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Abstract. Quantum computers can break the RSA, El Gamal, and elliptic curve
public-key cryptosystems, as they can efficiently factor integers and extract dis-
crete logarithms. This motivates the development of post-quantum cryptosystems:
classical cryptosystems that can be implemented with today’s computers, that will
remain secure even in the presence of quantum attacks.
In this article we show that the McEliece cryptosystem over rational Goppa codes
and the Niederreiter cryptosystem over classical Goppa codes resist precisely the
attacks to which the RSA and El Gamal cryptosystems are vulnerable—namely,
those based on generating and measuring coset states. This eliminates the approach
of strong Fourier sampling on which almost all known exponential speedups by
quantum algorithms are based. Specifically, we show that the natural case of the
Hidden Subgroup Problem to which McEliece-type cryptosystems reduce cannot
be solved by strong Fourier sampling, or by any measurement of a coset state.
To do this, we extend recent negative results on quantum algorithms for Graph
Isomorphism to subgroups of the automorphism groups of linear codes.
This gives the first rigorous results on the security of the McEliece-type cryp-
tosystems in the face of quantum adversaries, strengthening their candidacy for
post-quantum cryptography. We also strengthen some results of Kempe, Pyber,
and Shalev on the Hidden Subgroup Problem in Sn.

1 Introduction

If and when quantum computers are built, common public-key cryptosystems such as
RSA, El Gamal, and elliptic curve cryptography will no longer be secure. Given that
fact, the susceptibility or resistance of other well-studied public-key cryptosystems to
quantum attacks is of fundamental interest. We present evidence for the strength of
McEliece-type cryptosystems against quantum attacks, demonstrating that the quantum
Fourier sampling attacks that cripple RSA and El Gamal do not apply to the McEliece
or Niederreiter cryptosystems as long as the underlying code satisfies certain algebraic
properties. While there are known classical attacks on these systems for the case of
rational Goppa codes, our results also apply to the Niederreiter cryptosystem with
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classical Goppa codes, which to our knowledge is still believed to be classically secure.
While our results do not rule out other quantum (or classical) attacks, they do demonstrate
security precisely against the types of quantum algorithms that have proven so powerful
for number-theoretic problems. We also strengthen some results of Kempe et al. [9] on
subgroups of Sn reconstructible by Fourier sampling.

McEliece-type cryptosystems. The McEliece cryptosystem is a public-key cryptosys-
tem proposed by McEliece in 1978 [13], conventionally built over Goppa codes. A dual
variant of the system, proposed by Niederreiter [16], can provide slightly improved
efficiency with equivalent security [10]. This dual system can additionally be used to
construct a digital signature scheme [2], a shortcoming of the original system.

There are two basic types of attacks known against the McEliece-type cryptosystems:
decoding attacks, and direct attacks on the private key. The former appears challenging,
considering that the general decoding problem is NP-hard; indeed, historical confidence
in the security of the McEliece system relies on the idea that this hardness can be retained
for scrambled version of specific codes. This same intuition applies to quantum attacks:
NP-hard problems are believed to be intractable, in general, for quantum computers and
no significant quantum algorithmic developments appear to be directly relevant to these
decoding problems. The latter—direct attacks on the key—can be successful on certain
classes of linear codes, and is our focus. In a McEliece-type cryptosystem, the private
key of a user Alice consists of three matrices: a k×n matrix M over a finite field Fq` ,
a k× k invertible matrix S over the field Fq, and an n×n permutation matrix P. In the
McEliece version, M is a generator matrix of a q-ary [n,k]-linear code (hence, `= 1),
while in Niederreiter’s dual system, M is a parity check matrix of a q-ary linear code
of length n. The matrices S and P are selected randomly. Alice’s public key consists of
the matrix M∗ = SMP. An adversary may attack the private key, attempting to recover
the secret row “scrambler” S and the secret permutation P from M∗ and M, assuming he
already knew M.4 As pointed out in [4], it crucial to keep S and P secret for the security
of the McEliece system.

The security of these McEliece-type systems have received considerable attention
in the literature, often focusing on particular choices for the underlying codes. Various
classes of Goppa codes have received the greatest attention: along these lines, Sidelnokov
and Shestakov’s attack [23] can efficiently compute the matrices S and MP from the
public matrix M∗ = SMP if the underlying code is a generalized Reed-Solomon code.5

While this attack can reveal the structure of an alternative code, it does not reveal the
secret permutation. An attack in which the secret permutation is revealed was proposed
by Loidreau and Sendrier [11], using the Support Splitting Algorithm [21]. However,
this attack only works with a very limited subclass of classical binary Goppa codes,
namely those with a binary Goppa polynomial.

Although the McEliece-type cryptosystems are efficient and still considered clas-
sically secure, at least with classical binary Goppa codes [4], they are rarely used in

4 Recovering the secret scrambler and the secret permutation is different from the Code Equiv-
alence problem. The former finds a transformation between two equivalent codes, while the
latter decides whether two linear codes are equivalent.

5 We remark that the class of generalized Reed-Solomon codes is essentially equal to the class of
rational Goppa codes.



practice because of their comparatively large public key (see remark 8.33 in [14]). The
discovery of successful quantum attacks on RSA and El Gamal, however, has changed
the landscape: as suggested by Ryan [20] and Bernstein et al. [1], if “post-quantum”
security guarantees can be made for the McEliece cryptosystem, this may compensate
for its comparatively expensive computational demands.

Quantum Fourier sampling. Quantum Fourier Sampling (QFS) is the key ingredient in
nearly all known efficient quantum algorithms for algebraic problems, including Shor’s
algorithms for factorization and discrete logarithm [22] and Simon’s algorithm [24].
Shor’s algorithm relies on quantum Fourier sampling over the cyclic group ZN , while
Simon’s algorithm uses quantum Fourier sampling over Zn

2. In general, these algorithms
solve instances of the Hidden Subgroup Problem (HSP) over a finite group G. Given a
function f on G whose level sets are left cosets of some unknown subgroup H < G, i.e.,
such that f is constant on each left coset of H and distinct on different left cosets, they
find a set of generators for the subgroup H.

The standard approach to this problem treats f as a black box and applies f to a
uniform superposition over G, producing the coset state |cH〉= (1/

√
|H|)∑h∈H |ch〉 for a

random c. We then measure |cH〉 in a Fourier basis {|ρ, i, j〉} for the space C[G], where
ρ is an irrep6 of G and i, j are row and column indices of a matrix ρ(g). In the weak form
of Fourier sampling, only the representation name ρ is measured, while in the strong
form, both the representation name and the matrix indices are measured, the latter in a
chosen basis. This produces probability distributions from which classical information
can be extracted to recover the subgroup H. Moreover, since |cH〉 is block-diagonal in
the Fourier basis, the optimal measurement of the coset state can always be described in
terms of strong Fourier sampling.

Understanding the power of Fourier sampling in nonabelian contexts has been an
ongoing project, and a sequence of negative results [6, 15, 7] have suggested that the
approach is inherently limited when the underlying groups are rich enough. In particular,
Moore, Russell, and Schulman [15] showed that over the symmetric group, even the
strong form of Fourier sampling cannot efficiently distinguish the conjugates of most
order-2 subgroups from each other or from the trivial subgroup. That is, for any σ ∈ Sn
with large support, and most π ∈ Sn, if H = {1,π−1σπ} then strong Fourier sampling,
and therefore any measurement we can perform on the coset state, yields a distribution
which is exponentially close to the distribution corresponding to H = {1}. This result
implies that GRAPH ISOMORPHISM cannot be solved by the naive reduction to strong
Fourier sampling. Hallgren et al. [7] strengthened these results, demonstrating that even
entangled measurements on o(logn!) coset states yield essentially no information.

Kempe and Shalev [8] showed that weak Fourier sampling of single coset states in
Sn cannot distinguish the trivial subgroup from larger subgroups H with polynomial
size and non-constant minimal degree.7 They conjectured, conversely, that if a subgroup
H < Sn can be distinguished from the trivial subgroup by weak Fourier sampling, then

6 Throughout the paper, we write “irrep” as short for “irreducible representation.”
7 The minimal degree of a permutation group H is the minimal number of points moved by a

non-identity element of H.



the minimal degree of H must be constant. Their conjecture was later proved by Kempe,
Pyber, and Shalev [9].

Our contributions. To state our results, we say that a subgroup H < G is indistin-
guishable by strong Fourier sampling if the conjugate subgroups g−1Hg cannot be
distinguished from each other (or from the trivial subgroup) by measuring the coset state
in an arbitrary Fourier basis. A precise definition is presented in Section 3.2. Since the
optimal measurement of a coset state can always be expressed as an instance of strong
Fourier sampling, these results imply that no measurement of a single coset state yields
any useful information about H. Based on the strategy of Moore, Russell, and Schul-
man [15], we first develop a general framework, formalized in Theorem 1, to determine
indistinguishability of a subgroup by strong Fourier sampling. We emphasize that their
results cover the case where the subgroup has order two. Our principal contribution is to
show how to extend their methods to more general subgroups.

We then apply this general framework to a class of semi-direct products (GLk(Fq)×
Sn) oZ2, bounding the distinguishability for the HSP corresponding to the private-key
attack on a McEliece-type cryptosystem, i.e., the problem of determining a secret
scrambler S and a secret permutation P from M∗ = SMP and M. Our bound, given in
Corollary 1 of Theorem 4, depends on the column rank8 of the matrix M as well as
the minimal degree and the size of the automorphism group Aut(M), where Aut(M) is
defined in Subsection 4.2 as the set of all permutations P on the columns of M such
that M = SMP for some S ∈ GLk(Fq). In general, our result indicates that McEliece-
type cryptosystems resist known attacks based on strong Fourier sampling if M has
column rank at least k−o(

√
n)/`, and the automorphism group Aut(M) has minimal

degree Ω(n) and size eo(n). In particular, generator matrices of rational Goppa codes
and canonical parity check matrices of classical Goppa codes have good values for these
quantities (see Lemma 3). The result is most interesting for classical Goppa codes, which
are considered classically secure; the McEliece system over rational Goppa codes is
subject to the Sidelnokov-Shestakov [23] attack.

While our main application is the security of the McEliece cryptosystem, we show
in addition that our general framework is applicable to other classes of groups with
simpler structure, including the symmetric group and the finite general linear group9

GL2(Fq). For the symmetric group, we extend the results of [15] to larger subgroups
of Sn. Specifically, we show that any subgroup H < Sn with minimal degree m ≥
Θ(log |H|)+ω(logn) is indistinguishable by strong Fourier sampling over Sn. This
partially extends the results of Kempe et al. [9], which apply only to weak Fourier
sampling.

Remark 1. Our results show that the natural reduction of McEliece to a hidden subgroup
problem yields negligible information about the secret key. Thus they rule out the direct
analogue of the quantum attack that breaks, for example, RSA. Of course, our results
do not rule out other quantum (or classical) attacks. Neither do they establish that a

8 The column rank of M is understood to be over the field Fq` . Recall that the entries of the matrix
M are in Fq` .

9 The case of GL2(Fq) is omitted in this version for lack of space.



quantum algorithm for the McEliece cryptosystem would violate a natural hardness
assumption, as do recent lattice cryptosystem constructions whose hardness is based on
the Learning With Errors problem (e.g. Regev [18]). Nevertheless, they indicate that any
such algorithm would have to involve significant new ideas beyond than those that have
been proposed so far.

Summary of technical ideas. Let G be a finite group. We wish to establish general
criteria for indistinguishability of subgroups H < G by strong Fourier sampling. We
begin with the general strategy, developed in [15], that controls the resulting probability
distributions in terms of the representation-theoretic properties of G. In order to handle
richer subgroups, however, we have to overcome some technical difficulties. Our princi-
pal contribution here is a “decoupling” lemma that allows us to handle the cross terms
arising from pairs of nontrivial group elements.

Roughly, the approach (presented in Section 3.2) identifies two disjoint subsets,
SMALL and LARGE, of irreps of G. The set LARGE consists of all irreps whose dimen-
sions are no smaller than a certain threshold D. While D should be as large as possible,
we also need to choose D small enough so that the set LARGE is large. In contrast, the
representations in SMALL must have small dimension (much smaller than

√
D), and

the set SMALL should be small or contain few irreps that appear in the decomposition
of the tensor product representation ρ⊗ρ∗ for any ρ ∈ LARGE. In addition, any irrep
ρ outside SMALL must have small normalized character |χρ(h)|/dρ for any nontrivial
element h ∈H. If two such sets exist, and if |H| is sufficiently small, we establish that H
is indistinguishable by strong Fourier sampling over G.

In the case G = Sn, as in [15] we define SMALL as the set Λc of all Young diagrams
whose top row or left column has length at least (1− c)n, and define LARGE by setting
D = ndn, for appropriate constants 0 < c,d < 1. We show that any irrep outside SMALL
has large dimension and therefore small normalized characters.

For the case G = (GLk(Fq)×Sn) oZ2 corresponding to McEliece-type cryptosystems,
the normalized characters on the hidden subgroup K depend on the minimal degree
of the automorphism group Aut(M)< Sn. If we choose SMALL as the set of all irreps
constructed from tensor product representations τ×λ of GLk(Fq)×Sn with λ ∈Λc, then
the “small” features of Λc will induce the “small” features of this set SMALL. Finally,
|K| depends on |Aut(M)| and the column rank of M. When M is a generator matrix of
a rational Goppa code or a canonical parity check matrix of a classical Goppa code,
Aut(M) lies inside the automorphism group of a rational Goppa code, which can be
controlled using Stichtenoth’s Theorem [25].

2 Hidden Subgroup Attacks on McEliece-type Cryptosystems

As mentioned in the Introduction, we consider an attack attempting to recover the secret
scrambler S and permutation P from M and M∗. We frame the problem such an attacker
needs to solve as follows:

Definition 1 (Scrambler-Permutation Problem). Given two k×n matrices M and M∗

with entries in a finite field containing Fq such that M∗ = SMP for some S ∈ GLk(Fq)
and some n×n permutation matrix P, find such a pair (S,P).



In the case where the matrix M is a generator matrix of a linear code over Fq, the decision
version of this problem is known as the CODE EQUIVALENCE problem, which is at least
as hard as GRAPH ISOMORPHISM, although it is unlikely to be NP-complete [17]. This
problem can be immediately recast as a Hidden Subgroup Problem (described below).
We begin with a presentation of the problem as a Hidden Shift Problem:

Definition 2 (Hidden Shift Problem). Let G be a finite group and Σ be a finite set.
Given two functions f0 : G→ Σ and f1 : G→ Σ with the promise that there is an element
s ∈ G for which f1(x) = f0(sx) for all x ∈ G, the problem is to determine such s by
making queries to f0 and f1. An element s with this property is called a left shift from f0
to f1 (or, simply, a shift).

The Scrambler-Permutation Problem can be immediately reduced to the Hidden
Shift Problem over the group G = GLk(Fq)× Sn by defining functions f0 and f1 on
GLk(Fq)×Sn so that for all (S,P) ∈ GLk(Fq)×Sn,

f0(S,P) = S−1MP , f1(S,P) = S−1M∗P . (1)

Here and from now on, we identify each n×n permutation matrix with its corresponding
permutation in Sn. Evidently, SMP = M∗ if and only if (S−1,P) is a shift from f0 to f1.

Next, following the standard approach to developing quantum algorithms for such
problems, we reduce this Hidden Shift Problem on a group G to the Hidden Subgroup
Problem on the wreath product G oZ2 = G2 oZ2. Given two functions f0 and f1 on G,
we define the function f : G oZ2→ Σ ×Σ as follows: for (x,y) ∈ G2 and b ∈ Z2,

f ((x,y),b) def
=

{
( f0(x), f1(y)) if b = 0
( f1(y), f0(x)) if b = 1

(2)

Now we would like to see that the Hidden Shift Problem is equivalent to determining
the subgroup whose cosets are distinguished by f . Recall that a function f on a group G
distinguishes the right cosets of a subgroup H < G if for all x,y ∈ G, f (x) = f (y) ⇐⇒
yx−1 ∈ H .

Definition 3. Let f be a function on a group G. We say that f is injective under right
multiplication if for all x,y ∈ G, f (x) = f (y) ⇐⇒ f (yx−1) = f (1) . Define the subset
G| f ⊆ G as the level set containing the identity,

G| f
def
= {g ∈ G | f (g) = f (1)} .

Proposition 1. Let f be a function on a group G. If f distinguishes the right cosets of
a subgroup H < G, then f must be injective under right multiplication and G| f = H.
Conversely, if f is injective under right multiplication, then G| f is a subgroup and f
distinguishes the right cosets of the subgroup G| f .

Hence, the function f defined in (2) can distinguish the right cosets of some subgroup if
and only if it is injective under right multiplication.

Lemma 1. The function f defined in (2) is injective under right multiplication if and
only if (1) f0 is injective under right multiplication and (2) f1(x) = f0(sx) for some s.



The proof of this lemma is straightforward, so we omit it here.

Proposition 2. Assume f0 is injective under right multiplication. Let H0 = G| f0 and s
be a shift. Then the function f defined in (2) distinguishes right cosets of the following
subgroup of G oZ2:

G oZ2| f =
(
(H0,s−1H0s),0

)
∪
(
(H0s,s−1H0),1

)
,

which has size 2|H0|2. The set of all shifts from f0 to f1 is H0s.

If we can determine the hidden subgroup K = G oZ2| f , we can find a shift by
selecting an element of the form ((g1,g2),1) from K. Then g1 must belong to H0s, and
so is a shift from f0 to f1.

Application to the Scrambler-Permutation problem. Returning to the Hidden Shift
Problem over G = GLk(Fq)×Sn corresponding to the Scrambler-Permutation problem,
it is clear that the function f0 defined in (1) is injective under right multiplication, and
that

H0 = GLk(Fq)×Sn| f0 =
{
(S,P) ∈ GLk(Fq)×Sn | S−1MP = M

}
.

The automorphism group of M is the projection of H0 onto Sn, i.e.,

Aut(M) =
{

P ∈ Sn | ∃S : S−1MP = M
}
.

Note that each P ∈ Aut(M) has the same number of preimages S ∈ GLk(Fq) in this
projection.

3 Quantum Fourier sampling (QFS)

3.1 Preliminaries and Notation
Fix a finite group G, abelian or non-abelian, and let Ĝ denote the set of irreducible
unitary representations, or “irreps” for short, of G. For each irrep ρ ∈ Ĝ, let Vρ denote a
vector space over C on which ρ acts so that ρ is a group homomorphism from G to the
general linear group over Vρ , and let dρ denote the dimension of Vρ . For each ρ , we fix
an orthonormal basis Bρ =

{
b1, . . . ,bdρ

}
for Vρ . Then we can represent each ρ(g) as a

dρ ×dρ unitary matrix whose jth column is the vector ρ(g)b j.
Viewing the vector space C[G] as the regular representation of G, we can decompose

C[G] into irreps as the direct sum
⊕

ρ∈Ĝ V⊕dρ

ρ . This has a basis {|ρ, i, j〉 : ρ ∈ Ĝ,1≤ i, j≤
dρ}, where {|ρ, i, j〉 | 1≤ i≤ dρ} is a basis for the jth copy of Vρ . Up to normalization,
|ρ, i, j〉 corresponds to the i, j entry of the irrep ρ .

Definition 4. The Quantum Fourier transform over G is the unitary operator, denoted
FG, that transforms a vector in C[G] from the point-mass basis {|g〉 | g ∈ G} into the
basis given by the decomposition of C[G]. For all g ∈ G,

FG |g〉= ∑
ρ,i, j

√
dρ

|G|
ρ(g)i, j |ρ, i, j〉 ,

where ρ(g)i j is the (i, j)-entry of the matrix ρ(g). Alternatively, we can view FG |g〉 as a
block diagonal matrix consisting of the block

√
dρ/|G|ρ(g) for each ρ ∈ Ĝ.



Notation. For each subset X ⊆G, define |X〉=(1/
√
|X |)∑x∈X |x〉, which is the uniform su-

perposition over X . For each X ⊆G and ρ ∈ Ĝ, define the operator Π
ρ

X
def
= 1
|X | ∑x∈X ρ(x) ,

and let X̂(ρ) denote the dρ ×dρ matrix block at ρ in the quantum Fourier transform of
|X〉, i.e.,

X̂(ρ)
def
=

√
dρ

|G||X | ∑x∈X
ρ(x) =

√
dρ |X |
|G|

Π
ρ

X .

Fact. If X is a subgroup of G, then Π
ρ

X is a projection operator. That is, (Π ρ

X )
† = Π

ρ

X
and (Π

ρ

X )
2 = Π

ρ

X .

Quantum Fourier Sampling (QFS) is a standard procedure based on the Quantum
Fourier Transform to solve the Hidden Subgroup Problem (HSP) (see [12] for a survey).
An instance of the HSP over G consists of a black-box function f : G→ {0,1}∗ such
that f (x) = f (y) if and only if x and y belong to the same left coset of H in G, for some
subgroup H ≤G. The problem is to recover H using the oracle O f : |x,y〉 7→ |x,y⊕ f (x)〉.
The general QFS procedure for this is the following:

1. Prepare a 2-register quantum state, the first in a uniform superposition of the group
elements and the second with the value zero: |ψ1〉= (1/

√
|G|)∑g∈G |g〉 |0〉 .

2. Query f , i.e., apply the oracle O f , resulting in the state

|ψ2〉= O f |ψ1〉=
1√
|G| ∑g∈G

|g〉 | f (g)〉= 1√
|T | ∑

α∈T
|αH〉 | f (α)〉

where T is a transversal of H in G.
3. Measure the second register of |ψ2〉, resulting in the state |αH〉 | f (α)〉 with proba-

bility 1/|T | for each α ∈ T . The first register of the resulting state is then |αH〉 for
some uniformly random α ∈ G.

4. Apply the quantum Fourier transform over G to the coset state |αH〉 observed at
step 3:

FG |αH〉= ∑
ρ∈Ĝ,1≤i, j≤dρ

α̂H(ρ)i, j |ρ, i, j〉 .

5. (Weak) Observe the representation name ρ . (Strong) Observe ρ and matrix indices
i, j.

6. Classically process the information observed from the previous step to determine
the subgroup H.

Probability distributions produced by QFS. For a particular coset αH, the probability
of measuring the representation ρ in the state FG |αH〉 is

PαH(ρ) = ‖α̂H(ρ)‖2
F =

dρ |H|
|G|

Tr
(
(Π

ρ

αH)
†
Π

ρ

αH

)
=

dρ |H|
|G|

Tr
(
Π

ρ

H

)
where Tr(A) denotes the trace of a matrix A, and ‖A‖F :=

√
Tr(A†A) is the Frobenius

norm of A. The last equality is due to the fact that Π
ρ

αH = ρ(α)Π
ρ

H and that Π
ρ

H is an
orthogonal projector.



Since there is no point in measuring the rows [6], we are only concerned with
measuring the columns. As pointed out in [15], the optimal von Neumann measurement
on a coset state can always be expressed in this form for some basis Bρ . Conditioned
on observing ρ in the state FG |αH〉, the probability of measuring a given b ∈ Bρ is
‖α̂H(ρ)b‖2. Hence the conditional probability that we observe the vector b, given that
we observe the representation ρ , is then

PαH(b | ρ) =
‖α̂H(ρ)b‖2

PαH(ρ)
=
‖Π ρ

αHb‖2

Tr
(
Π

ρ

H

) =
‖Π ρ

Hb‖2

Tr
(
Π

ρ

H

)
where in the last equality, we use the fact that as ρ(α) is unitary, it preserves the norm
of the vector Π

ρ

Hb.
The coset representative α is unknown and is uniformly distributed in T . However,

both distributions PαH(ρ) and PαH(b | ρ) are independent of α and are the same as those
for the state FG |H〉. Thus, in Step 5 of the QFS procedure above, we observe ρ ∈ Ĝ with
probability PH(ρ), and conditioned on this event, we observe b ∈ Bρ with probability
PH(b | ρ).

If the hidden subgroup is trivial, H = {1}, the conditional probability distribution on
Bρ is uniform,

P{1}(b | ρ) =
‖Π ρ

{1}b‖
2

Tr
(

Π
ρ

{1}

) =
‖b‖2

dρ

=
1

dρ

.

3.2 Distinguishability by QFS

We fix a finite group G and consider quantum Fourier sampling over G in the basis given
by {Bρ}. For a subgroup H < G and for g ∈ G, let Hg denote the conjugate subgroup
g−1Hg. Since Tr

(
Π

ρ

H

)
= Tr

(
Π

ρ

Hg
)
, the probability distributions obtained by QFS for

recovering the hidden subgroup Hg are

PHg(ρ) =
dρ |H|
|G|

Tr
(
Π

ρ

H

)
= PH(ρ) and PHg(b | ρ) =

‖Π ρ

Hgb‖2

Tr
(
Π

ρ

H

) .

As PHg(ρ) does not depend on g, weak Fourier sampling can not distinguish con-
jugate subgroups. Our goal is to point out that for certain nontrivial subgroup H < G,
strong Fourier sampling can not efficiently distinguish the conjugates of H from each
other or from the trivial one. Recall that the distribution P{1}(· | ρ) obtained by perform-
ing strong Fourier sampling on the trivial hidden subgroup is the same as the uniform
distribution UBρ

on the basis Bρ . Thus, our goal can be boiled down to showing that
the probability distribution PHg(· | ρ) is likely to be close to the uniform distribution
UBρ

in total variation, for a random g ∈ G and an irrep ρ ∈ Ĝ obtained by weak Fourier
sampling.

Definition 5. We define the distinguishability of a subgroup H (using strong Fourier
sampling over G), denoted DH , to be the expectation of the squared L1-distance between
PHg(· | ρ) and UBρ

:

DH
def
= Eρ,g

[
‖PHg(· | ρ)−UBρ

‖2
1
]
,



where ρ is drawn from Ĝ according to the distribution PH(ρ), and g is chosen from
G uniformly at random. We say that the subgroup H is indistinguishable if DH ≤
log−ω(1) |G|.

Note that if DH is small, then the total variation distance between PHg(· | ρ) and UBρ

is small with high probability due to Markov’s inequality: for all ε > 0,

Prg
[
‖PHg(· | ρ)−UBρ

‖t.v. ≥ ε/2
]
= Prg

[
‖PHg(· | ρ)−UBρ

‖2
1 ≥ ε

2]≤DH/ε
2 .

In particular, if the subgroup H is indistinguishable by strong Fourier sampling, then for
all constant c > 0,

‖PHg(· | ρ)−UBρ
‖t.v. < log−c |G|

with probability at least 1− log−c |G| in both g and ρ . Our notion of indistinguishability
is the direct analogue of that of Kempe and Shalev [8]. Focusing on weak Fourier
sampling, they say that H is indistinguishable if ‖PH(·)−P{1}(·)‖t.v. < log−ω(1) |G|.

Our main theorem below will serve as a general guideline for bounding the distin-
guishability of H. For this purpose we define, for each σ ∈ Ĝ, the maximal normalized
character of σ on H as

χσ (H)
def
= max

h∈H\{1}

|χσ (h)|
dσ

.

For each subset S⊂ Ĝ, let

χS(H) = max
σ∈Ĝ\S

χσ (H) and dS = max
σ∈S

dσ .

In addition, for each reducible representation ρ of G, we let I(ρ) denote the set of irreps
of G that appear in the decomposition of ρ into irreps.

Theorem 1. (MAIN THEOREM) Suppose S is a subset of Ĝ. Let D > d2
S and L = LD ⊂ Ĝ

be the set of all irreps of dimension at least D. Let

∆ = ∆S,L = max
ρ∈L

∣∣S∩ I(ρ⊗ρ
∗)
∣∣ . (3)

Then the distinguishability of H is bounded by DH ≤ 4|H|2
(

χS(H)+∆
d2

S
D + |L|D

2

|G|

)
.

Intuitively, the set S consists of irreps of small dimension, and L consists of irreps of
large dimension. Moreover, we wish to have that the size of S is small while the size
of L is large, so that most irreps are likely in L. In the cases where there are relatively
few irreps, i.e., |S| � D and |Ĝ| � |G|, we can simply upper bound ∆ by |S| and upper
bound |L| by |Ĝ|.

We discuss the proof of this theorem in Section 5. Most details are relegated to the
Appendix A.

4 Applications of the Main Theorem

In this section, we present applications of Theorem 1 to analyze strong Fourier sampling
over certain non-abelian groups, including the symmetric group and the wreath product
corresponding to the McEliece-type cryptosystems. Another application to the HSP over
the groups GL2(Fq) is omitted for lack of space.



4.1 Strong Fourier Sampling over Sn

We focus now on the case where G is the symmetric group Sn. Recall that each irrep
of Sn is in one-to-one correspondence to an integer partition λ = (λ1,λ2, . . . ,λt) of n
often given by a Young diagram of t rows in which the ith row contains λi columns.
The conjugate representation of λ is the irrep corresponding to the partition λ ′ =
(λ ′1,λ

′
2, . . . ,λ

′
t ′), obtained by flipping the Young diagram λ about the diagonal.

As in [15], we shall apply Roichman’s upper bound [19] on normalized characters:

Theorem 2 (Roichman’s Theorem [19]). There exist constant b > 0 and 0 < q < 1 so
that for n > 4, for every π ∈ Sn, and for every irrep λ of Sn,∣∣∣∣χλ (π)

dλ

∣∣∣∣≤ (max
(

q,
λ1

n
,

λ ′1
n

))b·supp(π)

where supp(π) = #{k ∈ [n] | π(k) 6= k} is the support of π .

This bound works well for unbalanced Young diagrams. In particular, for a constant
0 < c < 1/4, let Λc denote the collection of partitions λ of n with the property that either
λ1
n ≥ 1− c or λ ′1

n ≥ 1− c, i.e., the Young diagram λ contains at least (1− c)n rows or
contains at least (1−c)n columns. Then, Roichman’s upper bound implies that for every
π ∈ Sn and λ 6∈Λc, and a universal constant α > 0,∣∣∣∣χλ (π)

dλ

∣∣∣∣≤ e−α·supp(π) . (4)

On the other hand, both |Λc| and the maximal dimension of representations in Λc are
small, as shown in the following Lemma of [15].

Lemma 2 (Lemma 6.2 in [15]). Let p(n) denote the number of integer partitions of n.
Then |Λc| ≤ 2cn · p(cn), and dµ < ncn for any µ ∈Λc.

To give a more concrete bound for the size of Λc, we record the asymptotic formula
for the partition function [5, pg. 45]: p(n)≈ eπ

√
2n/3/(4

√
3n) = eO(

√
n)/n as n→ ∞ .

Now we are ready to prove the main result of this section, an application of Theo-
rem 1.

Theorem 3. Let H be a nontrivial subgroup of Sn with minimal degree m, i.e., m =
minπ∈H\{1} supp(π). Then for sufficiently large n, DH ≤ O(|H|2e−αm).

Proof. Let 2c < d < 1/2 be constants. We will apply Theorem 1 by setting S = Λc and
D = ndn. By Lemma 2, we have dS ≤ ncn. Hence, the condition 2c < d guarantees that
D > d2

S . First, we need to bound the maximal normalized character χS(H). By (4), we
have χµ(H) ≤ e−αm for all µ ∈ Ŝn \ S. Hence, χS(H) ≤ e−αm. To bound the second
term in the upper bound of Theorem 1, as ∆ ≤ |S|, it suffices to bound:

|S| ·
d2

S
D
≤ 2cn · p(cn) · n

2cn

ndn ≤ eO(
√

n) ·n(2c−d)n ≤ n−γn/2



for sufficiently large n, so long as γ < d − 2c. Now bounding the last term in the
upper bound of Theorem 1: Since |LD| ≤ |Ŝn| = p(n) and n! > nne−n by Stirling’s
approximation,

|LD|D2

|Sn|
≤ p(n)n2dn

n!
≤ eO(

√
n)n2dn

nne−n ≤ eO(n)n(2d−1)n ≤ n−γn/2

for sufficiently large n, so long as γ < 1−2d. By Theorem 1, DH ≤ 4|H|2(e−αm+n−γn) .

Theorem 3 generalizes Moore, Russell, and Schulman’s result [15] on strong Fourier
sampling over Sn, which only applied in the case |H| = 2. To relate our result to the
results of Kempe et al. [9], observe that since log |Sn|=Θ(n logn), the subgroup H is in-
distinguishable by strong Fourier sampling if |H|2e−αm ≤ (n logn)−ω(1) or, equivalently,
if m≥ (2/α) log |H|+ω(logn).

4.2 Applications to McEliece-type Cryptosystems

Our main application of Theorem 1 is to show the limitations of strong Fourier sampling
in attacking the McEliece-type cryptosystems. Throughout this section, we fix parameters
n,k,q of a McEliece-type cryptosystem, and fix the underlying k×n matrix M of the
system. Here, M can be a generator matrix or a parity check matrix of the q-ary linear
code used in the cryptosystem. Note that the entries of M are in a finite field Fq` ⊃ Fq
(when M is a generator matrix of a q-ary linear code, we must have `= 1).

Recall that the canonical quantum attack against this McEliece cryptosystem involves
the HSP over the wreath product group (GLk(Fq)×Sn) oZ2; the hidden subgroup in this
case is

K = ((H0,s−1H0s),0)∪ ((H0s,s−1H0),1) (5)

for some hidden element s ∈ GLk(Fq)× Sn. Here, H0 is a subgroup of GLk(Fq)× Sn
given by

H0 =
{
(A,P) ∈ GLk(Fq)×Sn | A−1MP = M

}
. (6)

To understand the structure of the subgroup H0, we define the automorphism group
of M as Aut(M)

def
=
{

P ∈ Sn | SMP = M for some S ∈ GLk(Fq)
}
. Note that Aut(M)

is a subgroup of the symmetric group Sn and each element (A,P) ∈ H0 must have
P ∈ Aut(M). This allows us to control the maximal normalized characters on K through
the minimal degree of Aut(M). Then applying Theorem 1, we show that

Theorem 4. Assume qk2 ≤ nan for some constant 0 < a < 1/4. Let m be the minimal
degree of the automorphism group Aut(M). Then for sufficiently large n, the subgroup K
defined in (5) has DK ≤ O(|K|2e−δm) , where δ > 0 is a constant.

The proof of Theorem 4 follows the technical ideas discussed in the Introduction.
The details can be found in [3].

As qk2 ≤ nan, we have log
∣∣(GLk(Fq)×Sn) oZ2

∣∣= O(logn!+ logqk2
) = O(n logn) .

Hence, the subgroup K is indistinguishable if |K|2e−δm ≤ (n logn)−ω(1). The size of
the subgroup K is given by |K| = 2|H0|2, and |H0| = |Aut(M)| × |Fix(M)|, where



Fix(M)
def
=
{

S ∈ GLk(Fq) | SM = M
}

is the set of scramblers fixing M. To bound the
size of Fix(M), we record an easy fact which can be obtained by the orbit-stabilizer
formula:

Fact. Let r be the column rank of M. Then |Fix(M)| ≤ q`k(k−r) .

Proof. WLOG, assume the first r columns of M are Fq`-linearly independent, and
each remaining column is an Fq`-linear combination of the first r columns. Let N
be the k× r matrix consisting of the first r columns of M. Then we can decompose
M as M = (N | NA), where A is an r× (n− r) matrix with entries in Fq` . Clearly,
Fix(M) = Fix(N). Consider the action of GLk(Fq`) on the set of k× r matrices over
Fq` . Under this action, the stabilizer of N contains Fix(N), and the orbit of the matrix
N, denoted Orb(N), consists of all k× r matrices over Fq` whose columns are Fq`-
linearly independent. Thus, |Orb(N)| = (q`k − 1)(q`k − q`) . . .(q`k − q`(r−1)). By the
orbit-stabilizer formula, we have

|Fix(N)| ≤
|GLk(Fq`)|
|Orb(N)|

=
(q`k−1)(q`k−q`) . . .(q`k−q`(k−1))

(q`k−1)(q`k−q`) . . .(q`k−q`(r−1))

= (q`k−q`r)(q`k−q`(r+1)) · · ·(q`k−q`(k−1))≤ q`k(k−r) .

Corollary 1. Assume qk2 ≤ n0.2n and the automorphism group Aut(M) has minimal
degree Ω(n). Let r be the column rank of M. Then the subgroup K defined in (5) has
DK ≤ |Aut(M)|4q4`k(k−r)e−Ω(n). In particular, the subgroup K is indistinguishable if,
further, |Aut(M)| ≤ eo(n) and r ≥ k−o(

√
n)/`.

The constraint qk2 ≤ n0.2n implies log |GLk(Fq)|= O(n logn), so Alice only needs to flip
O(n logn) bits to pick a random S from GLk(Fq). Thus she needs only O(n logn) coin
flips overall to generate her private key.

Application to the McEliece cryptosystem. Consider a McEliece cryptosystem using a
q-ary linear [n,k]-code C, with parameters satisfying qk2 ≤ n0.2n. Since the automorphism
group of the code C equals the automorphism group of its generator matrix, we can
conclude that this McEliece cryptosystem resists the standard quantum Fourier sampling
attack if the code C is (i) well-scrambled, i.e., it has a generator matrix of rank at least
k−o(

√
n), and is (ii) well-permuted, i.e., its automorphism group has minimal degree at

least Ω(n) and has size at most eo(n). Recall that in terms of security, the Niederreiter
system using (n− k)×n parity check matrices over Fq of the same code C is equivalent
to the McEliece system using the code C [10].

Application to Goppa codes. We would like to point out that if M is a generator matrix
of a rational Goppa code or a canonical parity check matrix of a classical Goppa code, it
will give good bounds in Corollary 1. Specifically, we consider a matrix M over a finite
field Fq` ⊃ Fq of the following form:

M =


v1 f1(α1) v2 f1(α2) · · · vn f1(αn)
v1 f2(α1) v2 f2(α2) · · · vn f2(αn)

...
...

. . .
...

v1 fk(α1) v2 fk(α2) · · · vn fk(αn)

 (7)



where v1, . . . ,vn are nonzero elements in the field Fq` , (α1, . . . ,αn) is a list of distinct
points in the projective line Fq` ∪{∞}, and f1, . . . , fk are Fq`-linearly independent poly-
nomials in Fq` [X ] of degree less than k (by convention, fi(∞) is the Xk−1-coefficient of
fi(X)). Note that such a matrix M is a generator matrix of a rational Goppa [n,k]-code
over the field Fq` , and is also a parity check matrix of a classical Goppa [n,≥ n−`k]-code
over Fq. To apply Corollary 1, we show the following properties of the matrix M:

Lemma 3. The matrix M in the form of (7) has full rank (i.e., its column rank equals k),
and Aut(M) has minimal degree at least n−2, and |Aut(M)| ≤ q3`.

Proof. We can show that M has full rank directly by decomposing M as M = AV D,
where A = (ai j) is an k×k invertible matrix with entry ai j being the the X j−1-coefficient
of polynomial fi(X); V is a k×n Vandermonde matrix with (i, j)-entry being α

i−1
j ; and

D is an n×n diagonal matrix with vi in the (i, i)-entry. Then the rank of M equals the
rank of the Vandermonde matrix V , which has full rank.

Now we can view M as a generator matrix of a rational Goppa [n,k]-code R over the
field Fq` . Then we have Aut(M) ⊂ Aut(R), where Aut(R) is the automorphism group

of the code R, that is, Aut(R) =
{

P ∈ Sn | SMP = M for some S ∈ GLk(Fq`)
}

. Now we
can apply Stichtenoth’s Theorem [25] to control the automorphism group Aut(R).

Theorem 5 (Stichtenoth [25]). Let 2≤ k≤ n−2. Then the automorphism group of any
rational Goppa [n,k]-code over a field F is isomorphic to a subgroup of Aut(F(x)/F).

On the other hand, we also have the useful fact that Aut(F(x)/F)' PGL2(F). Hence,
Aut(R) is isomorphic to a subgroup of the projective linear group PGL2(Fq`), which
implies that |Aut(M)| ≤ |Aut(R)| ≤ |PGL2(Fq`)| ≤ q3` .

To show that the minimal degree of Aut(M) is at least n− 2, we view Aut(M) ⊂
PGL2(Fq`), and observe that any transformation in PGL2(Fq`) that fixes at least three
distinct projective lines must be the identity. Q.E.D.

Hence, classical Goppa codes or rational Goppa codes are good choices for the
security of McEliece-type cryptosystems against standard quantum Fourier sampling
attacks. Since the rational Goppa codes are broken (classically) by the Sidelnokov-
Shestakov [23] structural attack, we shall focus on the classical Goppa codes, which
remain secure given suitable choice of parameters.

Application to Neiderreiter systems with classical Goppa codes. Consider a classical
q-ary Goppa code C constructed by a support list of distinct points α1, . . . ,αn ∈ Fq` and a
Goppa polynomial g(X)∈ Fq` [X ] of degree k. This code has dimension k′ ≥ n−`k. More
importantly, it has k×n parity check matrices in the form of (7) in which v j = 1/g(α j)
(see [26]), we refer to those matrices as canonical parity check matrices of the classical
Goppa code C. By Corollary 1 and Lemma 3, the Niederreiter cryptosystem using k×n
canonical parity check matrices of this code C resists the known quantum attack, provided
qk2 ≤ n0.2n and q3` ≤ eo(n). As pointed out in [4], this Niederreiter system is secure
under the Sidelnokov-Shestakov attack. We remark, however, that the security of this
Niederreiter cryptosystem may not be equivalent to that of the McEliece cryptosystem



using the same code C (unless k′ = n− `k as discussed below), since the equivalence
showed in [10] only applies to the Niederreiter cryptosystem using a parity check matrix
over the subfield Fq.

Setting the parameters. We discuss the parameters for classical Goppa codes that meet
our security requirement. Traditionally, the code length is chosen as n = q`, then our
parameter setting requires only one constraint, k2 ≤ 0.2n`, which imposes that the code
C must have large dimension, i.e., k′ ≥ n− `k ≥ n−

√
0.2n(logq n)3/2.

Now we compare our parameter setting with practical parameters suggestion. In
most McEliece cryptosystems considered in practice, classical binary Goppa codes
are used, that is q = 2 and n = 2`. The code is also designed so that it has dimension
k′ = n− `k and minimal distance d ≥ 2t +1, where t� n is a predetermined parameter
indicating the number of errors the code can correct. For those systems, the original
parameters suggested by McEliece were (n = 1024,k′ ≥ 524, t = 50), which would meet
our requirement as long as the dimension k′ is chosen to be slightly larger (k′ ≥ 572). The
parameters (n = 1024,k′ = 524, t = 50), which can be broken in just 7 days by a cluster
of 200 CPUs under Bernstein et al.’s attack [1], clearly do not meet our requirement.
An optimal choice of parameters for the Goppa code which maximizes the adversary’s
work factor was recommended to be (n = 1024,k′ ≥ 644, t = 38) (see Note 8.32 in [14]).
Bernstein et al. [1] suggested two other sets of parameters, (n = 2048,k′ = 1751, t =
27) and (n = 1632,k′ = 1269, t = 34), that achieve the standard security against all
known (classical) attacks. All of these parameters meet our requirement. Well, of course,
these parameters were recommended for the original McEliece, or for the equivalent
Neiderreiter system that uses parity check matrices over the subfield F2 with n− k′ = `k
rows. However, if we view each element in Fq` as a vector of dimension ` over the
subfield Fq, then a k×n canonical parity check matrix over Fq` can be viewed as a `k×n
parity check matrix over Fq.

5 Bounding Distinguishability

We now sketch the proof for the main theorem (Theorem 1). Fixing a nontrivial subgroup
H < G, we want to upper bound DH . Let us start with bounding the expectation over the
random group element g ∈ G, for a fixed irrep ρ ∈ Ĝ:

EH(ρ)
def
= Eg

[
‖PHg(· | ρ)−UBρ

‖2
1
]
.

Obviously we always have EH(ρ)≤ 4. More interestingly, we have

EH(ρ) = Eg

( ∑
b∈Bρ

∣∣∣∣PHg(b | ρ)− 1
dρ

∣∣∣∣
)2


≤ Eg

[
dρ ∑

b∈Bρ

(
PHg(b | ρ)− 1

dρ

)2
]

(by Cauchy-Schwarz)

= dρ ∑
b∈Bρ

Varg[PHg(b | ρ)] (since Eg[PHg(b | ρ)] = 1
dρ

)



=
dρ

Tr(Π ρ

H)
2 ∑

b∈Bρ

Varg
[
‖Π ρ

Hgb‖2] . (8)

The equation Eg[PHg(b | ρ)] = 1/dρ can be shown using Schur’s lemma.
From (8), we are motivated to bound the variance of ‖Π ρ

Hgb‖2 when g is chosen
uniformly at random. We provide an upper bound that depends on the projection of
the vector b⊗b∗ onto irreducible subspaces of ρ ⊗ρ∗, and on maximal normalized
characters of σ on H for all irreps σ appearing in the decomposition of ρ⊗ρ∗. Recall
that the representation ρ⊗ρ∗ is typically reducible and can be written as an orthogonal
direct sum of irreps ρ⊗ρ∗ =

⊕
σ∈Ĝ aσ σ , where aσ ≥ 0 is the multiplicity of σ . Then

I(ρ⊗ρ∗) consists of σ with aσ > 0, and we let Π
ρ⊗ρ∗
σ denote the projection operator

whose image is aσ σ , that is, the subspace spanned by all copies of σ . Our upper bound
given in Lemma 4 below generalizes the bound given in Lemma 4.3 of [15], which only
applies to subgroups H of order 2.

Lemma 4. (DECOUPLING LEMMA) Let ρ be an irrep of G. Then for any vector b ∈Vρ ,

Varg
[
‖Π ρ

Hgb‖2]≤ ∑
σ∈I(ρ⊗ρ∗)

χσ (H)
∥∥∥Π

ρ⊗ρ∗
σ (b⊗b∗)

∥∥∥2
.

Back to our goal of bounding EH(ρ) using the bound in Lemma 4, the strategy will
be to separate irreps appearing in the decomposition of ρ⊗ρ∗ into two groups, those
with small dimension and those with large dimension, and treat them differently. If dσ is
large, we shall rely on bounding χσ (H). If dσ is small, we shall control the projection
given by Π

ρ⊗ρ∗
σ using the following lemma which was proved implicitly in [15]:

Lemma 5. For any irrep σ , we have ∑b∈Bρ

∥∥∥Π
ρ⊗ρ∗
σ (b⊗b∗)

∥∥∥2
≤ d2

σ .

The method discussed above for bounding EH(ρ) is culminated into Lemma 6 below.

Lemma 6. Let ρ ∈ Ĝ be arbitrary and S ⊂ Ĝ be any subset of irreps that does not
contain ρ . Then

EH(ρ)≤ 4|H|2
(

χS(H)+ |S∩ I(ρ⊗ρ
∗)|

d2
S

dρ

)
.

To apply this lemma, we should choose the subset S such that d2
S � dρ , that is, S

should consist of small dimensional irreps. Then applying Lemma 6 for all irreps ρ of
large dimension, we can prove our general main theorem straightforwardly.

The detailed proofs of the main theorem and the decoupling lemma are put in
Appendix A. The proof for Lemma 6 is omitted for lack of space. See [3] for a full
technical version.
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Appendix A Proofs for the Main Theorem

Proof of the Decoupling Lemma

Proof (Proof of Lemma 4). Fix a vector b ∈Vρ . To simplify notations, we shall write
Πg as shorthand for Π

ρ

Hg , and write gb for ρ(g)b. For any g ∈ G, we have

‖Πgb‖2 =
〈
Πgb,Πgb

〉
=
〈
b,Πgb

〉
=

1
|H|

(
〈b,b〉+ ∑

h∈H\{1}

〈
b,g−1hgb

〉)
.

Let Sg = ∑h∈H\{1}
〈
b,g−1hgb

〉
. Then

Varg
[
‖Πgb‖2]= Varg[Sg]

|H|2
=

Eg
[
S2

g
]
−Eg[Sg]

2

|H|2
.



To bound the variance, we upper bound S2
g for all g ∈ G. Since Sg is real, applying

Cauchy-Schwarz inequality, we have

S2
g =

∣∣∣∣∣ ∑
h∈H\{1}

〈
b,g−1hgb

〉∣∣∣∣∣
2

≤ (|H|−1)

(
∑

h∈H\{1}

∣∣〈b,g−1hgb
〉∣∣2) .

As in Lemma 4.2 of [15], one can express the second moment of the inner product〈
b,g−1hgb

〉
in terms of the projection of b⊗b∗ into the irreducible constituents of the

tensor product representation ρ⊗ρ∗. Specifically, for any h ∈ G, we have

Eg
[
|
〈
b,g−1hgb

〉
|2
]
= ∑

σ∈I(ρ⊗ρ∗)

χσ (h)
dσ

∥∥∥Π
ρ⊗ρ∗
σ (b⊗b∗)

∥∥∥2
.

It follows that

Varg
[
‖Π ρ

Hgb‖2]≤ |H|−1
|H|2 ∑

h∈H\{1}
Eg

[∣∣〈b,g−1hgb
〉∣∣2]

≤ Eh∈H\{1}

[
∑

σ∈I(ρ⊗ρ∗)

χσ (h)
dσ

∥∥∥Π
ρ⊗ρ∗
σ (b⊗b∗)

∥∥∥2
]

≤ ∑
σ∈I(ρ⊗ρ∗)

χσ (H)
∥∥∥Π

ρ⊗ρ∗
σ (b⊗b∗)

∥∥∥2
.

Proof of the Main Theorem

Proof (Proof of Theorem 1:). For any ρ ∈ L, since dρ ≥ D > d2
S , we must have ρ 6∈ S.

By Lemma 6,

EH(ρ)≤ 4|H|2
(

χS(H)+∆
d2

S
D

)
for all ρ ∈ L .

Combining this with the fact that EH(ρ)≤ 4 for all ρ 6∈ L, we obtain

DH = Eρ [EH(ρ)]≤ 4|H|2
(

χS(H)+∆
d2

S
D

)
+4Prρ [ρ 6∈ L] .

To complete the proof, it remains to bound Prρ [ρ 6∈ L]. Since Tr(Π ρ

H)≤ dρ , we have

P(ρ) =
dρ |H|
|G|

Tr(Π ρ

H)≤
d2

ρ |H|
|G|

.

Since dρ < D for all ρ ∈ Ĝ\L, it follows that

Prρ [ρ 6∈ L] = ∑
ρ 6∈L

P(ρ)≤ |L|D
2|H|
|G|

≤ |L|D
2|H|2

|G|
.


