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Abstract. Structure-preserving signatures are signatures defined over bilinear
groups that rely on generic group operations. In particular, the messages and sig-
natures consist of group elements and the verification of signatures consists of
evaluating pairing product equations. Due to their purist nature structure-preserving
signatures blend well with other pairing-based protocols.
We show that structure-preserving signatures must consist of at least 3 group
elements when the signer uses generic group operations. Usually, the generic
group model is used to rule out classes of attacks by an adversary trying to break
a cryptographic assumption. In contrast, here we use the generic group model to
prove a lower bound on the complexity of digital signature schemes.
We also give constructions of structure-preserving signatures that consist of 3
group elements only. This improves significantly on previous structure-preserving
signatures that used 7 group elements and matches our lower bound. Our structure-
preserving signatures have additional nice properties such as strong existential
unforgeability and can sign multiple group elements at once.
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1 Introduction

Digital signatures are fundamental cryptographic primitives used as building blocks in
countless scenarios. Often, signatures are combined with zero-knowledge (ZK) proof
systems, for example when constructing privacy-preserving cryptographic protocols.
While suitable signature schemes for such cases have long been known, e.g., the schemes
of Camenisch and Lysyanskaya [CL02,CL04], they were constructed with the intent to
be used with interactive ZK proofs. The reason was the absence of an efficient non-
interactive zero-knowledge (NIZK) proof system. Moreover, the only way to construct
efficient NIZK proofs was using certain heuristics, e.g., random oracles, which trans-
form interactive ZK proofs into NIZK proofs. In [GS08], Groth and Sahai presented
? Supported by EPSRC grant number EP/G013829/1.



the first practical NIZK proof system for a non-trivial class of languages which does
not resort to such heuristics. It is based on bilinear maps and is designed to be used
on certain satisfiable systems of equations. The most interesting type of equation is the
so-called “pairing-product equation” for which the proofs are also fully extractable, and
therefore the proof system yields NIZK proofs of knowledge.

As pointed out in [AFG+10], many previous signatures scheme were not fully
“compatible” with pairing-product equations. Even if the verification algorithm used
pairing-product equations, the signatures and messages were not composed entirely of
group elements and thus were not ideal counterparts for the pairing product equations of
Groth-Sahai proofs. That is why [AFG+10] defined the notion of structure-preserving
signatures which requires verification keys, messages, and signatures to be composed
entirely of group elements and the verification equations to use pairing-product equa-
tions. Equipped with such signatures, one can easily design modular cryptographic
protocols which rely on signatures and NIZK proofs and instantiate them efficiently.
Of course some cryptographic protocols find other ingenious efficient solutions but
these are specific to their tasks. In contrast, modular design makes constructions eas-
ier to build, less prone to errors, and provide a good alternative for efficiency com-
parisons. Moreover, modular constructions can be realized under different assump-
tions by choosing appropriate instantiations of the building blocks. Applications of
structure-preserving signatures combined with Groth-Sahai proofs are numerous: group
signatures, blind signatures, delegatable credentials, oblivious transfer, credential-based
identification/key-exchange with hierarchical certification, etc.

Efficient structure-preserving signatures were presented in [AFG+10] and were ap-
plied to the construction of round-optimal blind signatures and fully-secure group sig-
natures with concurrent join protocols. Although they were efficient, it was left as an
open problem to find the optimal signature size and determine whether more efficient
schemes can be constructed. These are the problems we consider in this work.

1.1 Our contribution

Results. We prove lower bounds on the complexity of structure-preserving signatures
based on asymmetric bilinear groups. As far as we are aware, this is the first non-trivial
lower bound for the complexity of practical signature schemes. We also construct a
structure-preserving signature scheme that matches the lower bounds giving an optimal
solution in terms of efficiency.

We demonstrate that a structure-preserving signature scheme must use at least two
pairing product equations to verify a signature. Any structure-preserving signature scheme
where the verification only uses one pairing product equation can be broken with a ran-
dom message attack.

We also give a lower bound on the size of a signature. A structure-preserving sig-
nature with less than 3 group elements is vulnerable to a random message attack. The
lower bound holds even when the message is a single group element.

Finally, we prove that the lower bounds are optimal by presenting a structure-
preserving signature scheme where the verification of signatures uses only two veri-
fication equations and the signatures consist of only 3 group elements.



Our signature scheme has several nice properties. First, it is structure preserving.
Second, it is strongly existentially unforgeable against adaptive chosen message attacks.
Third, messages to be signed can consist of many group elements, which can be drawn
from both of the base groups of the bilinear map.

The existential unforgeability of our signature scheme against adaptive chosen mes-
sage attacks corresponds to an interactive cryptographic assumption, which we prove
is true when the adversary only uses generic group operations. By adding a few extra
group elements to the signatures (1 or 3 depending on whether the messages only con-
tain elements in one base group or contains a mix of elements from both base groups)
we can base security on a non-interactive cryptographic assumption.

Techniques. The lower bound on the number of pairing product equations needed in
the verification process follows from a demonstration that any two signatures on two
different random messages can be combined to yield signatures on different messages.

However, when there are two or more verification equations, the analysis of the
number of group elements involved in a signature becomes intricate. We base our anal-
ysis on the signer being a generic algorithm. This differs from the standard use of the
generic group model to rule out classes of attacks on cryptographic assumptions since
the analysis is based on what the signing algorithm can do, not what some arbitrary
unknown adversary can do. Arguably this is a more compelling way to use the generic
group model since the analysis only fails for signature schemes where the designer
invents a non-generic signing algorithm.

A generic signer must create signatures that are related to the messages in a spe-
cific way. Furthermore, the correctness of the signature scheme implies that signatures
created this way must be valid signatures. With these two facts in mind, we analyze the
pairing product equations in the verification and show that all pairing product equations
must be linearly related if the signatures consist of 1 or 2 group elements. We conclude
that they can be replaced by an equivalent single verification equation. But that would
make the signature scheme vulnerable to a random message attack.

Our work on lower bounds on structure-preserving signatures gives insight into
what a structure-preserving signature with more group elements should look like. The
verification equations must be organized such that a generic signer can use the secret
signing key to solve them for arbitrary messages. A random choice of 2 or more verifica-
tion equations is unlikely to be solvable for a generic signing algorithm. With signature
sizes of 3 or more group elements, however, it is possible to carefully select the verifi-
cation equations such that they are solvable by a generic signer. We find such a set of
verification equations that are solvable by a generic signer and at the same time resists
generic attackers with access to an adaptive chosen message attack.

1.2 Related work

Lower bounds for cryptographic protocols have been studied extensively. For some
tasks it is possible to give information-theoretic lower bounds; ciphertexts must, for
instance, be longer than plaintexts to enable correct decryption. In the context of zero-
knowledge proofs lower bounds on the round complexity [GO94] have been found by
exploiting the tension between soundness and zero-knowledge. However, these lower



bounds do not readily apply to digital signatures where the hash-and-sign paradigm
rules out strong information-theoretic bounds on the size and the protocols are non-
interactive by definition. Gennaro, Gertner and Katz [GGK03] instead investigated the
complexity of digital signatures that only make black-box calls to a one-way permuta-
tion and found asymptotic lower bounds on the number of black-box queries. In con-
trast, our lower bounds apply to practical pairing-based signature schemes.

The generic group model [Nec94,Sho97] is widely used in pairing-based cryptogra-
phy to rule out generic attacks on cryptographic assumptions. However, there has been
little work on using the generic group model to prove lower bounds on the efficiency
of cryptographic protocols except for Bangerter, Camenisch and Krenn [BCK10] that
gave lower bounds on the knowledge error in certain Sigma-protocols and Ostrovsky
and Skeith [OS08] that gave lower bounds on single-server private information retrieval
protocols based on homomorphic encryption. The generic group model has not been
used to give lower bounds for the complexity of signature schemes.

The first structure-preserving signatures were presented by Groth [Gro06] who used
them to build group signatures. Groth’s signature scheme is based on the decision linear
assumption but consists of thousands of group elements and is therefore not practical.

Green and Hohenberger [GH08] presented a structure-preserving signature scheme
that provides security against random-message attacks, which they used to build a uni-
versally composable adaptive oblivious transfer protocol.

Cathalo, Libert and Yung [CLY09] constructed a partially structure-preserving sig-
nature scheme which signs only a single group element and used it for the construction
of a group-encryption scheme.

Fuchsbauer [Fuc09] presented a structure-preserving signature scheme for signing
messages that are Diffie-Hellman pairs. Fuchsbauer’s scheme is automorphic, i.e., the
public verification keys belong to the message space. Automorphic signatures have sev-
eral applications including blind signatures, group signatures, anonymous proxy signa-
tures and anonymous delegatable credentials [Fuc09,FV10,Fuc11].

Abe, Haralambiev and Ohkubo [AHO10] presented several constructions of structure-
preserving signatures and found applications to blind signatures and group signatures.
A merged version of [Fuc09,AHO10,Gro09] first coined the term structure-preserving
signatures. The most efficient structure-preserving signature scheme from [AFG+10]
can sign multiple group elements belonging to one of the base groups with signatures
that consist of 7 group elements and use two pairing product equations in the verifi-
cation. In comparison, we present a scheme that can sign messages that contain group
elements from both base groups and only uses 3 group elements in the signatures.

2 Preliminaries

2.1 Bilinear groups

Throughout the paper we let G be a bilinear group generator that on security parameter
k returns (p,G,H,T, e,G,H)← G(1k) with the following properties:

– G,H,T are groups of prime order p.



– e : G × H → T is a bilinear map such that ∀U ∈ G, ∀V ∈ H, ∀a, b ∈ Z :
e(Ua, V b) = e(U, V )ab.

– G generates G, H generates H and e(G,H) generates T.
– There are efficient algorithms for computing group operations, evaluating the bilin-

ear map, comparing group elements and deciding membership of the groups.

There are many ways to set up bilinear groups. We will work in what Galbraith,
Paterson and Smart [GPS08] call type III groups, where there are no efficiently com-
putable isomorphisms G → H or H → G. We focus on type III groups here because
they have the most efficient instantiations and therefore the highest relevance for cryp-
tographic purposes.

In a group (p,G,H,T, e,G,H) generated by G we refer to deciding group mem-
bership, computing group operations in G,H or T, comparing group elements and eval-
uating the bilinear map as the generic group operations. In the signature schemes we
construct we only use generic group operations.

As a matter of notation, we will mostly use capital letters A,G,M,R, S, U for
group elements in G and capital letters B,H,N, T, V,W for group elements in H and
capital letter Z for group elements in T. We will use small letters r, s, t, . . . for discrete
logarithms of group elements with respect to base G or base H . We use Greek letters
α, β, . . . for hidden field elements in Zp chosen by algorithms as part of their operation.

2.2 Secure signature schemes

A digital signature scheme over groups generated by a bilinear group generator G is a
triple of efficient algorithms (K,S,V). The key generation algorithmK takes a descrip-
tion of the bilinear group as input and returns a public verification key V K and a secret
signing key SK. The signing algorithm S takes a signing key SK and a message M in
the message spaceM defined by GK and V K as input and returns a signature Σ. The
verification algorithm V takes the verification key V K, a message M and the signature
Σ and returns either 1 (accept) or 0 (reject).

Definition 1 (Correctness). We say the signature scheme (K,S,V) over bilinear group
generator G is (perfectly) correct if for all security parameters k ∈ N

Pr[GK ← G(1k); (V K, SK)← K(GK);M ←M;Σ ← SSK(M) : VVK(M,Σ) = 1] = 1.

A signature scheme is said to be existentially unforgeable if it is hard to forge a
signature on a new message that has not been signed before. The adversary may see
signatures on other messages before making the forgery. We distinguish between a ran-
dom message attack, where the adversary gets pairs of random messages and corre-
sponding signatures, and an adaptive chosen message attack where the adversary can
choose arbitrary messages and receive signatures on them. Our signatures will be se-
cure against adaptive chosen message attack, but our lower bounds on the complexity
of signature schemes will hold even for the weaker random message attacks. We now
formally define existential unforgeability against an adaptive chosen message attacks.

Definition 2 (EUF-CMA). A signature scheme (K,S,V) over bilinear group gener-
ator G is existentially unforgeable against adaptive chosen message attacks if for all



non-uniform polynomial time A

Pr[GK ← G(1k); (V K, SK)← K(GK); (M,Σ)← ASSK(·)(V K) :

M /∈ Q ∧ VV K(M,Σ) = 1] = negl(k),

where Q is the set of queries made by A to the signing oracle.

Sometimes it is also useful to prevent the adversary from issuing a new signature
for a message that has already been signed. A signature scheme is strongly existentially
unforgeable if it is hard to find a signature on a message that has not been signed before
and also hard to find a new signature for a message that has already been signed.

Definition 3 (sEUF-CMA). A signature scheme (K,S,V) over bilinear group gener-
ator G is strongly existentially unforgeable against adaptive chosen message attacks if
for all non-uniform polynomial time A

Pr[GK ← G(1k); (V K, SK)← K(GK); (M,Σ)← ASSK(·)(V K) :

(M,Σ) /∈ Q ∧ VV K(M,Σ) = 1] = negl(k),

where Q is the set of message-signature pairs from A’s queries to the signing oracle.

2.3 Structure-preserving signature schemes

In this paper, we study structure-preserving signature schemes [AFG+10]. In a struc-
ture preserving signature scheme the verification key, the messages and the signatures
consist only of group elements and the verification algorithm evaluates the signature
by deciding group membership of elements in the signature and by evaluating pairing
product equations, which are equations of the form∏

i

∏
j

e(Ai, Bj)
aij = Z,

where A1, A2, . . . ∈ G, B1, B2, . . . ∈ H, Z ∈ T are group elements appearing in
GK,V K,M or Σ and a11, a12, . . . ∈ Z are constants. Structure-preserving signa-
tures are extremely versatile because they mix well with other pairing-based protocols.
Groth-Sahai proofs [GS08] are for instance designed with pairing product equations in
mind and can therefore easily be applied to structure-preserving signatures.

Definition 4 (Structure-preserving signatures). A signature scheme (K,S,V) over
bilinear group generator G is said to be structure preserving if

– G generates a bilinear group GK = (p,G,H,T, e,G,H),
– the verification key consists of GK and group elements in G and H,
– the messages consist of group elements in G and H,
– the signatures consist of group elements in G and H, and
– the verification algorithm evaluates membership in G and H and pairing product

equations with Z = 1.



Our signatures are structure-preserving as defined above. When proving our lower
bounds, we will relax the definition of structure-preserving signatures to allow arbi-
trary target group elements Z ∈ T to be included in the verification key and to appear
in the verification equations. This strengthens our results, getting lower bounds in a
relaxed model of structure-preserving signatures and constructing signatures in a strict
model of structure-preserving signatures.

Generic signer. Abe et al. [AFG+10] did not explicitly require the signing algorithm
to only use generic group operations when they defined structure-preserving signatures.
However, it would be a natural addition to the definition of structure-preserving sig-
natures because otherwise the cryptographic designer would have to invent some non-
generic operations to be used in the signature scheme and that would be a surpris-
ing result in itself. All our signature schemes have a generic signer; as do all earlier
structure-preserving signatures in the literature.

3 Lower bounds on structure-preserving signatures

In this section, we will prove lower bounds on the complexity of structure-preserving
signatures. We summarize our lower bounds in the following main theorem, which
follows from Theorems 2, 3 and 4.

Theorem 1. All generic-signer structure-preserving signature schemes that are exis-
tentially unforgeable against random message attacks must use at least two verification
equations and have signatures consisting of at least three group elements drawn from
both G and H. This holds even when the messages are single group elements and even
if we allow the verification key to contain elements of T.

3.1 Impossibility of one verification equation

Theorem 2. There is no structure-preserving signature with a single verification equa-
tion that is existentially unforgeable against random message attacks.

Proof. Consider a structure preserving signature scheme for messages M ∈ G with the
verification key containing group elements U1, U2, . . . ∈ G, V1, V2, . . . ∈ H, Z ∈ T.
Signatures are of the form (S1, S2, . . . , T1, T2, . . .) with Si ∈ G and Tj ∈ H and are
verified by the following verification equation∏
i

∏
j

e(Si, Tj)
aij ·

∏
i

∏
j

e(Si, Vj)
bij ·

∏
j

e(M,Tj)
cj ·

∏
j

e(M,Vj)
dj ·

∏
i

∏
j

e(Ui, Tj)
eij = Z.

Please note there is no need for terms of the form e(Ui, Vj) because without loss of
generality they can be incorporated into Z ∈ T.

Suppose we get a signature (S1, . . . , T1, . . .) on a random message M ∈ G. Isolat-
ing T` and M in the verification, define for every `

A` =
∏
i

Sai`i ·
∏
i

Uei`i B` =
∏
j 6=`

T
cj
j ·

∏
j

V
dj
j .



Suppose there is an ` for which A` 6=M−c` . We can rewrite the verification equation

e(M,T`)
c`e(A`, T`)e(M,B`)·

∏
i

∏
j 6=`

e(Si, Tj)
aij ·

∏
i

∏
j

e(Si, Vj)
bij ·

∏
i

∏
j 6=`

e(Ui, Tj)
eij = Z.

If c` = 0 then setting T ′` = T`B
−1
` while keeping the rest of the signature intact gives

us a forged signature on M ′ = MA`, where A` 6= M−c` = M0 = 1. If c` 6= 0

then setting T ′` = T−1` B
− 2

c`

` while keeping the rest of the signature intact gives us

a forged signature on M ′ = M−1A
− 2

c`

` 6= M , where the inequality follows from
A` 6=M−c` . To avoid forged signatures must therefore, with overwhelming probability,
have A` =M−c` for all `.

If there is overwhelming probability that A`M c` = 1 for all `, then each T` is
cancelled out in the verification. We can therefore without loss of generality ignore
T1, T2, . . . and look at the case where signatures are of the form (S1, S2, . . .) with Si ∈
G and the verification equation is of the form∏

i

∏
j

e(Si, Vj)
bij ·

∏
j

e(M,Vj)
dj = Z.

Obtaining two signatures (S1, S2, . . .) and (S′1, S
′
2, . . .) on two random messages M

andM ′ gives us a signature (S2
1/S

′
1, S

2
2/S

′
2, . . .) onM2/M ′. With overwhelming prob-

ability M2/M ′ /∈ {M,M ′} and we have a forgery. �

3.2 Impossibility of unilateral signatures

Let us call a signature unilateral if it only contains group elements in G or only con-
tains group elements in H. In other words, a unilateral signature is either of the form
(S1, S2, . . .) with Si ∈ G or of the form (T1, T2, . . .) with Ti ∈ H.

Theorem 3. There is no unilateral generic-signer structure-preserving signature scheme
that is existentially unforgeable against random message attacks.

Proof. Let us without loss of generality look at a signature scheme for single group
element messages M ∈ G. The verification key contains group elements U1, U2, . . . ∈
G, V1, V2, . . . ∈ H, Z1, Z2, . . . ∈ T.

We first look at the case, where signatures are of the form (S1, S2, . . .) with Si ∈ G
and fit a number of verification equations of the form∏

i

∏
j

e(Si, Vj)
bqij ·

∏
j

e(M,Vj)
dqj = Zq.

Given two signatures (S1, . . .) and (S′1, . . .) on random messagesM andM ′ we see that
(S2

1/S
′
1, . . .) is a signature on M2/M ′. There is negligible probability of M2/M ′ ∈

{M,M ′} so this gives us an existential forgery.
Next, consider the case where signatures are of the form (T1, T2, . . .) with Tj ∈ H

and satisfy verification equations of the form∏
j

e(M,Tj)
cqj ·

∏
j

e(M,Vj)
dqj ·

∏
i

∏
j

e(Ui, Tj)
eqij = Zq.



A generic signer chooses (T1, . . .) independently ofM because they belong to different
groups. Generating the signature independently of M combined with correctness of the
signature scheme means that the resulting signature must be valid for all messages M
so it is trivial to find a selective forgery after a one-time random message attack. �

3.3 Impossibility of signatures with 2 group elements

Theorem 4. No generic-signer structure-preserving signature scheme with signatures
having two group elements is existentially unforgeable against random message attacks.

Proof. Theorem 3 ruled out the existence of unilateral generic-signer structure-preserving
signatures. The remaining question is therefore, whether we can have signatures of the
form (S, T ) with S ∈ G and T ∈ H. Suppose without loss of generality that we have a
generic-signer structure-preserving signature scheme for messages M ∈ G. The public
verification key contains U1, . . . ∈ G, V1, . . . ∈ H, Z1, . . . ∈ T and a signature (S, T )
on M satisfies a number of verification equations of the form

e(S, T )aq ·
∏
j

e(S, Vj)
bqj · e(M,T )cq ·

∏
j

e(M,Vj)
dqj ·

∏
i

e(Ui, T )
eqi = Zq.

Without loss of generality we may assume that the signer knows the discrete loga-
rithms of all the elements in the public verification key. Using generic group operations
it can only construct S = MαGβ and T = Hτ , where α, β, τ may be correlated to
each other and the public verification key but are independent of M . Taking discrete
logarithms of the verification equations, we get equations of the form

(αm+ β)τaq + (αm+ β)
∑
j

vjbqj +mτcq +m
∑
j

vjdqj + τ
∑
i

uieqi = zq.

The correctness of the signature scheme means that these equations are satisfied for any
choice of m. Defining bq =

∑
j vjbqj , dq =

∑
j vjdqj , eq =

∑
i uieqi this means that

the choice of α, β and τ must satisfy pairs of equations of the form

aqατ + bqα+ cqτ + dq = 0 aqβτ + bqβ + eqτ = zq.

By taking suitable non-trivial linear combinations of two such pairs of equations,
say equation q1 and q2, we can eliminate the ατ and βτ terms to get a pair of equations
of the form

bα+ cτ + d = 0 bβ + eτ = z.

If b = 0 and c 6= 0 or b = 0 and e 6= 0 we get a fixed τ and T = Hτ is uniquely
determined. This T can therefore without loss of generality be published as part of the
verification key making the signature scheme unilateral. Theorem 3 therefore tells us
that if b = 0 then c = 0 and e = 0. This implies d = 0 and z = 0 as well, and
we conclude that the two verification equations q1 and q2 are linearly related and one
of them can without loss of generality be eliminated from the signature scheme. From
Theorem 2 we deduce that there must be at least two verification equations that are not
linearly related giving a linear combination with b 6= 0.



If b 6= 0 we have

α = −c
b
τ − d

b
β = −e

b
τ +

z

b
.

Plugging them into the verification equations gives us equations of the form

−aq
c

b
τ2+(cq−aq

d

b
−bq

c

b
)τ = bq

d

b
−dq −aq

e

b
τ2+(eq+aq

z

b
−bq

e

b
)τ = −bq

z

b
+zq.

If one of the quadratic equations in τ is non-trivial then T can take at most two
possible values T0 or T1. After obtaining signatures on three random messages, two of
them would be using the same T . The adversary would thus have signatures (S, T ) and
(S′, T ) on messagesM andM ′ and this would give a signature (S2/S′, T ) onM2/M ′,
which with overwhelming probability gives an existential forgery.

If all the quadratic equations are trivial there are two possibilities. The first possi-
bility is that a1 = 0, a2 = 0, . . . but then

cq = bq
c

b
dq = bq

d

b
eq = bq

e

b
zq = bq

z

b

and it can be seen that all the verification equations are linearly related and can be
replaced with a single verification equation. Theorem 2 rules out this possibility. The
other possibility is that c = 0 and e = 0. This gives us

cq = aq
d

b
dq = bq

d

b
eq = −aq

z

b
zq = bq

z

b
α = −d

b
β =

z

b
.

Plugging S = MαGβ into the verification equations shows the verification equations
completely ignore T . With all verification equations ignoring T we are back in the
unilateral case that we ruled out in Theorem 3. �

4 Minimal structure-preserving signatures

We will now present a structure-preserving signature scheme that matches the lower
bounds we found in Section 3. The signature scheme is strongly existentially unforge-
able against adaptive chosen message attacks. We can simultaneously sign tuples of
messages in G and tuples of messages in H. A signature consists of three group ele-
ments and is verified using two verification equations.

Let us first discuss the case of signing a pair of group elements (M,N) ∈ G × H.
Working over a bilinear group (p,G,H,T, e,G,H) the verification key is of the form
(U, V,W,Z) ∈ G × H3. A signature on a message (M,N) ∈ G × H is of the form
(R,S, T ) ∈ G2 ×H and is verified by two verification equations

e(R, V )e(S,H)e(M,W ) = e(G,Z) e(R, T )e(U,N) = e(G,H).

It is instructive to look at the verification equations from a generic signer’s per-
spective in light of the same type of equations we used to prove the lower bounds in



Section 3. UsingR =MαGβ , S =MγGδ and T = N εHη we get after taking discrete
logarithms of the verification equations

(αm+ β)v + (γm+ δ) +mw = z (αm+ β)(εn+ η) + un = 1.

The signer does not know the discrete logarithms of M and N so the verification
equations should hold for all choices of m and n. The signer must therefore choose
α, β, γ, δ, ε, η ∈ Zp such that the following equations are satisfied

vα+γ+w = 0 βv+ δ = z αε = 0 αη = 0 βε+u = 0 βη = 1.

This gives six constraints on α, β, γ, δ, ε, η. An arbitrary pair of equations could in con-
trast give eight constraints on the six variables and might not be solvable. Furthermore,
if we pick α = 0 we are left with only four constrains

γ = −w βv + δ = z βε+ u = 0 βη = 1

on the five variables β, γ, δ, ε, η. This makes it possible to have many different solutions
to the equations and avoids R,S or T being constrained to a single fixed value, which
would bring us into conflict with the lower bounds from Section 3.

We extend the signature scheme sketched above in a natural way to sign messages
in GkM ×HkN . The full signature scheme can be found in Figure 1.

Key generation K(GK): Parse GK as (p,G,H,T, e, G,H).
Pick at random u1, . . . , ukN , v, w1, . . . , wkM , z ← Z∗p and compute

Ui = Gui V = Hv Wi = Hwi Z = Hz.

Return the verification key V K = (GK,U1, . . . , UkN , V,W1, . . . ,WkM , Z) and the
signing key SK = (V K, u1, . . . , ukN , v, w1, . . . , wkM , z).

Signing SSK(M1, . . . ,MkM , N1, . . . , NkN ):
Given (M1, . . . ,MkM , N1, . . . , NkN ) ∈ GkM ×HkM pick r ← Z∗p and compute

R = Gr S = Gz−rv
∏
i

M−wi
i T = (H

∏
i

N−ui
i )

1
r .

Return the signature (R,S, T ).
Verification VVK((M1, . . . ,MkM , N1, . . . , NkN ), (R,S, T )):

Accept if M1, . . . ,MkM , R, S ∈ G and N1, . . . , NkN , T ∈ H and

e(R, V )e(S,H)
∏
i

e(Mi,Wi) = e(G,Z) ∧ e(R, T )
∏
i

e(Ui, Ni) = e(G,H).

Fig. 1. Structure-preserving signature scheme for messages in GkM ×HkN .

Theorem 5. The signature scheme (K,S,V) described in Figure 1 is a structure-preserving
signature scheme over G that is strongly existentially unforgeable against adaptive cho-
sen message attacks in the generic group model.



Proof. The verification key, the messages and the signatures consist of group elements
in G and H and the verification consists of verifying two pairing product equations, so
it is a structure-preserving scheme. Correctness follows from verifying that

e(Gr, Hv)e(Gz−vr
∏
i

M−wi
i , H)

∏
i

e(Mi, H
wi) = e(G,Hz)

e(Gr, (H
∏
i

N−ui
i )

1
r )
∏
i

e(Gui , Ni) = e(G,H).

Lemma 1 shows that the signature scheme is secure in the generic group model for
kM = 1 and kN = 2. We will show that if the signature scheme is secure for kM = 1
and kN = 2, then the signature scheme is also secure when using arbitrary constants
kM ≥ 1 and kN ≥ 2. In the following we write (K,S,V) and (K′,S ′,V ′) to distinguish
between the two settings. We will show that if there is an adversary A′ that can break
(K′,S ′,V ′), then there is an adversary A that can break (K,S,V).

The adversary A gets as input a verification key V K = (GK,U1, U2, V,W1, Z). It
picks at random αi, βi ← Zp and γi, δi ← Zp and computes

U ′1 = Uγ11 U δ12 . . . U ′kN = U
γkN
1 U

δkN
2 W ′1 =Wα1

1 Hβ1 . . . W ′kM =W
αkM
1 HβkM .

It gives the verification key V K ′ = (GK,U ′1, . . . , U
′
kN
, V,W ′1, . . . ,W

′
kN
, Z) to A′.

Conditioned on the overwhelmingly likely event U ′i 6= 1 and W ′i 6= 1 this has the same
distribution as a normal key produced by (K′,S ′,V ′).

WhenA′ asks for a signature on (M ′1, . . . ,M
′
kM
, N ′1, . . . , N

′
kN

) ∈ GkM ×HkN the
adversary A computes

M =
∏
i

(M ′i)
αi N1 =

∏
i

(N ′i)
γi N2 =

∏
i

(N ′i)
δi .

It asks the signing oracle for a signature (R,S, T ) on (M,N1, N2). It then computes
S′ = S

∏
i(M

′
i)
−βi . It returns the signature (R,S′, T ) to A. It is straightforward to

verify that a valid signature is returned to A′. Furthermore, we observe that the re-
turned signature is uniformly random over all possible solutions to the two verification
equations just like a normal signature would be. It is therefore a good simulation.

SupposeA′ produces a signature (R′, S′, T ′) on some (M ′1, . . . ,M
′
kM
, N ′1, . . . , N

′
kN

)
satisfying the two verification equations using the key V K ′. A can translate that into a
valid signature (R′, S, T ′) on a message (M,N1, N2) using V K by computing

S = S′
∏
i

(M ′i)
βi M =

∏
i

(M ′i)
αi N1 =

∏
i

(N ′i)
γi N2 =

∏
i

(N ′i)
δ.

We now have a strong existential forgery unless (R′, S, T ′) has been used before in
some query q to sign a message (M (q), N

(q)
1 , N

(q)
2 ) = (M,N1, N2). That would give∏

i

(M ′i)
αi =

∏
i

(M
(q)′

i )αi

∏
i

(N ′i)
γi =

∏
i

(N
(q)′

i )γi .



Observe that αi and γi are information-theoretically hidden to A′ who only sees W ′i =
Wαi

1 Hβi and U ′i = Uγi1 U
δi
2 . Furthermore, no matter the values of αi, γi the adver-

sary gets uniformly random signatures as answer to the chosen message attacks, so
these signatures do not reveal anything about the αi’s and the γi’s either. The only
way the adversary can have more than negligible chance of success is by choosing
M ′1 = M

(q)′

1 , . . . ,M ′kM = M
(q)′

kM
, N ′1 = N

(q)′

1 , . . . , N ′kN = N
(q)′

kN
. This means A′ has

repeated the message from query q and some calculation shows that it has also repeated
the signature (R(q)′ , S(q)′ , T (q)′). We conclude that A′ has negligible chance of break-
ing the strong existential unforgeability against chosen message attacks on the signature
scheme with kM ≥ 1 and kN ≥ 2.

The remaining case to consider is kM = 0 or kN ∈ {0, 1}. Here it is easy to get
a secure signature scheme, because we can simply require that the signer always uses
M = 1 or N1 = 1 or N2 = 1, which can be checked in the verification step. Further-
more, when we always have M = 1 or N1 = 1 or N2 = 1 then the corresponding W1

or U1 or U2 is not needed in the verification key. �

Lemma 1. The signature scheme (K,S,V) described in Figure 1 is strongly existen-
tially unforgeable against adaptive chosen message attacks in the generic group model
for messages (M,N1, N2) ∈ G×H2.

Proof. Let us for ease of notation write W instead of W1 and U,U ′ instead of U1, U2.
We write (M,N,N ′) ∈ G × H2 for the messages we are signing. We consider an
adversary that only uses generic group operations on the group elements it sees and
is unaware of the random u, u′, v, w, z used in the public key and is unaware of the
randomness ri used to form the signature in signing query number i. Seeing signa-
tures (Ri, Si, Ti) on queries (Mi, Ni, N

′
i) the generic adversary is restricted to picking

ρ, ρu, ρu′ , ρ1, ρ
′
1, . . . , σ, σu, σu′ , σ1, σ

′
1, . . . , τ, τv, τw, τz, τ1, . . . ∈ Zp and computing

R = GρUρu(U ′)ρu′
∏
i

Rρii S
ρ′i
i , S = GσUσu(U ′)σu′

∏
i

Rσii S
σ′
i
i , T = HτV τvW τwZτz

∏
i

T τii .

The queries (Mi, Ni, N
′
i) are computed as products ofG,U,U ′, R1, S1, . . . , Ri−1, Si−1

and H,V,W,Z, T1, . . . , Ti−1 raised to exponents chosen by the adversary and the mes-
sage (M,N,N ′) for which a forgery is obtained is computed similarly. Taking discrete
logarithms we have

mi = linear combination of 1, u, u′, r1, s1, . . . , ri−1, si−1
m = linear combination of 1, u, u′, r1, s1, . . . , rq, sq

r = ρ+ ρuu+ ρu′u′ +
∑
i

ρiri +
∑
i

ρ′i(z − riv −miw)

s = σ + σuu+ σu′u′ +
∑
i

σiri +
∑
i

σ′i(z − riv −miw)

ni, n
′
i = linear combination of 1, v, w, z, t1, . . . , ti−1

n, n′ = linear combination of 1, v, w, z, t1, . . . , tq

t = τ + τvv + τww + τzz +
∑
i

τi
1− uni − u′n′i

ri



We first consider elements formal polynomials in the variables u, u′, v, w, z, r1, . . . , rq
and show that the generic adversary cannot make an existential forgery when they are
viewed as formal multi-variate polynomials. Later, we will then consider the risk of two
different formal polynomials resulting in identical values when evaluated over concrete
random choices of u, u′, v, w, z, r1, . . . , rq ∈ Z∗p.

Taking discrete logarithms of the first verification equation gives us rv+s+mw =
z, which means

0 = ρv + ρuuv + ρu′u′v +
∑
i

ρiriv +
∑
i

ρ′i(vz − riv2 −mivw)

+ σ + σuu+ σu′u′ +
∑
i

σiri +
∑
i

σ′i(z − riv −miw) +mw − z.

Since si = z−riv−miw we have thatm1, . . . ,mq andm are multi-variate polynomials
in u, u′, v, w, z, r1, . . . , rq . Eachmi has degree at most i andm has degree at most q+1.

Looking at the coefficients for 1, u, u′, ri we see that σ = 0, σu = 0, σu′ = 0
and σi = 0 giving us s =

∑
i σ
′
i(z − riv − miw). Looking at the coefficients for

v, uv, u′v, riv
2 we get ρ = 0, ρu = 0, ρu′ = 0, ρ′i = 0 giving us r =

∑
i ρiri. The

coefficients for riv give us σ′i = ρi so s =
∑
i ρi(z − riv −miv).

Switching to the second verification equation we have rt+ un+ u′n′ = 1. Define
π =

∏
i ri and πj =

∏
i 6=j ri such that π = πjrj . Multiplying the equation on both

sides with π we get rtπ + unπ + u′n′π = π so

0 =

(∑
i

ρiri

)τπ + τvvπ + τwwπ + τzzπ +
∑
j

τj(πj − unjπj − u′n′jπj)


+unπ + u′n′π − π.

Observe, n1, n′1, . . . , nq, n
′
q, n, n

′ are polynomials in u, u′, v, w, z, r−11 , . . . , r−1q . Each
r−1i has at most degree 1 and a closer inspection reveals that n1π1, n′1π1, . . . , nqπq, n

′
qπq

and nπ, n′π are polynomials in u, u′, v, w, z, r1, . . . , rq of degree at most q + 1.
Looking at the coefficients for π we see that there must exist some ` such that

ρ` 6= 0 and τ` 6= 0. Looking at the coefficients for r`π, r`vπ, r`wπ, r`zπ we see that
τ = 0, τv = 0, τw = 0, τz = 0. Looking at the coefficients for r`πj we see that τj = 0
for j 6= `. Looking at the coefficients for riπ` we see that ρi = 0 for i 6= `. This means
r = ρ`r` and t = τ`

1−un`−u′n′
`

r`
. We now have

ρ`r` · τ`
1− un` − u′n′`

r`
π − unπ − π = 0.

From the coefficient of π we deduce that τ` = 1
ρ`

. The equation now reads

π − un`π − u′n′`π + unπ + u′n′π − π = 0,

which implies un`π + u′n`′π = unπ + u′n′`π. Plugging in all the possible linear

combinations of 1, v, w, z, 1−un1−u′n′
1

r1
, . . . ,

1−unq−u′n′
q

rq
that can make n, n′, n`, n′` in

this equation, we get n = n` and n′ = n′`.



Going back to the first equation we now have r = ρ`r` and therefore s = ρ`(z −
r`v −m`v), which gives us the equality

ρ`r`v + ρ`(z − r`v −m`v) +mv − z = 0.

Looking at the coefficient of z we conclude ρ` = 1. That tells us m = m`. The adver-
sary has therefore reused m = m` and n = n`, n

′ = n′` for some ` and not obtained
an existential forgery. Furthermore, r = r`, s = s`, t = t` so the adversary cannot even
find a new signature on the same message.

We have now seen that the adversary cannot make an existential forgery when view-
ing group elements as formal multi-variate polynomials. However, it may be the case
that for concrete choices of variables, two formally different polynomials evaluate to
the same value. In this case, we cannot simulate the generic group and it may be that
the adversary can make an existential forgery. The verification equations can be eval-
uated using generic group operations, so without loss of generality we can assume the
adversary knows it when it has made a successful forgery. Since the polynomials have
degree O(q) we get with a birthday paradox argument and the Schwartz-Zippel lemma
that the probability of this type of error occurring in the generic group simulation is a
negligible O( q

3

p ) when the adversary makes O(q) generic group operations. �

5 Other aspects of structure-preserving signatures

5.1 Strong one-time signatures based on standard assumptions

We present below a strong one-time signature scheme for messages from GkM ×HkN
with signature size 5 group elements. If the message is one-sided, i.e., (M1, . . . ,MkM ) ∈
GkM , there is a simpler signature with 2 group elements and a single verification equa-
tion e(R,H)e(S, V )

∏
i e(Mi, Vi) = e(G,W ) [AHO10]. These schemes complement

the lower bounds in Section 3 where it was shown that structure-preserving signature
schemes with a single verification equation or with unilateral signatures or with sig-
natures with less than 3 group elements do not exist if the adversary gets access to
signatures on two random messages.

Key generation K(GK): Parse GK as (p,G,H,T, e,G,H).
Pick w, u, u1, . . . , ukN , v, z, v1, . . . , vkM ← Z∗p at random and compute

W = Hw, U = Gu, U1 = Gu1 , . . . , UkN = GukN , and
Z = Hz, V = Hv, V1 = Hv1 , . . . , VkM = HvkM .

Return verification key V K = (GK,U,U1, . . . , UkN , V, Z, V1, . . . , VkM ,W ) and
signing key SK = (V K,w, u, u1, . . . , ukN , v, z, v1, . . . , vkM ).

Signing SSK(M1, . . . ,MkM , N1, . . . , NkN ): Given (M1, . . . ,MkM , N1, . . . , NkN ) ∈
GkM ×HkN pick at random s1, s2, t← Z∗p and compute

T = Gt, S2 = Hs2 , R2 = HtS−u2

∏
i

N−ui
i

S1 = Gs1 , R1 = GwS−v1 T−z
∏
i

M−vii



Verification VV K((M1, . . . ,MkM , N1, . . . , NkN ), (R1, S1, T,R2, S2)):
Accept if M1, . . . ,MkM , R1, S1, T ∈ G and N1, . . . , NkN , R2, S2 ∈ H and

e(R1, H)e(S1, V )e(T,Z)
∏
i

e(Mi, Vi) = e(G,W ) ∧

e(G,R2)e(U, S2)
∏
i

e(Ui, Ni) = e(T,H)

Theorem 6 (Full paper). The signature scheme is strongly existentially unforgeable
against one-time chosen message attacks if the DDH assumption holds in G and H.

5.2 Non-interactive assumptions

The existential unforgeability of our signature scheme in Figure 1 against adaptive cho-
sen message attacks corresponds to an interactive cryptographic assumption. It would
be nice to base the security of the signature scheme on a non-interactive assumption but
we do not know of any such security reduction.

By adding a few group elements to the signature it is possible to base the signature
scheme on a non-interactive cryptographic assumption though. Consider the following
variant of the signature scheme in Figure 1, where the signer picks M1 ← G and
N1, N2 ← H at random when making signatures. In other words, we can sign messages
of the form (M2, . . . ,MkM , N3, . . . , NkN ) ∈ GkM−1×HkN−2 and a signature consists
of (R,S,M1, T,N1, N2) ∈ G3 ×H3, which is verified by the verification equations

e(R, V )e(S,H)
∏
i

e(Mi,Wi) = e(G,Z) and e(R, T )
∏
i

e(Ui, Ni) = e(G,H).

The signature scheme is strongly existentially unforgeable against adaptive chosen mes-
sage attacks if the following non-interactive assumption holds for G, which essentially
says the signature scheme (K,S,V) from Figure 1 is strongly existentially unforgeable
against random message attacks for message space G×H2.

Assumption 1 Given a random bilinear group (p,G,H,T, e,G,H)← G(1k) and uni-
formly random group elements (U, Û , V,W,Z) ∈ G2 × H3 and uniformly random
(R1, S1,M1, T1, N1, N̂1), . . . , (Rq, Sq,Mq, Tq, Nq, N̂q) ∈ G3 ×H3 such that

e(Rj , V )e(Sj , H)e(Mj ,W ) = e(G,Z) and e(Rj , Tj)e(U,Nj)e(Û , N̂j) = e(G,H)

a non-uniform polynomial time adversary has negligible probability of finding a differ-
ent tuple (R,S,M, T,N, N̂) ∈ G3 ×H3 satisfying the two pairing product equations.

Lemma 1 implies that Assumption 1 holds in the generic group model. Actually, a
careful analysis of the proof of Lemma 1 shows that a generic adversary using O(q)

group operations has probability O( q
2

p ) of breaking Assumption 1.

Theorem 7 (Full paper). If Assumption 1 holds, then the signature scheme (K,S,V)
in Figure 1 is strongly existentially unforgeable against adaptive chosen message at-
tacks when the signer always chooses M1 ← G and N1, N2 ← H at random.



The signature scheme we just described has signatures consisting of 6 group elements.
By setting U1 = 1, . . . , UkN = 1 and droppingN1 andN2 from a signature, the scheme
can be used to sign messages of the form (M2, . . . ,MkM ) ∈ GkM−1 using only 4 group
elements. This variant is secure under a related non-interactive assumption.

5.3 Rerandomizable signatures

The signature scheme in Figure 1 is strongly existentially unforgeable, so it is not pos-
sible even to forge a new signature on a message that has already been signed before.
In some cases strong existential unforgeability is a useful feature, while in other cases
standard existential unforgeability suffices. In this section, we present a rerandomizable
signature scheme where a signature can be modified into a different signature for the
same message. Rerandomizability may for instance be useful in settings where the sig-
nature has to be hidden. One might choose to hide the signature by encrypting it but
if the signature is rerandomizable it may be possible to send part of the rerandomized
signature in the clear. An additional advantage of the rerandomizable signature scheme
we are about to present is that after rerandomization we may only need to hide ele-
ments in one of the groups H. This makes it possible to use special purpose variants of
Groth-Sahai proofs (they refer to it as the linear case) that are particularly efficient.

We do not know how to construct a rerandomizable signature scheme with 3 group
elements that can simultaneously sign messages both in G and H. But by settingWi = 1
and Z = 1 in the signature scheme in Figure 1 we get an efficient rerandomizable
signature scheme for messages containing group elements in H. The full description of
our rerandomizable signature scheme can be found below.

Key generator K(GK): Parse GK as (p,G,H,T, e,G,H).
Pick at random u1, . . . , ukN , v ← Z∗p and compute

U1 = Gu1 . . . UkN = GukN V = Hv.

Return V K = (GK,U1, . . . , UkN , V ) and SK = (V K, u1, . . . , ukN , v).
Signing SSK(N1, . . . , NkN ): Given (N1, . . . , NkN ) ∈ HkN pick r ← Z∗p and set

R = Gr S = Rv T = (H
∏
i

N−ui
i )

1
r .

Rerandomization RV K(R,S, T ) :

Pick r′ ← Z∗p and return the rerandomized signature (R′, S′, T ′) = (Rr
′
, Sr

′
, T

1
r′ ).

Verification VV K((N1, . . . , NkN ), (R,S, T )):
Accept if R,S ∈ G and N1, . . . , NkN , T ∈ H and

e(R, V ) = e(S,H) ∧ e(R, T )
∏
i

e(Ui, Ni) = e(G,H).

Theorem 8 (Full paper). The signature scheme (K,S,V) over G described above is a
rerandomizable structure-preserving signature scheme that is existentially unforgeable
against adaptive chosen message attacks in the generic group model.
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