n)-size TC0 circuits (see e.g. [23, Corollary 6.5] and cf. [22]), we obtain a
TC0 circuit.

Because Candidate 3 deviates somewhat from the SPN structure, we cannot
use Theorem 1, and indeed it is not clear how to define differential cryptanalysis
for functions which output only one bit. However, we are able to leverage a
technique from differential cryptanalysis to prove that Candidate 3 is almost
3-wise independent. We were unable to determine if this candidate is 4-wise
independent.

Definition 2. A function f : {0, 1}n → {0, 1} parameterized by a key k is
(d, ǫ)-wise independent if for any distinct x1, . . . , xd ∈ {0, 1}n, the distribution
(f(x1), . . . , f(xd)) induced by a uniform choice of k is ǫ-close to Ud in statistical
distance.

Theorem 6. F3 is (3, 2−Ω(n))-wise independent.

Finally, we mention that implicit in an assumption that Candidate 3 is indeed
hard is the assumption that field inversion cannot be computed by unbounded
fan-in constant depth circuits with parity gates AC0[⊕]. For otherwise, it can
be shown that the whole candidate would be in that class, in contradiction
with an algorithm in [39, §3.2.1] which distinguishes truth tables of AC0[⊕]
functions from random ones in quasipolynomial time. (M can be seen to be
a linear operation over GF(2), hence it can be computed easily with parity
gates.) The question of whether field inversion is in AC0[⊕] was raised by Healy
and Viola in [22]. Their work, and later Kopparty’s [29], do show that several
functions related to field inversion are not in AC0[⊕].



Candidate 4. In this candidate, we use the extreme setting of parameters
b = n and r = 1. In other words, Candidate 4 consists of one round, and this
round contains only a single S-box (and in particular no linear transformation).
This construction can be seen as a concrete instantiation of the Even-Mansour
block cipher [11], using the AES S-box in place of the random permutation
oracle. While this setting does indeed preserve resistance to linear and differential
cryptanalysis, we exhibit a simple attack, inspired by Jakobsen and Knudsen [25],
in which we exploit the algebraic structure to recover the key with just 4 queries.

We then put forth a related candidate F ′
4 where we only output the Goldreich-

Levin bit [18]: F ′
4(x) := 〈(x + k0)

2b−2, k1〉. We prove that this candidate is a d-
wise small-bias generator with error d/2n (cf. [33, 3]), i.e. that it fools all parity
tests that look at ≤ 20.9n outputs.

Theorem 7. For any choice of d ≤ 2n, F ′
4 is a d-wise small-bias generator with

error d/2n. That is, for any distinct a1, . . . , ad ∈ {0, 1}n:

∣∣∣∣∣ Prk0,k1

[
d∑

i=1

F ′
4(ai) = 0

]
−

1

2

∣∣∣∣∣ <
d

2n
.

Using Braverman’s result [7] (cf. [5, 40]) we obtain that this candidate also

fools small-depth AC0 circuits of any size w = 2n
o(1)

(that look at only w fixed
output bits of the candidate).

Using the same ideas for Candidate 3, this candidate is also computable by
poly-size TC0 circuits. For unbounded-depth circuits, a more refined size bound
Õ(n2) follows from the exponentiation algorithm in [12].

Candidate 5. Our final candidate is a straightforward generalization of AES,
and may be folklore. We set b = 8 as in AES and we again use AES’s S-box.
We also use the same linear transformation as in AES (which is slightly different
from that of Candidate 2, cf. [10]), except for the necessary increase in the
input/output size. We set the number of rounds r = n, and thus the size of the
seed is |k| = n(n+ 1).

Candidate 5 is computable by size O(n2), depth O(n) Boolean circuits. For
each fixed seed k, Candidate 5 is also computable in time O(n2) by a single-tape
Turing machine with O(n2) states.

We do not know how to get a candidate computable in time O(n) on a 2-tape
Turing machine.

Due to space constraints, the technical details of most of our candidates and
full proofs of all theorems are deferred to the full version of this paper. However,
in the following subsection we explain Candidate 1’s proof of security.

2.1 Security of Candidate 1

Recall that F1 is an SPN in which the S-box S : GF(2b) → GF(2b) is chosen
uniformly at random and the linear transformation M is invertible and has



only non-zero entries. To tie the latter restriction to practical constructions, we
observe that any M with maximal branch number suffices for this construction.

Claim. Let M ∈ (GF(2b))m×m be any matrix with maximal branch number
m+ 1. Then, all entries of M are non-zero and M is invertible.

Proof. Assume for contradiction that Mi,j = 0 for some i, j ≤ m. Let x ∈
(GF(2b))m be the vector such that xj = 1 and xj′ = 0 for j′ 6= j. Then (Mx)i =
0, and so Br(M) ≤ w(x) + w(Mx) ≤ m.

To see that M is invertible, simply note that if Mx = My for x 6= y, then
M(x+ y) = 0m. Since x+ y 6= 0m, we would again have Br(M) ≤ m. ⊓⊔

For the remainder of this section, fix any invertible M ∈ (GF(2b))m×m such
that all entries are non-zero. For any function S : GF(2b) → GF(2b) and any
set of round keys k := (k0, . . . , kr−1) ∈ ({0, 1}n)r, let F1 = F1(S,k) be the r-
round SPN on n := mb bits defined by these components, where the final round
consists only of S-boxes (i.e. the final round omits the linear transformation and
the key addition).

We make the standard assumption that the adversary A is deterministic,
computationally unbounded, and never queries an oracle twice with the same
input.

Proof overview The proof of Theorem 4 proceeds in two stages. In the first
stage, we consider any set of distinct queries x1, . . . , xq, and we show that there
is a low-probability event bad over the choice of (S,k) such that, conditioned on
¬bad, {F1(xi)}i≤q is uniformly distributed. Essentially, bad occurs when any of
the xi induce colliding queries to some pair of S-boxes in the final round. When
considering distinct instances of the S-box in the final round, even under the same
query to F1, this event has low probability simply due to the fact that each b-bit
block of kr−1 is uniform and independent. However when considering the same
final round S-box (necessarily under two distinct queries to F1), bounding the
collision probability is more involved and relies on the properties of M stated
above.

In the second stage of the proof, we consider the distribution over transcripts
of A’s interaction with its oracle. We show that the probability mass assigned
to transcripts for which A outputs 1 differs by at most max{x1,...,xq}(Pr[bad])
(which is negligible by the first stage). To show this we employ a probability
argument that has been used in a number of other works, e.g. [34, 38, 14].

The first stage actually shows that F1 is almost q-wise independent, or alter-
natively that it is pseudorandom against adversaries that make ≤ q non-adaptive
queries. The technique used in the second stage is a rather generic way of extend-
ing the proof to adaptive queries; however we note that it crucially relies on the
existence of the event bad, and indeed it is not the case that any almost q-wise
independent function is pseudorandom against adversaries making q adaptive
queries.3 A different method (that does not give a useful bound in our setting)

3 This can be seen for example by considering the distribution over functions f : [N ] →
[N ] in which each output is selected uniformly and independently with the restriction



for obtaining adaptive security from non-adaptive security is given by Hoory et
al. [24, Prop. 3].

Stage 1 Fix distinct x1, . . . , xq ∈ {0, 1}n. We view (S,k) being chosen as follows:

1. Uniformly choose k0, . . . , kr−3.
2. Run the computation of rounds 1, . . . , r − 2 of F1(xi) for all i ≤ q. Each

time the S-box is evaluated on a previously-unseen input, choose the output
uniformly at random. Let H ⊆ GF(2b) be the set of at most qm(r − 2)
S-inputs whose output is determined after this step.

3. Uniformly choose kr−2.
4. Uniformly choose the output of S for each round-(r−1) S-box whose output

is not already determined.
5. Uniformly choose kr−1.
6. Uniformly choose the output of S on all remaining (round r) S-box inputs.

It is clear that, for any x1, . . . , xq, this distribution is uniform. Our analysis uses
the state of the SPN’s computation immediately before the final two rounds,

and we denote these states for query xi as z
(r−1)
i and z

(r)
i .

We now define the event bad. To reduce notation, we use the following
definition.

Definition 3. Let x, y ∈ (GF(2b))m, and denote x = x(1) · · ·x(m) and y =
y(1) · · · y(m). Then, we say that x and y collide if ∃ℓ, ℓ′ : x(ℓ) = y(ℓ

′). Further,
for any T ⊆ GF(2b), we say that x and T collide if ∃ℓ ≤ m, t ∈ T : x(ℓ) = t.
Finally, we say that x self-collides if ∃ℓ 6= ℓ′ : x(ℓ) = x(ℓ′).

Now, let bad = bad(x1, . . . , xq) be the set of all (S,k) such that at least one
of the following holds:

(a) ∃h, h′ ∈ H : S(h) = S(h′).

(b) ∃i < q : z
(r)
i and H collide.

(c) ∃i, i′ ≤ q : z
(r)
i and (z

(r−1)
i + kr−2) collide.

(d) ∃i ≤ q : z
(r)
i self-collides.

(e) ∃i 6= i′ ≤ q : z
(r)
i and z

(r)
i′ collide.

It is crucial for us that determining whether bad holds can be checked after
step 5 in choosing (S,k). The following two lemmas show that bad occurs with
low probability, and that the query answers are uniformly distributed when
conditioned on ¬bad.

Lemma 1. Pr
S,k

[bad] < O(r2m3q3) · 2−b.

Lemma 2. For any distinct x1, . . . , xq and any y1, . . . , yq:

Pr
S,k

[
∀i ≤ q : F1(xi) = yi

∣∣ ¬bad
]
= 2−qmb.

that f(f(0)) := 0. This is almost pairwise-independent, but trivially distinguishable
with two adaptive queries.



Stage 2 The proof of Theorem 4 concludes by using the two preceding lemmas
in a probability argument similar to [34, Thm. 3.2]. To do this, we consider the
distribution over transcripts of A’s interaction with its oracles. A transcript is a
sequence σ = [(x1, y1), . . . , (xq, yq)] that contains the query/answer pairs arising
from A’s interaction with its oracle. We use TF to denote the transcript of AF ,
and we use A(σ) to denote A’s output after seeing transcript σ. (So note for
instance that PrF [A

F = 1] and PrF [A(TF ) = 1] are semantically equivalent.)
Because A is deterministic, there is a deterministic function QA that de-

termines its next query from the partial transcript so far. For a transcript σ,
denote its prefixes by σi := [(x1, y1), . . . , (xi, yi)]. We say a transcript σ is possi-
ble for A if for all i < q: QA(σi) = xi+1. Clearly for any impossible transcript σ,
Pr[TF = σ] = 0 regardless of the distribution from which F is chosen. Also note
that the assumption that A never makes the same query twice implies that in
any possible transcript, xi 6= xj for all i 6= j.

Proof (of Theorem 4). Let Γ be the set of possible transcripts such that A(σ) =
1 ⇔ σ ∈ Γ . Then,

∣∣∣∣PrF
[
AF = 1

]
− Pr

S,k

[
AF1 = 1

] ∣∣∣∣

=

∣∣∣∣
∑

σ∈Γ

(
Pr
F
[TF = σ]− Pr

S,k
[TF1 = σ]

) ∣∣∣∣

≤

∣∣∣∣
∑

σ∈Γ

Pr
S,k

[bad] ·

(
Pr
F
[TF = σ]− Pr

S,k
[TF1 = σ | bad]

) ∣∣∣∣ (1)

+

∣∣∣∣
∑

σ∈Γ

Pr
S,k

[¬bad] ·

(
Pr
F
[TF = σ]− Pr

S,k
[TF1 = σ | ¬bad]

) ∣∣∣∣. (2)

Lemma 2 implies that (2) = 0, because PrF [TF = σ] = 2−qmb for any possible
transcript σ. We rewrite (1) as

∣∣∣∣
∑

σ∈Γ

(
Pr
S,k

[bad] · Pr
F
[TF = σ]

)
−

∑

σ∈Γ

(
Pr
S,k

[bad] · Pr
S,k

[TF1 = σ | bad]

) ∣∣∣∣.

Each of the two summations is bounded by α := max
σ∈Γ

(
Pr
S,k

[bad]

)
, since each

is a convex combination of numbers that are bounded by α. Thus, the absolute
value of their difference is bounded by α as well, and α < O(r2m3q3) · 2−b by
Lemma 1. ⊓⊔

3 Conclusion and future work

Two obvious directions for future work are to extend the analysis of F1 to handle
inverse queries (necessarily choosing the S-box as a random permutation), and
to extend Theorem 6 to prove almost d-wise independence of F3 for d > 3. A



more foundational question left unanswered is to understand how the degree of
each output bit of an SPN (as a polynomial in the input bits) is affected by the
degree of the S-box and by the “mixing” properties of the linear transformation.

Exploring other choices of the S-box besides inversion may lead to more
efficient constructions, and utilizing other properties of the linear transforma-
tion besides maximal-branch-number may allow stronger proofs of security. This
could potentially give a (plausibly secure) SPN computable by circuits of size
O(n). Recall from §1 that a PRF computable with size O(n) and with security
2n would bring the Natural Proofs barrier to the current frontier of lower bounds
against unbounded-depth circuits.

Abstracting from the SPN structure, one may arrive to the following paradigm
for constructing PRF: alternate the application of (1) an error-correcting code
and (2) a bundle-wise application of any local map that has high degree over
GF(2) and resists attacks corresponding to linear and differential cryptanalysis.
This viewpoint may lead to a PRF candidate computable in ACC0, since for (1)
one just needs parity gates, while, say, taking parities of suitable mod 3 maps
one should get a map that satisfies (2). However a good choice for this latter
map is not clear to us at this moment.

We believe a good candidate PRF should be the simplest candidate that
resists known attacks. As noted in [10], some of the choices in the design of
AES are not motivated by any known attack, but are there as a safeguard (for
example, one can reduce the number of rounds and still no attack is known).
While this is comprehensible when having to choose a standard that is difficult to
change or when deploying a system that is to be widely used, one can argue that
a better way for the research community to proceed is to put forth the simplest
candidate PRF, possibly break it, and iterate until hopefully converging to a
secure PRF. We view this paper as a step in this direction.
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