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Abstract. In this paper, we study the security proofs of GCM (Ga-
lois/Counter Mode of Operation). We first point out that a lemma, which
is related to the upper bound on the probability of a counter collision,
is invalid. Both the original privacy and authenticity proofs by the de-
signers are based on the lemma. We further show that the observation
can be translated into a distinguishing attack that invalidates the main
part of the privacy proof. It turns out that the original security proofs
of GCM contain a flaw, and hence the claimed security bounds are not
justified. A very natural question is then whether the proofs can be re-
paired. We give an affirmative answer to the question by presenting new
security bounds, both for privacy and authenticity. As a result, although
the security bounds are larger than what were previously claimed, GCM
maintains its provable security. We also show that, when the nonce length
is restricted to 96 bits, GCM has better security bounds than a general
case of variable length nonces.
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1 Introduction

GCM (Galois/Counter Mode of Operation) is the authenticated encryption mode
of blockciphers designed by McGrew and Viega [26,27]. The mode is based on the
counter mode encryption and the polynomial hash function, and the designers
presented proofs of security both for privacy and authenticity [26,27]. It was
selected as the NIST recommended blockcipher mode in 2007 [15], and is widely
used in practice, e.g., in [1,2,4,5,6,7,8,14,17,19,20,25,33,34].

The security of GCM has been extensively evaluated. Ferguson pointed out
that a forgery is possible if the tag length is short [16]. Joux showed that a part of
the secret key can be obtained if the nonce is reused [21]. Handschuh and Preneel
discussed weak keys of GCM and presented generalizations of Joux’s attack [18].
Saarinen pointed out that GCM has more weak keys than previously known,
and used the weak keys for forgery attacks [32]. See also [31] for comprehensive
discussions on various aspects on GCM.

Despite aforementioned attacks, it is widely considered that the provable
security results of GCM are sound, in the sense that the previous attacks do



not contradict the claimed security bounds by the designers, and that no flaw in
the proofs has been identified. Some of these attacks show the tightness of the
security bounds, and others are outside the security model (e.g., nonce reuse).
Therefore, there is no attack that undermines the security bounds or their proofs.

GCM uses the counter mode encryption, and the initial counter value is
derived from a nonce, where there are two different ways to generate the initial
counter value depending on the length of the nonce. When the nonce length is
96 bits, the initial counter value is the nonce padded with a constant. When the
nonce length is not 96 bits, the polynomial hash function is applied to the nonce
to obtain the initial counter value. In order to prove the security of GCM, one
has to show that the probability of a counter collision is small. McGrew and
Viega presented a lemma showing the upper bound on the probability in [27],
which is the basis for both the privacy and authenticity proofs.

In this paper, we first point out that the claimed lemma cannot be valid;
the probability of a counter collision is larger than claimed. We show concrete
counter-examples of two distinct nonces that invalidate the lemma. It turns out
that the original security proofs (both for privacy and authenticity) of GCM
contain a flaw, and hence the claimed security bounds are not justified.

We next translate the above observation into a distinguishing attack. The
attack is simple and efficient. However, from the practical perspective, the success
probability of the attack is insignificantly small, and it does not contradict the
security bounds by the designers. On the other hand, the success probability is
large enough to invalidate the main part of the privacy proof. In more detail,
there are three terms in the privacy bound of GCM. The first one comes from the
difference between a random permutation and a random function, the second one
is the main part of the privacy proof that bounds the distinguishing probability
of ciphertexts of GCM based on a random function from random strings (of the
same lengths as the ciphertexts), and the last one bounds the forgery probability.
The success probability of our distinguishing attack is larger than the second
term, invalidating the main part of the privacy proof. Consequently, the security
of GCM is not supported by the proofs.

Then a very natural question is whether the proofs can be repaired, or more
generally, whether the security of GCM can ever be proved. In order to answer the
question, we first introduce a combinatorial problem of quantifying a cardinality
of a certain set of bit strings. The problem belongs to one of the problems
of counting the number of output differences with non-zero probability of S-
functions [29], which presents tools to analyze ARX systems (e.g., see [23]). One
possible approach to solve the problem is to follow [29] (or [22]). In this paper, we
take another approach and present a solution to the problem by giving a recursive
formula that quantifies the cardinality. Basing on the solution, we present new
security bounds on GCM, both for privacy and authenticity.

As a result, although the security bounds are larger than what were pre-
viously claimed, we show that GCM maintains its provable security. We also
present provable security results of GCM when the nonce length is restricted to
96 bits, in which case GCM has better security bounds than a general case.



2 Preliminaries

Let {0, 1}∗ be the set of all bit strings, and for an integer ℓ ≥ 0, let {0, 1}ℓ be
a set of ℓ-bit strings. For a bit string X ∈ {0, 1}∗, |X| is its length in bits, and
|X|ℓ = ⌈|X|/ℓ⌉ is the length in ℓ-bit blocks. The empty string is denoted as ε.
Let 0ℓ and 1ℓ denote the bit strings of ℓ zeros and ones, respectively. We use the
prefix 0x for the hexadecimal notation, e.g., 0x63 is 01100011 ∈ {0, 1}8. We also
write (0x0)ℓ to mean 04ℓ. For a bit string X and an integer ℓ such that |X| ≥ ℓ,
msbℓ(X) is the most significant ℓ bits (the leftmost ℓ bits) ofX, and lsbℓ(X) is the
least significant ℓ bits (the rightmost ℓ bits) of X. For X,Y ∈ {0, 1}∗, we write
X ∥Y , (X,Y ), or simply XY to denote their concatenation. For a bit string X
whose length in bits is a multiple of ℓ, we write its partition into ℓ-bit strings as

(X[1], . . . , X[x])
ℓ← X, where X[1], . . . , X[x] ∈ {0, 1}ℓ are unique bit strings such

that X[1] ∥ . . . ∥X[x] = X. For non-negative integers a and ℓ with a ≤ 2ℓ−1, let
strℓ(a) be its ℓ-bit binary representation, i.e., if a = aℓ−12

ℓ−1+ · · ·+a12+a0 for
aℓ−1, . . . , a1, a0 ∈ {0, 1}, then strℓ(a) = aℓ−1 . . . a1a0 ∈ {0, 1}ℓ. For a bit string
X = Xℓ−1 . . . X1X0 ∈ {0, 1}ℓ, let int(X) be the integerXℓ−12

ℓ−1+· · ·+X12+X0.

For a finite set X , #X denotes its cardinality, and X
$← X means the uniform

sampling of an element from X and assigning it to X.
Throughout this paper, we fix a block length n and a blockcipher E : K ×

{0, 1}n → {0, 1}n, where K is a non-empty set of keys. Unless otherwise specified,
we let n = 128. We write EK for the permutation specified by K ∈ K, and
C = EK(M) for the ciphertext of a plaintext M ∈ {0, 1}n under the key K ∈ K.
The set of n-bit strings, {0, 1}n, is also regarded as GF(2n), the finite field with
2n elements. An n-bit string an−1 . . . a1a0 ∈ {0, 1}n corresponds to a formal
polynomial a(x) = an−1 + an−2x + · · · + a1x

n−2 + a0x
n−1 ∈ GF(2)[x]. When

n = 128, the irreducible polynomial used in GCM is p(x) = 1+x+x2+x7+x128.

3 Specification of GCM

We follow [27,28] with some notational changes. GCM is parameterized by a
blockcipher E : K × {0, 1}n → {0, 1}n and a tag length τ , where 64 ≤ τ ≤ n.
We write GCM[E, τ ] for GCM that uses E and τ as parameters. Let GCM-E be
the encryption algorithm and GCM-D be the decryption algorithm, which are
defined in Fig. 1. GCM uses the counter mode encryption and the polynomial
hash function over GF(2n) as its subroutines. They are denoted CTR and GHASH
and are defined in Fig. 2. Figure 3 illustrates the overall structure of GCM-E .

GCM-E takes a key K ∈ K, a nonce N ∈ {0, 1}∗, an associated data A ∈
{0, 1}∗, and a plaintext M ∈ {0, 1}∗ as inputs, and returns a pair of a ciphertext
C ∈ {0, 1}∗ and a tag T ∈ {0, 1}τ as an output, where 1 ≤ |N | ≤ 2n/2 − 1,
0 ≤ |A| ≤ 2n/2 − 1, 0 ≤ |M | ≤ n(232 − 2), and |C| = |M |. We write (C, T ) ←
GCM-EN,A

K (M). GCM-D takes a key K ∈ K, a nonce N ∈ {0, 1}∗, an associated
data A ∈ {0, 1}∗, a ciphertext C ∈ {0, 1}∗, and a tag T ∈ {0, 1}τ as inputs,
and returns either a plaintext M ∈ {0, 1}∗ or the symbol ⊥ indicating that the

inputs are invalid. We write M ← GCM-DN,A
K (C, T ) or ⊥ ← GCM-DN,A

K (C, T ).



Algorithm GCM-EN,A
K (M)

1. L← EK(0n)
2. if |N | = 96 then I[0]← N ∥ 0311
3. else I[0]← GHASHL(ε,N)
4. m← |M |n
5. S ← CTRK(I[0],m)
6. C ←M ⊕msb|M|(S)
7. T̄ ← EK(I[0])⊕ GHASHL(A,C)
8. T ← msbτ (T̄ )
9. return (C, T )

Algorithm GCM-DN,A
K (C, T )

1. L← EK(0n)
2. if |N | = 96 then I[0]← N ∥ 0311
3. else I[0]← GHASHL(ε,N)
4. T̄ ∗ ← EK(I[0])⊕ GHASHL(A,C)
5. T ∗ ← msbτ (T̄

∗)
6. if T ̸= T ∗ then return ⊥
7. m← |C|n
8. S ← CTRK(I[0],m)
9. M ← C ⊕msb|C|(S)

10. return M

Fig. 1. The encryption and decryption algorithms of GCM

Algorithm CTRK(I[0],m)

1. for j ← 1 to m do
2. I[j]← inc(I[j − 1])
3. S[j]← EK(I[j])
4. S ← (S[1], S[2], . . . , S[m])
5. return S

Algorithm GHASHL(A,C)

1. a← n|A|n − |A|
2. c← n|C|n − |C|
3. X ← A ∥ 0a ∥C ∥ 0c ∥ strn/2(|A|) ∥ strn/2(|C|)
4. (X[1], . . . , X[x])

n← X
5. Y ← 0n

6. for j ← 1 to x do
7. Y ← L · (Y ⊕X[j])
8. return Y

Fig. 2. Subroutines used in the encryption and decryption algorithms

In the definition of CTR, for a bit string X ∈ {0, 1}n, inc(X) treats the least
significant 32 bits (the rightmost 32 bits) of X as a non-negative integer, and
increments this value modulo 232, i.e.,

inc(X) = msbn−32(X) ∥ str32(int(lsb32(X)) + 1 mod 232).

For r ≥ 0, we write incr(X) to denote the r times iterative applications of inc
on X, and inc−r(X) to denote the r times iterative applications of the inverse
function of inc onX. We use the convention that inc0(X) = X. In the definition of
GHASH, the multiplication in line 7 is over GF(2n). We remark that, if |N | ̸= 96,
we have GHASHL(ε,N) = X[1]·Lx⊕· · ·⊕X[x]·L, where X = (X[1], . . . , X[x]) =
N ∥ 0n|N |n−|N | ∥ strn(|N |).

4 Security Definitions

An adversary is a probabilistic algorithm that has access to one or more ora-
cles. Let AO1,O2,... denote an adversary A interacting with oracles O1,O2, . . . ,
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msb|M|

msbτ

EK

I[1] I[2] I[m] CTRK

S

S[1] S[2] S[m] M

C

T

GHASHL(A,C)

I[0]←
N 0311 if |N | = 96

GHASHL(ε,N) if |N = 96
I[0]←

N 0311 if |N | = 96

GHASHL(ε,N) if |N = 96

Fig. 3. The encryption algorithm of GCM

and AO1,O2,... ⇒ 1 denote the event that A, after interacting with O1,O2, . . . ,
outputs 1. The resources of A are measured in terms of time and query com-
plexities. The time complexity includes the description size of A, and we fix a
model of computation and a method of encoding. The query complexity includes
the number of queries, the total length of queries, and the maximum length of
queries, and a more precise definition is given in each theorem statement.

Following [10,30], we consider two security notions for GCM: privacy and
authenticity. For privacy, we consider an adversary A that has access to a GCM
encryption oracle or a random-bits oracle. The GCM encryption oracle takes
(N,A,M) and returns (C, T ) ← GCM-EN,A

K (M). The random-bits oracle, $,

takes (N,A,M) and returns (C, T )
$← {0, 1}|M |+τ . We define

Advpriv
GCM[E,τ ](A)

def
= Pr[K

$← K : AGCM-EK ⇒ 1]− Pr[A$ ⇒ 1],

where the first probability is defined over the randomness of A and the choice
of K, and the last is over the randomness of A and the random-bits oracle. We
assume that A is nonce-respecting: A does not make two queries with the same
nonce.

For authenticity, we consider an adversary A that has access to GCM en-
cryption and decryption oracles. The GCM decryption oracle takes (N,A,C, T )

and returns M ← GCM-DN,A
K (C, T ) or ⊥ ← GCM-DN,A

K (C, T ). We define

Advauth
GCM[E,τ ](A)

def
= Pr[K

$← K : AGCM-EK ,GCM-DK forges],

where the probability is defined over the randomness of A and the choice of
K, and the adversary forges if the GCM decryption oracle returns a bit string
(other than ⊥) for a query (N,A,C, T ), but (C, T ) was not previously returned
to A from the encryption oracle for a query (N,A,M). As in the privacy notion,



we assume that A is nonce-respecting: A does not make two queries to the
encryption oracle with the same nonce. We remark that nonces used for the
encryption queries can be used for decryption queries and vice-versa, and that
the same nonce can be repeated for decryption queries. Without loss of generality,
we assume that A does not make trivial queries: if the encryption oracle returns
(C, T ) for a query (N,A,M), then A does not make a query (N,A,C, T ) to the
decryption oracle, and A does not repeat a query to the decryption oracle.

In [27], McGrew and Viega analyzed the security of GCM, and there are
differences between the above security notions. In [27], for privacy, the adversary
has access to both the encryption and decryption oracles, while we chose to follow
a more standard notion [10,30] where the privacy adversary has access to the
encryption oracle only. Another difference is the assumption about the nonce
reuse. In [27], the adversary is not allowed to reuse a nonce within decryption
queries (but nonces used in encryption queries can be used in decryption queries
and vice-versa), while our adversary can reuse nonces within decryption queries.

For the blockcipher E : K × {0, 1}n → {0, 1}n, we consider the PRP no-
tion [24]. Let Perm(n) be the set of all permutations on {0, 1}n. We say that P

is a random permutation if P
$← Perm(n). We define

Advprp
E (A) def

= Pr[K
$← K : AEK ⇒ 1]− Pr[P

$← Perm(n) : AP ⇒ 1],

where the probabilities are defined over the randomness of A, and the choices of
K and P , respectively. We write GCM[Perm(n), τ ] for GCM that uses a random
permutation P as a blockcipher EK , and we write the corresponding encryption
and decryption algorithms as GCM-EP and GCM-DP , respectively.

We also consider GCM that uses a random function as EK , which is naturally
defined as the invertibility of EK is irrelevant in the definition of GCM. Let
Rand(n) be the set of all functions from {0, 1}n to {0, 1}n. We say that F is a

random function if F
$← Rand(n), and write GCM[Rand(n), τ ] for GCM that

uses F as EK . We write the corresponding encryption and decryption algorithms
as GCM-EF and GCM-DF , respectively.

5 Breaking GCM Security Proofs

5.1 Review of [27, Lemma 3], [27, Theorem 1], and [27, Theorem 2]

In this section, we first review a lemma in [27] that was used to derive the
provable security results on GCM. Consider GCM[Rand(n), τ ], GCM with EK

being a random function F , and the privacy notion for it. Let (N1, A1,M1) and
(N2, A2,M2) be two encryption queries, where N1 ̸= N2 and |N1|, |N2| ≠ 96.
Let I1[0] ← GHASHL(ε,N1), and I1[j] ← inc(I1[j − 1]) for 1 ≤ j ≤ m1, where
m1 = |M1|n. Similarly, let I2[0] ← GHASHL(ε,N2), and I2[j] ← inc(I2[j − 1])
for 1 ≤ j ≤ m2, where m2 = |M2|n. If we have

{I1[0], I1[1], . . . , I1[m1]} ∩ {I2[0], I2[1], . . . , I2[m2]} = ∅



and Ii[j] ̸= 0n for i = 1, 2 and 0 ≤ j ≤ mi, then the two masks S1 =
(S1[1], . . . , S1[m1]) and S2 = (S2[1], . . . , S2[m2]), produced from the counter
mode encryption based on F , are uniformly distributed over ({0, 1}n)m1 and
({0, 1}n)m2 , respectively. Furthermore, F (I1[0]) and F (I2[0]) are uniform ran-
dom n-bit strings, and hence the probability distribution of strings returned from
the encryption oracle is identical to that from the random-bits oracle.

Therefore, in order to prove the security of GCM, one has to show that the
probability of a counter collision, I1[j1] = I2[j2] for some 0 ≤ j1 ≤ m1 and 0 ≤
j2 ≤ m2, is small. We see that the event is equivalent to incj1(GHASHL(ε,N1)) =
incj2(GHASHL(ε,N2)). Let CollL(r,N1, N2) denote the event

incr(GHASHL(ε,N1))⊕ GHASHL(ε,N2) = 0n.

We need to bound Pr[L
$← {0, 1}n : CollL(r,N1, N2)], where r = j1 − j2, which

we write PrL[CollL(r,N1, N2)] for simplicity. Since −m2 ≤ r ≤ m1 and 0 ≤
m1,m2 ≤ 232 − 2, the range of r is −(232 − 2) ≤ r ≤ 232 − 2.

In [27, Lemma 3], McGrew and Viega showed the following lemma (notation
has been adapted to this paper).

Lemma 1 ([27]). For any −(232−2) ≤ r ≤ 232−2, N1, and N2 such that N1 ̸=
N2, |N1|, |N2| ̸= 96, and |N1|n, |N2|n ≤ ℓN , PrL[CollL(r,N1, N2)] ≤ (ℓN +1)/2n.

Based on the lemma, [27, Theorem 1] states that the privacy advantage of
GCM[Perm(n), τ ], GCM with EK being a random permutation P , is at most

0.5(σ/n+ 2q)2

2n
+

2q(σ/n+ 2q)⌈ℓN/n+ 1⌉
2n

+
q⌈ℓ/n+ 1⌉

2τ
, (1)

and [27, Theorem 2] states that the authenticity advantage is at most

0.5(σ/n+ 2q)2

2n
+

2q(σ/n+ 2q + 1)⌈ℓN/n+ 1⌉
2n

+
q⌈ℓ/n+ 1⌉

2τ
, (2)

where q is the maximum number of queries (either encryption or decryption
queries), σ is the total length in bits of the plaintexts (either in encryption
queries or returned from the decryption oracle), ℓN is the maximum length
in bits of nonces in queries (either encryption or decryption queries), and ℓ is
the maximum value of |Aj | + |Cj |, where Aj and Cj are the associated data
and ciphertext, respectively, in the j-th query (either in decryption queries or
returned from the encryption oracle). Note that the definitions of privacy and
authenticity advantages are slightly different from ours, as explained in Sect. 4.

It is easy to see that the lemma is correct when r = 0: CollL(0, N1, N2) is
the event inc0(GHASHL(ε,N1))⊕GHASHL(ε,N2) = 0n, and we see that the left
hand side is a non-trivial polynomial in L of degree at most ℓN +1 over GF(2n),
and hence there are at most ℓN + 1 values of L that satisfy the equality.

However, for r ̸= 0, it is not clear if incr(GHASHL(ε,N1)) is a polynomial
of degree at most ℓN + 1 even if this is the case for GHASHL(ε,N1), and the
analysis for this case is missing in the proof of [27, Lemma 3]. The lemma is
crucial in that it is used in the proofs for both privacy and authenticity.



5.2 Invalidating [27, Lemma 3]

Let r = 1, N1 = (0x0)17 ∥ 0x2 = 068 ∥ 0010, and N2 = (0x0)17 ∥ 0x6 = 068 ∥ 0110,
where |N1| = |N2| = 72. Then CollL(r,N1, N2) is equivalent to

inc1(U1 · L2 ⊕ V · L)⊕ (U2 · L2 ⊕ V · L) = 0n, (3)

where U1 = (0x0)17 ∥ 0x2 ∥ (0x0)14, U2 = (0x0)17 ∥ 0x6 ∥ (0x0)14, and V =
(0x0)30 ∥ 0x48. In binary, U1 = 068 ∥ 0010 ∥ 056, U2 = 068 ∥ 0110 ∥ 056, and V =
0120 ∥ 01001000. Now [27, Lemma 3] states that PrL[CollL(r,N1, N2)] ≤ 2/2n,
i.e., (3) has at most two solutions. However, one can verify (with the help of
some software, e.g., [3]) that (3) has 32 solutions, which are listed in Appendix A.
In other words, PrL[CollL(r,N1, N2)] ≥ 32/2n holds, and hence [27, Lemma 3]
cannot be valid.

We present one more observation regarding the counter-example. Consider

inc2(U1 · L2 ⊕ V · L)⊕ (U2 · L2 ⊕ V · L) = 0n, (4)

inc4(U1 · L2 ⊕ V · L)⊕ (U2 · L2 ⊕ V · L) = 0n, (5)

where the values of U1, U2, and V are as above. Then one can verify that (4) has
31 solutions, and that (5) has 30 solutions, which are also listed in Appendix A.
The 93 values of L are all distinct, and are also different from 0n, which is a
solution for inc0(U1 · L2 ⊕ V · L)⊕ (U2 · L2 ⊕ V · L) = 0n. Therefore we have

Pr
L

[ ∨
r=0,1,2,4

CollL(r,N1, N2)

]
≥ 94

2n
. (6)

We remark that we exclude the case r = 3 since CollL(3, N1, N2) has no solution.
In Appendix A, we present other examples of (N1, N2) that satisfy (6) and also
invalidate [27, Lemma 3].

We next show that the above observation is not merely spotting of a subtle
error in the proofs of GCM. The observation can actually be translated into a
distinguishing attack.

5.3 Distinguishing Attack

Consider GCM with EK being a random function F , and the privacy notion
for it. We remark that the analysis of this idealized version of GCM is essential
since the main part of the privacy proof is the analysis of this case. Let N1 and
N2 be as in Sect. 5.2, A1 = ε, M1 = 05n, A2 = ε, and M2 = 0n.

Let A be an adversary that has access to an oracle O which is either the
GCM encryption oracle or the random-bits oracle. A works as follows.

1. First, A makes two queries, (Ni, Ai,Mi) for i = 1, 2, and obtains (Ci, Ti)←
O(Ni, Ai,Mi).

2. Let (C1[1], . . . , C1[5])
n← C1 and output 1 if

C1[1] = C2 or C1[2] = C2 or C1[3] = C2 or C1[5] = C2. (7)



First, suppose that O is the GCM encryption oracle. If CollL(0, N1, N2) ∨
CollL(1, N1, N2)∨CollL(2, N1, N2)∨CollL(4, N1, N2), then we see that A outputs
1. Otherwise the probability distributions of C1[1], C1[2], C1[3], C1[5], and C2 are
exactly the same as those of returned by the random-bits oracle. In particular, (7)
is satisfied with the same probability for the GCM encryption oracle and for the
random-bits oracle. Therefore, we have

Advpriv
GCM[Rand(n),τ ](A) = Pr[AGCM-EF ⇒ 1]− Pr[A$ ⇒ 1] ≥ 94

2n
. (8)

Now using the notation of (1) and (2), our adversary has the following query
complexity: q = 2, σ = 6n, ℓN = 72, and ℓ = 5n. Then (1) is 50/2n + 80/2n +
12/2τ = 130/2n + 12/2τ . Therefore, the attack does not contradict the claimed
privacy bound (1).

However, (1) allows the use of the GCM decryption oracle, and rounding
up the details makes it sufficiently large so that our attack is tolerated in ap-
pearance. Now if we take a closer look at (1), the second term, 80/2n, is the

main part of the privacy proof that bounds Advpriv
GCM[Rand(n),τ ](A), while the

first term is from the application of the PRP/PRF switching lemma [11] and
the last term bounds the forgery probability due to the use of the decryption
oracle. Therefore, the above attack does invalidate the main part of the privacy
proof, and we also see that it invalidates the second term of (2), which is 88/2n.

We have already shown that the claimed bound on PrL[CollL(r,N1, N2)] is
invalid, which implies that the claimed security bounds, (1) and (2), are not
justified. Furthermore, the above attack invalidates the main part of the privacy
proof. Therefore, at this point, it is fair to conclude that the security of GCM is
not supported by the proofs. We note that, although our attack does not work
with 96-bit nonces, this statement holds even in this case since (1) and (2) cover
a general case including the case that the nonce length is restricted to 96 bits.

5.4 Remarks

Our attack is efficient. It uses two oracle calls, and the lengths of the queries
are short. However, the success probability, although large enough to invalidate
the second terms in (1) and (2), is insignificantly small in practice and it has
a limited practical implication. We also note that many standards require or
recommend using GCM with 96-bit nonces, in which case the attack does not
work. Indeed, in many RFCs, such as RFC 4106 (IPsec) [34], 5647 (SSH) [20],
5288 (SSL) [33], the nonce length is fixed to 96 bits, and RFC 5084 [19] and
5116 [25] recommend 96-bit nonces. For IEEE standards, some strictly require
96-bit nonces (e.g. IEEE 802.1AE [5]) and some do not (e.g. IEEE P1619.1 [6]).
There are cases where non-96-bit nonces are allowed, including NIST SP 800-
38D [15], ISO/IEC 19772 [7], PKCS #11 [4], and most software libraries (e.g.,
Gladman’s code [17], CRYPTO++ [14], Java SE [2], and BouncyCastle [1]). Fi-
nally, NSA Suite B Cryptography includes GCM with a strong recommendation
(but not mandatory; see e.g. [8]) of using it with 96-bit nonces.



We emphasize that, even when non-96-bit nonces are allowed, our attack
has a limited practical implication. However, it does undermine the provable
security of GCM, making its provable security open. A very natural question is
then whether the security of GCM can ever be proved. In the following sections,
we present an affirmative answer to this question.

6 Towards Repairing the Proofs

6.1 Combinatorial Problem

To prove the security of GCM, the first step is to derive the upper bound
on PrL[CollL(r,N1, N2)]. The obvious bound is PrL[CollL(r,N1, N2)] ≤ (ℓN +
1)/2n−32, which can be shown by ignoring the least significant 32 bits. In this
section, we derive a better upper bound on PrL[CollL(r,N1, N2)], and we first
introduce a combinatorial problem for this goal.

For 0 ≤ r ≤ 232 − 1, let

Yr
def
=

{
str32(int(Y ) + r mod 232)⊕ Y | Y ∈ {0, 1}32

}
. (9)

We also let αr
def
= #Yr and αmax

def
= max{αr | 0 ≤ r ≤ 232 − 1}. For given r, it

is not hard to experimentally derive the value of αr by exhaustively evaluating
str32(int(Y ) + r mod 232)⊕ Y for all Y ∈ {0, 1}32. For example, we have

α0 = 1, α1 = 32, α2 = 31, α3 = 61, α4 = 30, α5 = 89, . . .

and the problem is to identify αmax.

6.2 Relation to the Security of GCM

We show that identifying αr gives the upper bound on PrL[CollL(r,N1, N2)].

Lemma 2. For any 0 ≤ r ≤ 232−1, N1, and N2 such that N1 ̸= N2, |N1|, |N2| ̸=
96, and |N1|n, |N2|n ≤ ℓN , PrL[CollL(r,N1, N2)] ≤ αr(ℓN + 1)/2n.

Proof. Let Y1, . . . , Yαr ∈ {0, 1}32 be the αr elements of Yr. Let Y1, . . . ,Yαr ⊆
{0, 1}32 be the αr disjoint subsets of {0, 1}32 such that

Yj =
{
Y ∈ {0, 1}32 | str32(int(Y ) + r mod 232)⊕ Y = Yj

}
for 1 ≤ j ≤ αr, Y1 ∪ · · · ∪ Yαr = {0, 1}32, and Yj ∩ Yj′ = ∅ for 1 ≤ j < j′ ≤ αr.
Observe that if Y ∈ Yj , then str32(int(Y ) + r mod 232) can be replaced with
Y ⊕ Yj .

For 1 ≤ j ≤ αr, let Dj be the event CollL(r,N1, N2)∧lsb32(GHASHL(ε,N1)) ∈
Yj . Since D1, . . . ,Dαr are disjoint events, we have

Pr
L
[CollL(r,N1, N2)] =

∑
1≤j≤αr

Pr
L
[Dj ]. (10)



Recall that CollL(r,N1, N2) is the event inc
r(GHASHL(ε,N1))⊕GHASHL(ε,N2)

= 0n, and since lsb32(GHASHL(ε,N1)) ∈ Yj , incr(GHASHL(ε,N1)) can be re-
placed with GHASHL(ε,N1)⊕ (0n−32 ∥Yj), implying that the event Dj is equiv-
alent to

GHASHL(ε,N1)⊕ GHASHL(ε,N2)⊕ (0n−32 ∥Yj) = 0n (11)

and lsb32(GHASHL(ε,N1)) ∈ Yj . We see that (11) is a non-trivial equation in L
of degree at most ℓN +1 over GF(2n), and hence it has at most ℓN +1 solutions.
From (10), we obtain the lemma. ⊓⊔

6.3 Deriving αr and αmax

The problem introduced in Sect. 6.1 can be solved by exhaustively evaluating (9)
for all 0 ≤ r ≤ 232 − 1, which is computationally costly. Another possible ap-
proach is to follow the framework in [29] (or to use tools in [22]).

Instead of following these approaches, in this section, we present a recursive
formula to efficiently compute αr. Let r ≥ 0 be a given integer, ℓ be the num-
ber of runs of ones in the binary representation of r (e.g., if r is 00110101 in
binary, then ℓ = 3), and vℓ be an integer with r ≤ 2vℓ − 1. Suppose strvℓ(r) =
0sℓ1tℓ . . . 0s11t10s0 , where sℓ−1, . . . , s1 ≥ 1, sℓ, s0 ≥ 0, tℓ, . . . , t1 ≥ 1, and vℓ =
(sℓ + · · ·+ s1 + s0) + (tℓ + · · ·+ t1).

Define

Aℓ
def
= # {strvℓ

(int(Y ) + r mod 2vℓ)⊕ Y | Y ∈ {0, 1}vℓ} .

Note that, when vℓ = 32, αr is equal to Aℓ. The next proposition gives an
efficient recursive formula to compute Aℓ.

Proposition 1. For any ℓ ≥ 1,

Aℓ =

{
tℓAℓ−1 +Bℓ−1 if sℓ = 0,

sℓBℓ +Aℓ−1 if sℓ ≥ 1,
(12)

where Bj = tjAj−1 + Bj−1 for 1 ≤ j ≤ ℓ, Aj = sjBj + Aj−1 for 1 ≤ j ≤ ℓ− 1,
A0 = 1, and B0 = 0.

An elementary proof of the proposition is given in the full version of this paper.
Given Proposition 1, it is not hard to experimentally derive αmax by directly
evaluating (12). We have αmax = 3524578, where αr = αmax holds when r =
0x2aaaaaab, 0xaaaaaaab, 0x55555555, and 0xd5555555.

From Lemma 2 and since 3524578 ≤ 222, we obtain the following corollary.

Corollary 1. For any 0 ≤ r ≤ 232 − 1, N1, and N2 such that N1 ̸= N2,
|N1|, |N2| ̸= 96, and |N1|n, |N2|n ≤ ℓN , PrL[CollL(r,N1, N2)] ≤ 222(ℓN + 1)/2n.

If the upper bound of r is smaller than 232−1, then depending on the value, the
constant, 222, in Corollary 1 can be replaced by a smaller constant. Specifically,
there are 303 values of 1 ≤ r ≤ 232−1 that satisfy max{α0, . . . , αr−1} < αr, and



Table 1. List of (r, αr) (left) and the relation between rmax and β(rmax) (right)

r αr

0x00000001 32
0x00000003 61
0x00000005 89
0x0000000b 143
0x00000025 294
0x00000055 538
0x0000012b 1115
0x00000455 2113
0x00000955 4124
0x000024ab 8579
0x00005555 17389
0x00012aab 34702
0x00049555 69742
0x000aaaab 138117
0x00255555 262471
0x00955555 559000
0x02555555 1127959
0x0a555555 2116814

Range of rmax β(rmax)

0x00000001–0x00000002 25

0x00000003–0x00000004 26

0x00000005–0x0000000a 27

0x0000000b–0x00000024 28

0x00000025–0x00000054 29

0x00000055–0x0000012a 210

0x0000012b–0x00000454 211

0x00000455–0x00000954 212

0x00000955–0x000024aa 213

0x000024ab–0x00005554 214

0x00005555–0x00012aaa 215

0x00012aab–0x00049554 216

0x00049555–0x000aaaaa 217

0x000aaaab–0x00255554 218

0x00255555–0x00955554 219

0x00955555–0x02555554 220

0x02555555–0x0a555554 221

0x0a555555–0xffffffff 222

a list of the 303 values of (r, αr) can be used to obtain a smaller constant. The list
can be found in the full version of this paper. Table 1 (left) is the excerpt from the
list for better readability and usability. For each i = 5, 6, . . . , 22, Table 1 (left)
lists the minimum value of r, among the 303 values, such that 2i−1 < αr ≤ 2i.

Table 1 (right) is obtained from Table 1 (left) and shows the relation between
the range of rmax and the corresponding constant β(rmax), where rmax is the
upper bound of r and β(rmax) is the upper bound of αr. For example, if rmax =
210 = 0x400, then it is within the range of 0x0000012b–0x00000454 and hence
β(rmax) = 211. See also Fig. 4 for a graph showing the relation between rmax

and β(rmax).

We have the following corollary.

Corollary 2. For any 0 ≤ r ≤ rmax, N1, and N2 such that N1 ̸= N2, |N1|, |N2|
̸= 96, and |N1|n, |N2|n ≤ ℓN , PrL[CollL(r,N1, N2)] ≤ β(rmax)(ℓN + 1)/2n.

We note that for rmax = 0, from α0 = 1, β(rmax) is defined to be 1.

7 Repairing GCM Security Proofs

In this section, basing on the results of the previous section, we present new
security bounds on GCM. We also present overviews of the proofs.
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Fig. 4. Relation between rmax and β(rmax)

7.1 Privacy Result

In the privacy result, if A makes q queries (N1, A1,M1), . . . , (Nq, Aq,Mq), then
the total plaintext length is m1 + · · · + mq, and the maximum nonce length
is max{n1, . . . , nq}, where |Ni|n = ni and |Mi|n = mi. We have the following
information theoretic result.

Theorem 1. Let Perm(n) and τ be the parameters of GCM. Then for any A
that makes at most q queries, where the total plaintext length is at most σ blocks
and the maximum nonce length is at most ℓN blocks,

Advpriv
GCM[Perm(n),τ ](A) ≤

0.5(σ + q + 1)2

2n
+

222q(σ + q)(ℓN + 1)

2n
.

Observe that the security bound is essentially the same as the original one (1),
except that we have a constant, 222, in the second term, and we do not have a
term that corresponds to the forgery probability.

We next present a corollary showing that GCM has a better security bound
if the nonce length is restricted to 96 bits.

Corollary 3. Assume that the nonce length is restricted to 96 bits. Then,

Advpriv
GCM[Perm(n),τ ](A) ≤

0.5(σ + q + 1)2

2n
.



Let E be a blockcipher secure in the sense of the PRP notion. Then the corre-
sponding complexity theoretic results, where E is used in place of Perm(n), can
be obtained by a standard argument (see e.g. [9]).

In the next section, we present an intuitive proof overview of Theorem 1. A
complete proof is presented in the full version of this paper. A proof of Corollary 3
is obtained by modifying the proof of Theorem 1, and is omitted.

7.2 Proof Overview of Theorem 1

Suppose that A has access to the GCM encryption oracle. We first replace the
random permutation P by a random function F . The difference between the two
advantage functions is at most (σ+ q+1)2/2n+1 from the PRP/PRF switching
lemma [11]. Next, suppose that A has made i−1 queries (N1, A1,M1), . . . , (Ni−1,
Ai−1,Mi−1), obtained (C1, T1), . . . , (Ci−1, Ti−1), and is now making the i-th
query (Ni, Ai,Mi). For 1 ≤ j ≤ i, let Ij = {Ij [0], Ij [1], . . . , Ij [mj ]} be a set
of n-bit strings used as the inputs of F during the computation of (Cj , Tj) for
the query (Nj , Aj ,Mj) (other than 0n used to generate L). Observe that, if
Ii[0], Ii[1], . . . , Ii[mi] are not previously used, then (Ci, Ti) is a random string of
|Mi|+ τ bits. That is, unless

Ii ∩ ({0n} ∪ I1 ∪ · · · ∪ Ii−1) ̸= ∅ (13)

holds for some 1 ≤ i ≤ q, the distribution of the output of the GCM encryption
oracle (based on the random function F ) is identical to that of the random-bits
oracle, and hence A is unable to distinguish between the two oracles. It can be
shown that the probability of (13) is at most 222q(σ + q)(ℓN + 1)/2n by using
Corollary 1. The result is obtained by summing up the two above-mentioned
probabilities.

7.3 Authenticity Result

IfAmakes q encryption queries (N1, A1,M1), . . . , (Nq, Aq,Mq) and q′ decryption
queries (N ′

1, A
′
1, C

′
1, T

′
1), . . . , (N

′
q′ , A

′
q′ , C

′
q′ , T

′
q′), then the total plaintext length is

m1+· · ·+mq, the maximum nonce length is max{n1, . . . , nq, n
′
1, . . . , n

′
q′}, and the

maximum input length is max{a1+m1, . . . , aq+mq, a
′
1+m′

1, . . . , a
′
q′+m′

q′}, where
|Ni|n = ni, |Ai|n = ai, |Mi|n = mi, |N ′

i |n = n′
i, |A′

i|n = a′i, and |C ′
i|n = m′

i. We
have the following information theoretic result.

Theorem 2. Let Perm(n) and τ be the parameters of GCM. Then for any A
that makes at most q encryption queries and q′ decryption queries, where the
total plaintext length is at most σ blocks, the maximum nonce length is at most
ℓN blocks, and the maximum input length is at most ℓA blocks,

Advauth
GCM[Perm(n),τ ](A) ≤

0.5(σ + q + q′ + 1)2

2n

+
222(q + q′ + 1)(σ + q)(ℓN + 1)

2n
+

q′(ℓA + 1)

2τ
. (14)



As in the privacy result, the bound is essentially the same as the original one (2),
except that we have a constant, 222, in the second term. The next corollary shows
that we have a better security bound if the nonce length is restricted to 96 bits.

Corollary 4. Assume that the nonce length is restricted to 96 bits. Then,

Advauth
GCM[Perm(n),τ ](A) ≤

0.5(σ + q + q′ + 1)2

2n
+

q′(ℓA + 1)

2τ
.

The corresponding complexity theoretic results can be obtained based on the
PRP notion of a blockcipher E by a standard argument (see e.g. [9]).

We present an intuitive proof overview of Theorem 2 in the next section,
and a complete proof is presented in the full version of this paper. A proof of
Corollary 4 can be obtained from the proof of Theorem 2, and is omitted.

7.4 Proof Overview of Theorem 2

We replace the random permutation P by a random function F . From the
PRP/PRF switching lemma [11], we have a term (σ + q + q′ + 1)2/2n+1. We
then consider the probability of a counter collision as in the privacy proof,
but this time, we consider the counter values used for decryption queries as
well. The probability can be shown to be at most 222(q + q′ + 1)(σ + q)(ℓN +
1)/2n by using Corollary 1. Under the condition that there is no counter colli-
sion, the adversary is essentially asked to forge a message authentication code
(N,A,C)→ F (g(N))⊕GHASHL(A,C), where g(N) = N ∥ 0311 if |N | = 96, and
g(N) = GHASHL(ε,N) if |N | ̸= 96. The probability can be shown to be at most
q′(ℓA+1)/2τ , and we obtain the theorem by summing up the three probabilities.

7.5 Better Security Bounds

Use of Corollary 2. Suppose that, either in privacy or authenticity notions, A
makes q encryption queries (N1, A1,M1), . . . , (Nq, Aq,Mq). Let ℓM be the maxi-
mum plaintext length, which is max{m1, . . . ,mq}, where |Mi|n = mi. Theorem 1
and Theorem 2 assume ℓM = 232 − 2 and use Corollary 1 to obtain the results.
However, if ℓM is known to be smaller, then Corollary 2 can be used to obtain
better bounds. Specifically, in Theorem 1 and Theorem 2, if ℓM ≤ rmax, then the
constant becomes β(rmax) instead of 222. For example, if ℓM is 210, then from
Table 1 and by following the argument in Sect. 6.3, the constant becomes 211.

Use of [12, Theorem 2.3]. Using Bernstein’s result [12, Theorem 2.3], we can
further improve the authenticity bound (but not the privacy bound). For posi-
tive integer a, let δn(a) = (1 − (a − 1)/2n)−a/2. With the same notation as in
Theorem 2, the right hand side of (14) can be improved to the following bound.[

222(q + q′ + 1)(σ + q)(ℓN + 1)

2n
+

q′(ℓA + 1)

2τ

]
· δn(σ + q + q′ + 1)

Note that when a ≪ 2n we have δn(a) ≈ (1 + a2/2n+1). It was shown that
δn(a) ≤ 1.7 when a ≤ 264 and n ≥ 128 [13]. Hence, for example, if 1 < q′ ≤ q ≤ σ,
n = τ = 128, and σ+q+q′ < 264, we obtain the bound (17·222qσℓN+4q′ℓA)/2

128.



8 Conclusion

In this paper, we studied the security proofs of GCM. We first pointed out that
the proofs contain a flaw, and translated the observation into a distinguishing
attack that invalidates the main part of the privacy proof. We then showed that
the proofs can be repaired by presenting new privacy and authenticity bounds.
The bounds are larger than what were previously claimed in a general case of
variable length nonces, but they are smaller when the nonce length is restricted
to 96 bits. Many standards require or recommend using GCM with 96-bit nonces
for efficiency reasons. Our results suggest that restricting GCM to 96-bit nonces
is recommended from the provable security perspective as well. This follows [31],
where GCM with 96-bit nonces is recommended as the use of variable length
nonces increases the proof complexity and the proofs are infrequently verified.

We remark that since our attack only invalidates the second terms of (1)
and (2), it does not exclude a possibility that the original security bounds, (1)
and (2), can still be proved, and it would be interesting to see if our security
bounds can be improved.
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Table 2. List of solutions of (3)

0x7f6db6d2db6db6db6db6db6492492492 0x7f6db6dadb6db6db6db6db6492492492

0x81b6db776db6db6db6db6dadb6db6db6 0x81b6db676db6db6db6db6dadb6db6db6

0xbe00003c000000000000003fffffffff 0xbe00001c000000000000003fffffffff

0xc16db6aadb6db6db6db6db1b6db6db6d 0xc16db6eadb6db6db6db6db1b6db6db6d

0x3fb6db876db6db6db6db6d5249249249 0x3fb6db076db6db6db6db6d5249249249

0x000001dc00000000000001c000000000 0x000000dc00000000000001c000000000

0x7f6db56adb6db6db6db6d8e492492492 0x7f6db76adb6db6db6db6d8e492492492

0x81b6dc076db6db6db6db6aadb6db6db6 0x81b6d8076db6db6db6db6aadb6db6db6

0xbe000edc0000000000000e3fffffffff 0xbe0006dc0000000000000e3fffffffff

0xc16dab6adb6db6db6db6c71b6db6db6d 0xc16dbb6adb6db6db6db6c71b6db6db6d

0x3fb6e0076db6db6db6db555249249249 0x3fb6c0076db6db6db6db555249249249

0x000076dc00000000000071c000000000 0x000036dc00000000000071c000000000

0x7f6d5b6adb6db6db6db638e492492492 0x7f6ddb6adb6db6db6db638e492492492

0x81b700076db6db6db6daaaadb6db6db6 0x81b600076db6db6db6daaaadb6db6db6

0xbe03b6dc0000000000038e3fffffffff 0xbe01b6dc0000000000038e3fffffffff

0xc16adb6adb6db6db6db1c71b6db6db6d 0x00000004000000000000000000000000

29. Mouha, N., Velichkov, V., Cannière, C.D., Preneel, B.: The Differential Analysis
of S-Functions. In: Biryukov, A., Gong, G., Stinson, D.R. (eds.) Selected Areas in
Cryptography. Lecture Notes in Computer Science, vol. 6544, pp. 36–56. Springer
(2010)

30. Rogaway, P.: Authenticated-Encryption with Associated-Data. In: Atluri, V. (ed.)
ACM Conference on Computer and Communications Security. pp. 98–107. ACM
(2002)

31. Rogaway, P.: Evaluation of Some Blockcipher Modes of Operation. Investigation
Reports on Cryptographic Techniques in FY 2010 (2011), http://www.cryptrec.
go.jp/english/ (accessed on May 31, 2012)

32. Saarinen, M.J.O.: Cycling Attacks on GCM, GHASH and Other Polynomial MACs
and Hashes. Pre-proceedings of FSE 2012 (2012)

33. Salowey, J., Choudhury, A., McGrew, D.A.: AES Galois Counter Mode (GCM)
Cipher Suites for TLS. IETF RFC 5288 (2008)

34. Viega, J., McGrew, D.A.: The Use of Galois/Counter Mode (GCM) in IPsec En-
capsulating Security Payload (ESP). IETF RFC 4106 (2005)

A Solutions of (3), (4), and (5), and Examples of (N1, N2)
Satisfying (6)

In Table 2, Table 3, and Table 4, we show a list of values of L that satisfy (3), (4),
and (5), respectively. We see that the 93 values from these lists are all distinct,
and are different from 0n.

The counter-example presented in Sect. 5.2 was found by experimentally
searching over the values of U1, U2, and V . We started by searching over random
U1, U2, and V , and found that the values of the form U1 = 08i ∥X ∥ 0n−8−8i,
U2 = 08i ∥Y ∥ 0n−8−8i, and V ∈ {0, 1}n have many examples that satisfy (6),
where X,Y ∈ {0, 1}8, 0 ≤ i ≤ 15, and int(V ) = 8j for some i + 1 ≤ j ≤ 16 but
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Table 3. List of solutions of (4)

0x7f6db6d6db6db6db6db6db6492492492 0x7f6db6dedb6db6db6db6db6492492492

0x81b6db736db6db6db6db6dadb6db6db6 0x81b6db636db6db6db6db6dadb6db6db6

0xbe000038000000000000003fffffffff 0xbe000018000000000000003fffffffff

0xc16db6aedb6db6db6db6db1b6db6db6d 0xc16db6eedb6db6db6db6db1b6db6db6d

0x3fb6db836db6db6db6db6d5249249249 0x3fb6db036db6db6db6db6d5249249249

0x000001d800000000000001c000000000 0x000000d800000000000001c000000000

0x7f6db56edb6db6db6db6d8e492492492 0x7f6db76edb6db6db6db6d8e492492492

0x81b6dc036db6db6db6db6aadb6db6db6 0x81b6d8036db6db6db6db6aadb6db6db6

0xbe000ed80000000000000e3fffffffff 0xbe0006d80000000000000e3fffffffff

0xc16dab6edb6db6db6db6c71b6db6db6d 0xc16dbb6edb6db6db6db6c71b6db6db6d

0x3fb6e0036db6db6db6db555249249249 0x3fb6c0036db6db6db6db555249249249

0x000076d800000000000071c000000000 0x000036d800000000000071c000000000

0x7f6d5b6edb6db6db6db638e492492492 0x7f6ddb6edb6db6db6db638e492492492

0x81b700036db6db6db6daaaadb6db6db6 0x81b600036db6db6db6daaaadb6db6db6

0xbe03b6d80000000000038e3fffffffff 0xbe01b6d80000000000038e3fffffffff

0xc16adb6edb6db6db6db1c71b6db6db6d

Table 4. List of solutions of (5)

0xbe076db80000000000071c7fffffffff 0xc16c000edb6db6db6db5555b6db6db6d

0xc16e000edb6db6db6db5555b6db6db6d 0xfedbb6d5b6db6db6db6c71c924924924

0xfedab6d5b6db6db6db6c71c924924924 0x00006db8000000000000e38000000000

0x0000edb8000000000000e38000000000 0x7f6d800edb6db6db6db6aaa492492492

0x7f6dc00edb6db6db6db6aaa492492492 0x40db76d5b6db6db6db6d8e36db6db6db

0x40db56d5b6db6db6db6d8e36db6db6db 0xbe000db80000000000001c7fffffffff

0xbe001db80000000000001c7fffffffff 0xc16db00edb6db6db6db6d55b6db6db6d

0xc16db80edb6db6db6db6d55b6db6db6d 0xfedb6ed5b6db6db6db6db1c924924924

0xfedb6ad5b6db6db6db6db1c924924924 0x000001b8000000000000038000000000

0x000003b8000000000000038000000000 0x7f6db60edb6db6db6db6daa492492492

0x7f6db70edb6db6db6db6daa492492492 0x40db6dd5b6db6db6db6db636db6db6db

0x40db6d55b6db6db6db6db636db6db6db 0xbe000038000000000000007fffffffff

0xbe000078000000000000007fffffffff 0xc16db6cedb6db6db6db6db5b6db6db6d

0xc16db6eedb6db6db6db6db5b6db6db6d 0xfedb6db5b6db6db6db6db6c924924924

0xfedb6da5b6db6db6db6db6c924924924 0x00000008000000000000000000000000

j ̸= 12. The examples include the following values:

(U1, U2, V ) =

 ((0x0)15 ∥ 0x2 ∥ (0x0)16, (0x0)15 ∥ 0x6 ∥ (0x0)16, (0x0)30 ∥ 0x70)
((0x0)17 ∥ 0x2 ∥ (0x0)14, (0x0)17 ∥ 0x6 ∥ (0x0)14, (0x0)30 ∥ 0x70)
((0x0)17 ∥ 0x4 ∥ (0x0)14, (0x0)17 ∥ 0xc ∥ (0x0)14, (0x0)30 ∥ 0x48)

These values are equivalent to (060 ∥ 0010 ∥ 064, 060 ∥ 0110 ∥ 064, 0120 ∥ 01110000),
(068 ∥ 0010 ∥ 056, 068 ∥ 0110 ∥ 056, 0120 ∥ 01110000), and (068 ∥ 0100 ∥ 056, 068 ∥ 1100
∥ 056, 0120 ∥ 01001000) in binary. N1 and N2 are the most significant int(V ) bits
of U1 and U2, respectively.


