
Round Optimal Blind Signatures

Sanjam Garg1, Vanishree Rao1, Amit Sahai1, Dominique Schröder?2, and
Dominique Unruh3

1 University of California, Los Angeles, USA
2 University of Maryland, USA
3 University of Tartu, Estonia

Abstract. Constructing round-optimal blind signatures in the standard
model has been a long standing open problem. In particular, Fischlin and
Schröder recently ruled out a large class of three-move blind signatures
in the standard model (Eurocrypt’10). In particular, their result shows
that finding security proofs for the well-known blind signature schemes by
Chaum, and by Pointcheval and Stern in the standard model via black-box
reductions is hard. In this work we propose the first round-optimal, i.e.,
two-move, blind signature scheme in the standard model (i.e., without
assuming random oracles or the existence of a common reference string).
Our scheme relies on the Decisional Diffie Hellman assumption and the
existence of sub-exponentially hard 1-to-1 one way functions. This scheme
is also secure in the concurrent setting.

1 Introduction

Blind signature schemes [13,14] provide the functionality of a carbon copy enve-
lope: The user (receiver), puts his message into this envelope and hands it over
to the signer (sender). The signer in return signs the envelope and gives it back
to the user who uses the signed enelope to recover the original message together
with a signature on it. The notion of security in this context entails (1) that the
signer remains oblivious about the message (blindness), but at the same time,
(2) the receiver cannot forge signatures for fresh messages (unforgeability).

Blind signatures are an important primitive, whose classical applications
include e-cash, e-voting, and anonymous credentials [9,10,8]. Moreover, oblivious
transfer can be built from unique blind signatures [12,17]. The several known in-
stantiations of blind signature schemes are based on security assumptions either in
the random oracle model [35,2,6,7,5,37], or in the standard model [11,33,24,28,3].
Constructions based on general assumptions are also known [25,16,23,17].

One central measure of efficiency in these schemes is the round complexity
of the signing protocol. This has been an explicit problem for at least a decade,
since the work of Abe [2]. Currently, the best known blind signature scheme in
terms of the round complexity in the standard model is due to Okamoto [33].
This scheme has four rounds.

? Supported in part by a DAAD postdoctoral fellowship.



All round optimal solutions (the user sends a single message to the signer and
gets a single response) rely either on the random oracle heuristic [14,7], or they
require a common reference string [16,3,22,31,5,4,19,27], and some instantiations
even prove their security under an interactive assumption [6,7,22].

Many interesting impossibility results ruling out the existence of secure blind
signatures have also been proposed. Most prominently, Fischlin and Schröder [18]
provide a very general impossibility result for a large class of blind signature
schemes. In their result, they rule out signing protocols of less than four rounds,
but under some natural technical conditions on the protocols (motivated by
existing blind signature schemes). Interestingly, most of the round optimal blind
signature schemes known today have these properties [14,7,16]. In particular, this
means that there is not much hope to instantiate one of the known schemes under
weaker assumptions. Furthermore, Katz, Schröder and Yerukhimovich [26] rule out
black-box constructions of blind signature schemes from one-way permutations.
In light of these result, it seems clear that significant new ideas would be needed
to construct round-optimal blind signatures.

Concurrently secure blind signature schemes. Another reason why round
optimal blind signature schemes are desirable is that a solution would be concur-
rently secure. Concurrently secure blind signature schemes, however, are difficult
to obtain. Juels, Luby, and Ostrovsky [25] explained why a straight forward ap-
proach does not work. The authors present a solution that is, according to Hazay
et al. [23], only secure in the sequential setting. The reason is that the solution
seems to require a concurrently secure protocol for two-party computation. Such
a protocol, however, is a mayor open problem in the standard model [23].

Obtaining a concurrently secure protocol under simulation-based definition
via black-box proofs is impossible as shown by Lindell [29]. Previous protocols
overcome this impossibility result by assuming a common reference string and by
relying on game-based definitions. The only exception is the protocol of Hazay et
al. [23] that does not need a CRS. The authors build a blind signature scheme
that uses the concurrent zero-knowledge protocol of Prabhakaran, Rosen, and
Sahai [36] that has an (almost) logarithmic round complexity as a building block.

1.1 Our Contribution

In this work we give the first round-optimal, i.e., two-move, blind signature
scheme in the standard model. Our scheme is also secure in the concurrent
setting. This follows directly from the fact that any two round blind signature
schemes is concurrently secure, as observed by [23]. In contrast to prior schemes,
our solution does not need any setup assumption such as a common reference
string.

This result is especially surprising in light of the recent impossibility result
of Fischlin and Schröder [18]. They provide a very general impossibility result
that rules out a large class of three (or less than three) round blind signature
schemes in the setting of both statistical blindness and computational blindness.
Specifically, they investigate the possibility of instantiating random oracles in



the schemes by Chaum [13] and by Pointcheval and Stern [35], and of giving
a security proof based only on standard assumptions. Therefore, in order to
make their Cproblem tractable they restrict themselves to those blind signature
schemes which satisfy a few technical conditions which encompass most4 known
blind signature schemes. One of these conditions is that the reduction in the
unforgeability proof needs to be efficient (since the reduction is transformed into
an adversary against the blindness game). In fact, this is precisely the technical
condition that we avoid in our scheme and overcome the impossibility result. We
note that our scheme relies on the Decision Diffie Hellman (DDH) assumption5

and the existence of sub-exponentially hard 1-to-1 one way functions. Further,
we stress that our result is only a feasibility result, and it is not as efficient as
the earlier constructions. However, our work opens doors to the possibility of
constructing efficient round-optimal blind signature schemes in the standard
model.

Besides being interesting in its own right, our construction is an example
of a scenario in which known impossibility results for concurrently-secure 2-
party computation [29,30] can be avoided to achieve meaningful game-based
security definitions. Finally, we note that in a recent result Pass [34] rules out the
existence of unique blind signatures using super-polynomial reductions, as long
as the blindness property holds for appropriately strong adversaries. In our case
blindness holds against polynomial time adversaries only and hence our result is
in some tight with respect this impossibility result.

The results presented in this paper are a merge between the following two
publications [38,20].

Notations. Before presenting our results we briefly recall some basic definitions.
In what follows we denote by λ ∈ N the security parameter. We say that a
function is negligible if it vanishes faster than the inverse of any polynomial. A
function is non-negligible if it is not negligible. If S is a set, then x← S indicates
that x is chosen uniformly at random over S (which in particular assumes that S
can be sampled efficiently). We write A(x;X) to indicate that A is an algorithm
that takes as input a value x and uses randomness X. In general, we use capital
letters for the randomness. W.l.o.g. we assume that X has bit length λ.

2 Blind Signatures and Their Security

By (a, b) ← 〈X (x),Y(y)〉 we denote interactive execution of algorithms X and
Y, where x (resp., y) is the private input of X (resp., Y), and a (resp., b) is the
private output of X (resp., Y). We write X 〈·,Y〉∞ for X with oracle access two
arbitrarily many interactions with Y. And X 〈·,Y〉1 for X with oracle access two
arbitrarily a single interaction with Y.
4 Known blind signature schemes can indeed be modified in rather unnatural ways to
construct blind signature schemes that do not satisfy their conditions.

5 We also need a ZAP (a two round witness indistinguishable proof system) which
can be constructed under the DDH assumption. We note that ZAPs can in fact be
constructed from any one-way trapdoor permutation.



Experiment UnforgeBSU∗(λ)
(sk, vk)← Gen(1λ)

((m∗1, σ
∗
1), . . . , (m

∗
k+1, σ

∗
k+1))← U∗〈S(sk),·〉∞(vk)

Return 1 iff
m∗i 6= m∗j for all i, j with i 6= j, and
Vrfy(vk,m∗i , σ∗i ) = 1 for all i, and
at most k interactions with S(sk)

were completed.

Experiment UnblindBSS∗(λ)
(vk,m0,m1, stfind)← S∗(find, 1λ)
b← {0, 1}
stissue ← S∗〈·,U(vk,mb)〉1,〈·,U(vk,mb̄)〉1(issue, stfind)

and let σb, σb̄ denote the
(possibly undefined) local outputs

of U(vk,mb) resp. U(vk,mb̄).
set (σ0, σ1) = (⊥,⊥) if σ0 = ⊥ or σ1 = ⊥
b∗ ← S∗(guess, σ0, σ1, stissue)
return 1 iff b = b∗.

Fig. 1. Security games of blind signatures.

Definition 1. A blind signature scheme BS consists of PPT algorithms Gen,Vrfy
along with interactive PPT algorithms S,U such that for any λ ∈ N:

– Gen(1λ) generates a key pair (sk, vk).
– The joint execution of S(sk) and U(vk,m), where m ∈ {0, 1}λ, generates

an output σ for the user and no output for the signer. We write this as
(⊥, σ)← 〈S(sk),U(vk,m)〉.

– Algorithm Vrfy(vk,m, σ) outputs a bit b.

We require completeness i.e., for any m ∈ {0, 1}λ, and for (sk, vk) ← Gen(1λ),
and σ output by U in the joint execution of S(sk) and U(vk,m), it holds that
Vrfy(vk,m, σ) = 1 with overwhelming probability in λ ∈ N.

Note that it is always possible to sign messages of arbitrary length by applying a
collision-resistant hash function to the message prior to signing.

Blind signatures must satisfy two properties: unforgeability and blindness [25,35].
Notice that we can also achieve the stronger definition of unforgeability from [39]
by applying their transformation which does not increase the round complexity.

For unforgeability we require that a user who runs k executions of the
signature-issuing protocol should be unable to output k + 1 valid signatures on
k + 1 distinct messages.

Definition 2. A blind signature scheme BS = (Gen, S, U , Vrfy) is unforgeable if
for any PPT algorithm U∗ the probability that experiment UnforgeBSU∗(λ) defined
in Figure 1 evaluates to 1 is negligible (as a function of λ).

Blindness says that it should be infeasible for a malicious signer S∗ to decide
which of two messages m0 and m1 has been signed first in two executions with an
honest user U . This condition must hold, even if S∗ is allowed to choose the public
key maliciously [1]. If one of these executions has returned an invalid signature,
denoted by ⊥, then the signer is not informed about the other signature either.

Definition 3. A blind signature scheme BS = (Gen,S,U ,Vrfy) satisfies blindness
if for any efficient algorithm S∗ (working in modes find, issue, and guess) the
probability that experiment UnblindBSS∗(λ) defined in Figure 1 evaluates to 1 is
negligibly bigger than 1/2.

A blind signature scheme is secure if it is unforgeable and blind.



3 Towards a Secure Construction

A central idea behind our work is to adapt techniques from secure two-party
computation, despite the fact that we cannot achieve the traditional notions
of secure two-party computation in the standard model with only 2 rounds.
Indeed, unfortunately, very few two round protocol techniques are known at all.6
The high-level idea of our construction is as follows: We employ a two-move
secure function evaluation (SFE) protocol to let the signer and user compute a
signature on a message chosen by the user. Using Yao’s garbled circuits together
with Naor-Pinkas OT [32], we get a two-move SFE protocol with the following
properties: The user sends the first message, the signer replies, and only the user
gets output. The user’s input stays secret even in the case of an active malicious
signer (as the user does not send any responses to the signer’s messages, an
active signer is no more powerful than a passive one). The signer’s input stays
secure against active malicious users. The correctness of the protocol’s output is
guaranteed against active users and against passive signers.

If we use this SFE protocol for signing, we face the following two problems:
(a) Although the signer does not learn the user’s inputs, he could cheat in

the SFE to make the signatures output by the two users in the blindness
game depend on the message in different ways. Even if the SFE would have
correctness against active signers, such cheating would still be possible by
using different signing keys or randomnesses in the two interactions.

(b) To prove unforgeability of the blind signature scheme, we have to reduce
it to the unforgeability of the underlying non-interactive signature scheme.
To do so, we need to extract the messages sent by the user in order to feed
them into a signing oracle. But in a two-round SFE protocol, we cannot use
rewinding to extract the message.

To solve (a), we let the signer commit, as part of his public verification key, to
the secret key, and to a random seed to be used when signing. In order to force
the signer to actually use that key and randomness, we would like to use a zero-
knowledge proof that the SFE was performed correctly and with the right inputs.
Unfortunately, two-move zero-knowledge proofs do not exist in the standard
model (without CRS). However, there are two-move witness indistinguishable
proofs, so-called ZAPs. As these are not zero-knowledge, we cannot use them
directly (witness indistinguishable proofs might still leak, e.g., the signing key). To
make the ZAP “almost zero-knowledge”, we introduce a trapdoor: We introduce
the possibility of producing a fake proof by using the preimage under some
one-way function of a value chosen by the user. A complexity-leveraged simulator
can then use this trapdoor, and we can show that the ZAP does not reveal too
much.

The solve (b), we again use complexity leveraging: Our SFE protocol only has
computational security for the user, so the signer can extract the message m to

6 We do know of two round witness indistinguishable protocols (ZAPs), which will be
useful for us. But as we will see later, ZAPs by themselves are not sufficient for our
purposes.



be signed in superpolynomial time T . Thus, we can transform the unforgeability
game into one where the signer extracts m, sends it to a signing oracle, and
re-inserts the resulting signature back into the SFE. This allows to reduce the
unforgeability of the blind signature scheme against the unforgeability of the
underlying non-interactive signature scheme. Note however, that the underlying
scheme needs to be secure against T -time adversaries in this reduction. Also,
standard properties of SFE do not seem to allow us to perform such an extraction
and re-insertion. Thus, we define a new property called Alice-extraction-privacy
for this purpose; fortunately, Yao’s garbled circuits using Naor-Pinkas OTs have
this property.

4 Required Primitives

Before presenting our generic construction, we review the required primitives.
Most definitions are standard, except that in some cases we require security
against superpolynomial adversaries. In these cases we write, e.g., T -one-wayness
and mean one-wayness against adversaries running in time T · poly(λ). We
will now review those primitives and security definitions that are not standard.
Complete definitions are given in the full version [21].

ZAPs. A ZAP [15] is a two-round witness-indistinguishable proof system. That
is, a ZAP for a language L consists of a prover P and a verifier V. The first
invocation of V(1λ) is independent of the statement to be proven and outputs a
message msg. Given that message, the prover P(1λ,msg, s, w) outputs a proof
π for statement s with witness w. Finally the verifier V(msg, s, π) checks the
proof π. Notice that this verification only uses msg but no private state from
the first invocation of V. In particular, the prover can check on his own whether
verification succeeds.

Two-party-computation. We will need a two-move two-party secure function
evaluation protocol. Syntactically, such a protocol is described by three PPT
algorithms SFE1,SFE2,SFE3. The intended use is as follows: Assume that Alice
holds a circuit C and Bob holds an input m to that circuit. Then Bob first
computes (sfe1, sfest)← SFE1(1

λ,m) and sends sfe1 to Alice (sfest is Bob’s state).
Then Alice computes sfe2 ← SFE2(1

λ, sfe1, C) and sends sfe2 to Bob. Finally,
Bob computes the result σ of the computation via σ ← SFE3(1

λ, sfe2, sfest). We
require two standard properties, perfect completeness (an honest execution gives
the right result with probability 1) and Bob-privacy (from Alice’s point of view,
different Bob-inputs are computationally indistinguishable). We also require one
non-standard property for Alice’s security:

Instead of requiring that Bob does not learn anything about the circuit C
except for C(m), we require the following: If Alice knows m (which we model by
a superpolynomial-time extraction algorithm SFEExt), then instead of applying
SFE2 with circuit C, she can instead compute σ := C(m) directly and hardcode
the result into the function evaluation using a function SFEFake2. (This property
will be needed so that we can outsource the evaluation of C to a signing oracle
later in our proofs.)



Definition 4 (Non-uniform T -Alice-extraction-privacy). There is a (T ·
poly(λ))-time probabilistic algorithm SFEExt and a polynomial-time algorithm
SFEFake2 such that the following holds:

For an adversary A, consider the following experiments:

Experiment 1
(sfe1, C, sfest)← A(1λ)

sfe2 ← SFE2(1
λ, sfe1, C)

b← A(sfe2, sfest)

Experiment 2
(sfe1, C, sfest)← A(1λ)
m← SFEExt(1λ, sfe1)
σ ← C(m)
sfe2 ← SFEFake2(1

λ, sfe1, σ)
b← A(sfe2, sfest)

Then for any PPT A, |Pr[b = 1 : Experiment 1]− Pr[b = 1 : Experiment 2]| is
negligible in λ.

In the fullversion [21], we show that Yao’s garbled circuits using Naor-Pinkas
OTs [32] satisfies these conditions for any T such that the DDH problem can be
decided in time T .

5 Construction and Security Proofs

In this section, we present our construction and show its security.

5.1 Construction

We proceed to define our blind signature scheme. Fix superpolynomial functions
T and T ′ with T ′ < T . In our construction, we assume a one-way function f ,
a pseudorandom function F , commitment schemes CR, CX , a signature scheme
Sig = (SigGen,Sign,SigVrfy), a ZAP Z = (P,V), and a two-message two-party
secure function evaluation protocol (SFE1,SFE2,SFE3). We then define the blind
signature scheme (Gen,S,U ,Vrfy) as follows:

Key Generation. Gen(1λ) peforms the following steps:
- R,S, T ← {0, 1}λ
- (ssk, svk)← SigGen(1λ;S)
- comR ← ComR((R, ssk);T )
- set sk← (svk, ssk, R, S, T ) and vk← (svk, comR)

Signing. The signature issue protocol between the signer S and the user U is
as follows:
– U generates the first message of the SFE protocol (sfe1, sfest)← SFE1(1

λ,m)
and the challenge msg ← V(1λ) for the ZAP Z. It picks x ← {0, 1}λ
uniformly at random, sets y ← f(x), and sends (sfe1,msg, y) to S.

– S receives (sfe1,msg, y) from the user. If y is not a valid image of f ,
then S sends ⊥. Otherwise, denote by Cssk,R(m) the circuit computing
Sign(ssk,m;FR(m)). The signer S picks two random values V,X each of
bit length λ, it computes sfe2 ← SFE2(1

λ, sfe1, Cssk,R;V ) and comx ←



Signer S(sk) User U(vk,m)

parse sk = (svk, ssk, R, S, T ) parse vk = (svk, comR)

// first message (sfe1, sfest)← SFE1(1
λ,m)

of the SFE

//generate the challenge x← {0, 1}λ, y ← f(x)

for the ZAP msg← V(1λ)

if y ∈ image(f), then
(sfe1,msg, y)

←−−−−−−−−−−−−−−−−−−
V,X ← {0, 1}λ
sfe2 ← SFE2(1

λ, sfe1, Cssk,R;V ) //sign the message
comx ← ComX(0λ;X)
s← (svk, comR, sfe1, sfe2, comx, y)
w ← (R,S, T, V, ssk)
π ← P(msg, s, w)

else sfe2, comx, π ← ⊥
(sfe2, comx, π)−−−−−−−−−−−−−−−−−−→ s← (svk, comR, sfe1,

sfe2, comx, y)
if V(msg, s, π) = 1

σ ← SFE3(1
λ, sfe2, sfest)

output σ

Fig. 2. Issue protocol of the two move blind signature scheme.

ComX(0λ;X). Then, it generates a proof π (with respect to msg) for the
statement (svk, comR, sfe1, sfe2, comx, y) ∈ L, where L contains tuples for
which there exists either a witness ω1 = (R,S, T, V, ssk) such that:

sfe2 = SFE2(1
λ, sfe1, Cssk,R;V )

∧
comR = ComR((R, ssk);T )

∧
(ssk, svk) = SigGen(1λ;S)

or there exists a witness ω2 = (x,X) such that

comx = ComX(x;X)
∧
f(x) = y.

S then sends (sfe2, comx, π) to U .
– U verifies that π is a valid proof for the statement (svk, comR, sfe1, sfe2,

comx, y) ∈ L with respect tomsg and the ZAP Z. If this proof fails, then U
outputs ⊥. Otherwise, it computes the signature σ ← SFE3(1

λ, sfe2, sfest)
and outputs σ.

Verification. Vrfy(vk, σ,m) returns SigVrfy(svk, σ,m).

5.2 Security

Theorem 5. Assume that Sig is complete; (SFE1,SFE2,SFE3) is correct; CR, CX
are complete; and Z = (P,V) is complete. Then the protocol from Section 5.1 is
complete.



Theorem 6. Assume that f is invertible in time T and has efficiently decidable
images; F is a T -pseudorandom function; (SFE1,SFE2,SFE3) is non-uniformly
T -Alice-extraction-private; Sig is T -unforgeable; CR is T -hiding; CX is non-
uniformly hiding; the ZAP Z = (P,V) is non-uniformly computationally witness-
indistinguishable.

Then the blind signature scheme from Section 5.1 is unforgeable.

Theorem 7. Assume that f is T ′-one-way; (SFE1,SFE2,SFE3) is perfectly cor-
rect and has Bob-privacy; CR, CX are perfectly binding; CX is T -extractable; ZAP
Z = (P,V) is adaptively sound.

Then the scheme from Section 5.1 is blind.

Theorem 5 is immediate from the construction of the protocol, and Theorems 6
and 7 will be shown in the next section.

Instantiating the primitives. The primitives needed in our construction (see
Theorems 5, 6, and 7) can be instantiated if the DDH problem is non-uniformly
hard, and if subexponentially-hard7 1-1 one-way functions with efficiently de-
cidable range exist: Given the one-way functions, we can construct a perfectly
hiding non-uniformly T -hiding commitment CR, a T -unforgeable signature scheme
Sig, and a T -pseudorandom function (for some T ∈ 2η

Ω(1)

). By scaling of the
security parameter (such that the used randomness is < log T ), we can produce
a T -extractable non-uniformly commitment CR. By similar rescaling, we get a
T ′-one-way T -time invertible one-way function f . Non-uniform ZAPs can be
instantiated from non-uniform DDH [15]. Finally, (SFE1,SFE2,SFE3) can be
instantiated given non-uniform one-way functions (for Yao’s circuits) and DDH
(for Naor-Pinkas OT), see the full version [21], as long as the underlying DDH
can be broken in time T . This can again be achieved by rescaling the security
parameter.

5.3 Security Proofs

Proof of Unforgeability. The proof idea is the following. We start with a
game that corresponds to the unforgeability game of blind signatures and we
then gradually change this game such that at the end we can build an adversary
against the unforgeability of the underlying signature scheme. The main steps of
the proof are the following:

– We apply a complexity leveraging argument. This technique allows us to
extract the messagem out of the first message of the secure function evaluation
protocol. We also use this technique in order to invert the one-way function
f and obtain f−1(y).

– We use the external signing oracle in the unforgeability game of the underlying
signature scheme to sign the message m.

7 By subexponentially-hard, we mean that a function T ∈ 2η
Ω(1)

exist, such that the
primitive is hard against T -time adversaries.



– Instead of computing the second message of the SFE protocol honestly, we
use the SFEFake2 algorithm. These modifications do not change the success
probability of the adversary (against the unforgeability of the blind signature
scheme) because:
• the SFE protocol is extraction-private and thus, the attacker cannot tell

the difference;
• the ZAP remains valid as it now uses the previously computed preimage
x of f as a witness.

Due to the complexity leveraging, we have to be careful which primitives need
superpolynomial-hardness and which do not. In some cases, non-uniform security
turns out to be sufficient, even though we use the security of a primitive in a
game involving superpolynomial computations.

Proof (of Theorem 6). Assume towards contradiction that the construction from
Section 5.1 is not unforgeable. Then there exists a PPT algorithm U∗ that outputs
(`+ 1) message/signature pairs (mi, σi) after ` executions of the signature issue
protocols. This adversary wins if all messages are distinct and all signatures verify
under vk. Now, consider the following sequence of games, where the first game
Game-0 is the unforgeability game in which we run the game with the forger U∗.
Within all games, the first digit of the line numbers is the number of the game
(i.e., line 107 in Game-1 corresponds to 007 in Game-0).

Game-0
000 R,S, T, Vi, Xi ← {0, 1}λ
001 (ssk, svk)← SigGen(1λ;S)
002 comR ← . . .
003 st0 ← U∗(svk, comR)
004 for i = 1, . . . , `
005 (sfe1,i,msgi, yi)← U∗(sti−1)
006 if yi ∈ image(f) then
007 sfe2,i ← SFE2,i(1

λ, sfe1,i, Cssk,R)
008 comx,i ← ComX(0λ;Xi)
009 si ← (svk, comR, C, sfe1,i, sfe2,i, comx,i, yi)
010 wi ← (R,S, T, Vi, ssk)
011 πi ← P(msgi, si, wi)
012 else
013 sfe2,i, com

x
i , πi ← ⊥

014 sti ← U∗(sfe2,i, comx,i, πi, sti)
015 end for
016 (m1, σ1, . . . ,m`+1, σ`+1)← U∗(st`)
017 Return 1 iff SigVrfy(svk,mi, σi) = 1 for all

i = 1, . . . , `+ 1 and mi 6= mj for all i 6= j

Game-0 ⇒ Game-1. We now modify the above game by letting the signer (after
Step 005) extract the message mi ← SFEExt(1λ, sfe1,i) from the first message
of the SFE protocol sfe1,i according to Definition 4. Analogously, f

−1

(y) is the



algorithm that inverts the one-way function f . Both algorithms are running in
time T .

Game-1
105a xi ← f

−1

(yi) ,mi ← SFEExt(1λ, sfe1,i)xi ← f
−1

(yi) ,mi ← SFEExt(1λ, sfe1,i)xi ← f
−1

(yi) ,mi ← SFEExt(1λ, sfe1,i)
108 comx,i ← ComX(xixixi;Xi)

The difficulty in showing that the adversary’s success probability in both
games is the same arises from the point that Step 105a cannot be computed
efficiently. Nevertheless, we solve this issue by applying the following (standard)
technique. The idea is to consider primitives that are secure against non-uniform
adversaries. This allows us to perform computations in advance that are not
feasible in polynomial time. More precisely, consider the commitment scheme CX
that is non-uniformly hiding. The adversary is allowed to be unbounded as long as
it has not received the commitment (since the unbounded computation is captured
by the auxiliary input). Once the attacker has obtained the commitment, it runs
in polynomial time. The basic idea behind this approach is that it is possible
to wire an advice into the circuit that is hard to compute. This observation
allows us to perform a computation that is not feasible in polynomial time
before seeing the commitment. During this step, we extract the message out
of the encryption mi ← SFEExt(1λ, sfe1,i) and we invert the one-way function
xi ← f

−1

(yi). Then, we commit to xi (instead of 0λ). Note that this is only
possible because Step 108 happens after Step 105. This, however, is not quite true
because this step happens in a loop. Thus, at some point Step 108 happens before
Step 105. To handle this issue, we refine our argument as follows: let Game-1̃i
be the game where we applied the modifications during the first i iterations
but not in iterations i+ 1, . . . , `. Now, the same argument as above shows that
Game-1̃i and Game-1̃i+1 are indistinguishable for any i (even if i depends on
the security parameter). This, however, also implies that Game-1̃0 and Game-1̃`
are indistinguishable. Furthermore Game-1̃0 = Game-0 and Game-1̃` = Game-1,
hence Game-0 ≈ Game-1 where ≈ indicates that the probability that both games
output 1 is the same (except for a negligible amount).

Game-1 ⇒ Game-2 ⇒ Game-3. In the next game, Game-2, we first change the
witness of the ZAP Z. That is, we use as a witness the pre-image xi of the one-way
function f that we have inverted in the previous step. Afterwards, in Game-3, we
sign the message that was extracted in Game-1, and then use SFEFake2 in order
to make the function evaluation output that signature σi.

Game-2
209 si ← (svk, comR, sfe1,i

, sfe2,i, comx,i, yi)
210 wi := (xi, Xi)(xi, Xi)(xi, Xi)
211 πi ← P(msg, si,wiwiwi)

Game-3
307 σi ← Sign(ssk,mi;FR(mi))σi ← Sign(ssk,mi;FR(mi))σi ← Sign(ssk,mi;FR(mi))
307a sfe2,i ← SFEFake2(1

λ, sfe1,i, σi)SFEFake2(1
λ, sfe1,i, σi)SFEFake2(1
λ, sfe1,i, σi)

Now, we argue that both modifications do not change the success probability
of the adversary U∗ by more than a negligible amount and therefore, Game-0 ≈
Game-3. This should follow from the following two observations



– The one-way function f has efficiently decidable images and the signer checks
if yi is a valid image under f in step 006. Thus, according to our construction
the witness wi is a valid witness. Note that according to our construction
the witness wi := (R,S, T, Vi, ssk) used in Game-1 is also valid. Since both
witnesses are a valid witness and because we have assumed that the ZAP Z is
non-uniformly witness-indistinguishable, it follows that the success probability
of U∗ in both games is the same (except for a negligible amount).

– The secure function evaluation scheme is T -Alice-extraction-private. Thus,
the adversary U∗ does not notice the difference in the computation of sfe2,i.

We elaborate more on the second point: The only difference between Game-2
and Game-3 is that in the i-th iteration of the loop, in Game-3 we replace
sfe2,i ← SFE2,i(1

λ, sfe1,i, Cssk,R) (Step 207) by sfe2,i ← SFEFake2(1
λ, sfe1,i, σi) =

Cssk,R(mi), where σi ← Sign(ssk,mi;FR(mi)) (Steps 307, 307a). By definition
of T -Alice-extraction-privacy, it follows that the games are indistinguishable.
(Notice that we use non-uniform T -Alice-extraction-privacy, the fact that there
are superpolynomial computations occurring before the SFE does not limit the
applicability of T -Alice-extraction-privacy.) Unfortunately, we cannot apply the
arguments justifying the transformations Game-1 ⇒ Game-2 ⇒ Game-3 directly.
The reason is that these arguments are only applicable as long as the games
run in polynomial time (or at least those steps of the games occurring after
the modifications). In the previous step, however, we have inverted the one-way
function and we have extracted the message from the first message of the SFE
protocol. Both steps, however, are not computable in polynomial time. We handle
this issue by carefully applying a hybrid argument. Now, we apply carefully
a hybrid argument over all three games. We omit the details of this hybrid
argument.

Game-3 ⇒ Game-4. This game is identical to the prior one, but instead of
committing to R and ssk, we commit to an all zero string.

Game-4
401 comR ← ComR(0

λ0λ0λ;T )

Since the commitment scheme CR is T hiding, and since the commitment’s
randomness T is not used anywhere else, this modification changes the success
probability of U∗ only by a negligible amount and thus, Game-3 ≈ Game-4 and
therefore Game-0 ≈ Game-4. (Remember that both f−1 and SFEExt and thus all
steps in the game run in time T .)

Game-4 ⇒ Game-5. In this game, we do not generate the signing key locally, but
we build a forger B against the signature scheme Sig. The difference to the above
described games is that it uses its external signing oracle in order to obtain the
signature σi on the message mi.

Game-5
500 x, T, Vi, Xi ← {0, 1}λ (removed R,SR, SR, S)
501 svk← ŜigGen(1λ)svk← ŜigGen(1λ)svk← ŜigGen(1λ), comR ← ComR(R, ssk;T )
507 σi ← Ŝign(mi)σi ← Ŝign(mi)σi ← Ŝign(mi)



Here ŜigGen and Ŝign constitute a signing oracle. ŜigGen produces a verification
key and Ŝign signs messages, but whenever a message is submitted that was
already signed, Ŝign returns the previously produced signature again.

Since F is a T -pseudorandom function, and since R and S are used in Game-4
only in the arguments of SigGen and Sign, it follows that Game-4 ≈ Game-5 and
thus Game-0 ≈ Game-5.

Now, assume that the adversary U∗ wins the unforgeability game Game-0
with non-negligible probability. Then, since Game-0 ≈ Game-5, U∗ also wins with
non-negligible probability in Game-5.

Then it returns ` + 1 pairs (mi, σi) such that mi 6= mj for all i 6= j and
SigVrfy(vk,mi, σi) = 1 for all i = 1, . . . , ` + 1. We denote by Q = (m̂1, . . . , m̂`)

the set of messages that have been asked to the external signing oracle Ŝign.
Since all messages mi are distinct there exists at least one message mj 6∈ Q.
The forger B outputs (mj , σj). Since SigVrfy(vk,mi, σi) = 1 for all i, we have in
particular that the pair (mj , σj) verifies and thus B succeeds with non-negligible
probability. Since B runs in time T · poly(λ), this contradicts the assumption that
Sig is T -unforgeable. This concludes the proof.

Proof of Blindness. Before proving the blindness property, we discuss the
central points. In our protocol, the privacy of the user (blindness) is preserved
by the fact that the secure function evaluation does not reveal the message to
be signed (Bob-privacy). We cannot, however, directly apply Bob-privacy: Bob-
privacy only guarantees that the users are unlinkable as long as the outputs of
the SFE are not revealed. In our setting, however, the outputs are revealed. Thus,
we first have to transform the blindness game into one where the signer does
not get the signatures output by the users. To achieve this, we use a rewinding
argument: Instead of using the signatures produced in the main execution of
the blindness game, we rewind the blindness game and use the signatures from
the rewound execution (called look-ahead threads). The ZAP sent by the signer
guarantees that the signatures are always produced using the same randomness,
hence the signatures in the look-ahead threads equal those of the main thread.
Finally, we show that the signer can simulate the look-ahead threads on his own.
Thus we have a game in which the output of the SFE in the main thread is not
used, and we can apply Bob-privacy.

Care needs to be taken with the ZAPs: In our ZAP, one can fake the proof by
committing to the preimage f−1(y). Since a ZAP is not a proof of knowledge, the
mere fact that the signer does not know f−1(y) is not sufficient to show that the
signer cannot fake the ZAP. A complexity-leveraging argument between Games 3
and 4 solves this issue.

Proof (of Theorem 7). We prove this theorem via a sequence of games. In order
to facilitate notation, we assume that the malicious signer S∗ is given by a
deterministic, stateless algorithm S∗. That is, in its first invocation, S∗ expects
an explicit random tape as argument and returns its new internal state st. In
further invocations, S∗ expects the previous internal state st and returns a new
internal state st′.



In the blindness game, S∗ has the liberty to schedule the instances of the
user in an arbitrary order. In case of a two-move scheme, however, we can fix
the ordering. Since S∗ does not receive any response to the message it sends
to the user, we can assume that S∗ sends these messages after having gathered
all incoming messages from the user. Thus, without loss of generality, S∗ first
outputs the public key vk and the challenge messages m0,m1, then expects the
two incoming blinded messages from the two user instances, and then outputs its
responses to the user messages.

With these assumptions about S∗, the blindness game can be reformulated
as follows:

Game-0
000 randS∗ ← {0, 1}∞, b← {0, 1}
001 (st, vk,m0,m1)← S∗(1λ, randS∗)
002 usermsg0 ← U(vk,mb) | usermsg1 ← U(vk,mb̄)
003 (st′, signermsg0, signermsg1)← S∗(st, usermsg0, usermsg1)
004 if fail then b′ ← S∗(st′,⊥,⊥)
005 else b′ ← S∗(st′, σb, σb̄)

In Game-0 and in the following, we use the abbreviation fail for σ0 = ⊥ or σ1 =
⊥. Blindness is then equivalent to requiring that

∣∣Pr[b′ = b : Game-0] − 1
2

∣∣ is
negligible. For contradiction, we assume that blindness does not hold, i.e., that∣∣Pr[b′ = b : Game-0] − 1

2

∣∣ is non-negligible. Then there exists a polynomial
p = p(λ) such that Pr[b′ = b : Game-0] ≥ 1

2 + 1/p for infinitely many λ. (Or
≤ 1

2 − 1/p, but in this case we can replace S∗ by an adversary that outputs the
negated guess 1− b′.)

Game-0 ⇒ Game-1. Our first transformation is to make the definition of the user
explicit in the blindness game. That is, we replace invocations to U by its program
code. For notational convenience later on, we split the description of Game-0 into
the actual game and a subroutine Thread that executes the interaction between
S∗ and the users.

Thread(vk,m0,m1, b, st)
T00 K0,K1, X0, X1, E0, E1, x0, x1 ← {0, 1}λ
T01 (sfe1,0, sfest0)← SFE1(1

λ,mb) (sfe1,1, sfest1)← SFE1(1
λ,mb̄)

T07 y0 ← f(x0) y1 ← f(x1)
T08 msg0 ← V(1λ) msg1 ← V(1λ)

T09 (st′, (sfe2,0, comx,0, π0), (sfe2,1, comx,1, π1))← S∗(st, (sfe1,0,msg0, y0), (sfe1,1,msg1, y1))
T10 s0 ← (svk, comR, sfe1,0, sfe2,0, comx,0, y0) s1 ← (svk, comR, sfe1,1, sfe2,1, comx,1, y1)
T11 if V(msg0, s0, π0) = 1 then if V(msg0, s1, π1) = 1 then
T12 σb ← SFE3(1

λ, sfe2,0, sfest0) else σb ← ⊥ σb̄ ← SFE3(1
λ, sfe2,1, sfest1) else σb̄ ← ⊥

Return(σ0, σ1, st′)



Game-1
100 b← {0, 1}, randS∗ ← {0, 1}∞
101 (st, vk,m0,m1)← S∗(1λ; randS∗) with vk = (svk, comR)
102 (σ0, σ1, st′)← Thread(vk,m0,m1, b, st)
103 if fail then b′ ← S∗(st′,⊥,⊥)
104 else b′ ← S∗(st′, σ0, σ1)

Since we have only restructured the game, we have Pr[b′ = b : Game-0] =
Pr[b′ = b : Game-1].

Game-1 ⇒ Game-2. Game-2 is identical to Game-1 except for the following
modifications. Once both user instances have computed their signatures, i.e.,
right after Step 202, we reset the malicious signer S∗ to the point where it has
returned the two messages, i.e., to after Step 201. We repeat this procedure p
times. Since S∗ is deterministic and stateless, this can be modeled by running
the subroutine Thread p times using the same initial state st for S∗ in each
thread. Each thread uses a fresh random bit b̂ to assign the messages to the
user instances. We refer to the first execution as the main thread (representing
the original blindness game) and to the other p executions as look-ahead threads.
Observe that this rewinding only involves Step T01 to T12. The other steps are
part of the blindness game. In particular, S∗ gets in Step 204 the signatures σ0

and σ1 from the main thread.

Game-2
200 b← {0, 1}, randS∗ ← {0, 1}∞, b̂1, . . . , b̂p ← {0, 1}b̂1, . . . , b̂p ← {0, 1}b̂1, . . . , b̂p ← {0, 1}
201 (vk,m0,m1, st)← S∗(1λ; randS∗) with vk = (svk, comR)
202 (σ0, σ1, st′)← Thread(vk,m0,m1, b, st)

202a (σla
0,i, σ

la
1,i, st

′
i)← Thread(vk,m0,m1, b̂i, st) for i = 1, . . . , p(σla

0,i, σ
la
1,i, st

′
i)← Thread(vk,m0,m1, b̂i, st) for i = 1, . . . , p(σla

0,i, σ
la
1,i, st

′
i)← Thread(vk,m0,m1, b̂i, st) for i = 1, . . . , p

203 if fail then b′ ← S∗(st′,⊥,⊥)
204 else b′ ← S∗(st′, σ0, σ1)

The success probability of S∗ in both games is clearly the same, because the
results of the look-ahead threads are not used and Thread has no side effects.
That is, Pr[b′ = b : Game-1] = Pr[b′ = b : Game-2].

Now, we bound the probability that both user instances in the main thread
return valid signatures, but at least one user algorithm in each look-ahead
threads fails. Observe that this includes aborting parties, decryption attempts
that fail, or the case where a certain ZAP may be invalid. Recall that fail = 1
if σ0 = ⊥ or σ1 = ⊥. We define faillai analogously to fail, i.e., faillai = 1 if
σla

0,i = ⊥ or σla
1,i = ⊥.

Lemma 8. Denote by bad the event that faillai holds for all i = 1, . . . , p but that
fail does not hold. The probability that bad happens in Game-2 is less or equal

1
p+1 .

Game-2 ⇒ Game-3. In this game, we set b′ = 0 whenever the the main thread
produces valid signatures (¬fail) but the look-ahead threads do not (fail1 and
. . . and failp).



Game-3
303 if fail then b′ ← S∗(st′,⊥,⊥)

303a else if failla1 and . . . and faillap then b′ ← 0else if failla1 and . . . and faillap then b′ ← 0else if failla1 and . . . and faillap then b′ ← 0
304 else b′ ← S∗(st′, σ0, σ1)

Notice that the else-branch in line 303a is only taken if the event bad occurs.
This happens with probability at most 1

p+1 by Lemma 8. Thus, S∗’s avantage
reduces at most by 1

p+1 , i.e., Pr[b
′ = b : Game-3] ≥ Pr[b′ = b : Game-2]− 1

p+1 .

Game-3 ⇒ Game-4. In this hybrid, we do not give the adversary S∗ the signatures
from the main thread, but the ones from one of the successful look-ahead threads.
That is, we choose a random g with ¬faillag and we give the signatures (σ0,g, σ1,g)

to S∗. Notice that we only need to do this if failla1 ∧ · · · ∧ faillap does not hold
(otherwise line 404 would not have been reached), so there is always at least one
such g.

Game-4
404 else g ← {i : ¬faillai }g ← {i : ¬faillai }g ← {i : ¬faillai }, b′ ← S∗(st′,σ0,gσ0,gσ0,g,σ1,gσ1,gσ1,g)

We first argue that all messages σ0, σ0,g have the same value (if defined), and
analogously for σ1, σ1,g: Due to the adaptive soundness of the ZAP, we have
that with overwhelming probability the statements proven by the ZAPs are true.
That is, for each thread it holds that comx,0 contains a preimage of y under f
or that the message sfe2,0 is constructed correctly. The first occurs only with
negligible probability, otherwise by using the T ′-extractability of CX we could
build a T ′-time inverter for f , breaking the T ′-onewayness of f . Thus sfe2,0 is
constructed correctly in all thread with overwhelming probability. Analogously
for sfe2,1. Due to the perfect correctness of SFE (and the perfect binding property
of CR), this implies that all signatures σi,g are produced by applying the same
circuit Cssk,R with the same ssk and R to the message mi. Thus, giving the
malicious signer S∗ the signatures returned from the gth look-ahead thread does
not change its success probability by more than a negligible amount. That is,
|Pr[b′ = b : Game-3]− Pr[b′ = b : Game-4]| is negligible.

Game-4 ⇒ Game-5. Now, we modify Game-4 to Game-5 by returning (⊥,⊥) to
S∗ only if one of the ZAPs in the main thread failed. Formally, we check this by
validating the ZAP π. In what follows, we denote by msg0(st′), su

′

0 (st′), π0(st′) the
messages that are needed to verify the ZAP as seen by S∗. We assume, w.l.o.g.,
that these messages are stored in the state st′.

Game-5
503 if V(msg0(st′), su0 (st

′), π0(st′)) = 0V(msg0(st′), su0 (st
′), π0(st′)) = 0V(msg0(st′), su0 (st
′), π0(st′)) = 0 or
V(msg1(st′), su1 (st

′), π1(st′)) = 0V(msg1(st′), su1 (st
′), π1(st′)) = 0V(msg1(st′), su1 (st
′), π1(st′)) = 0 then b′ ← S∗(st′,⊥,⊥)

Due to the soundness of the ZAP, this modification does not change the
success probability of S∗ by more than a negligible amount.

Game-5 ⇒ Game-6. In this game, we build an attacker B that simulates the
look-ahead threads and the malicious signer S∗ locally.



B(st, st′)
B00 b̂1, . . . , b̂p ← {0, 1}
B01 (σla

0,i, σ
la
1,i, st

′
i)← Thread(vk,m0,m1, b̂i, st) for i = 1, . . . , p

B02 if V(msg0(st′), su
′

0 (st′), π0(st′)) = 0 or
V(msg1(st′), su1 (st

′), π1(st′)) = 0 then b′ ← S∗(st′,⊥,⊥)
B03 else if fail1 and . . . and failp then b′ ← 0
B04 else g ← {i : ¬faili}, b′ ← S∗(st′, σ0,g, σ1,g)

The game looks as follows (here, we show the whole Game-6, not just the
lines changed with respect to Game-5):

Game-6
600 b← {0, 1}, randS∗ ← {0, 1}∞
601 (vk,m0,m1, st)← S∗(1λ; randS∗) with vk = (svk, comR)
602 (σ0, σ1, st)← Thread(vk,m0,m1, b, st)
603 b′ ← B(st, st′)b′ ← B(st, st′)b′ ← B(st, st′)

Clearly, the success probability of B in this game is equal to the success
probability of S∗ in the previous game since we have just moved some of the
computations of Game-5 into B.

Game-6 ⇒ Game-7. Now, we modify the algorithm Thread only for the main
thread (recall that all other threads are computed by B locally). Our modification
removes all dependencies on the input message m. That is, we let the user
algorithm compute the first message of the SFE protocol on 0λ instead of m.
Additionally, we remove the computation of the signatures σ0, σ1 that are never
used.

Thread’
T’01 (sfe1,0, sfest0)← SFE1(1

λ,0λ0λ0λ) (sfe1,1, sfest1)← SFE1(1
λ,0λ0λ0λ)

T’11–T’12 (removed) (removed)

Since the SFE scheme is Bob-private, the success probability of B remains
the same (except for a negligible amount). This, however, means that the entire
transcript is independent of the message.

Now, we obtain the following contradiction concluding that advantage of S∗
in Game-0 is less or equal 1

p+1 + negl(λ), where negl(λ) is a negligible function. In
Game-0, however, we assumed that S∗ wins the blindness game with advantage at
least ν ≥ 1/p (infinitely often). Since 1/p > 1/(p+ 1) + negl for sufficiently large
λ we obtain a contradiction. Thus, our initial assumption that S∗ succeeds with
non-negligible probability was wrong and therefore, our construction is blind.

Acknowledgments. We thanks the anonymous reviewers for valuable comments
and Masayuki Abe for his useful feedback on this merged paper. Dominique
Unruh was supported by European Social Fund’s Doctoral Studies and Interna-
tionalisation Programme DoRa. Dominique Schröder is also supported by the
Emmy Noether Program Fi 940/2-1 of the German Research Foundation (DFG).
Part of this work was supported by CASED (www.cased.de). Amit Sahai is
supported in part from a DARPA/ONR PROCEED award, NSF grants 0916574



and 0830803, a Xerox Foundation Award, a Google Faculty Research Award, an
equipment grant from Intel, and an Okawa Foundation Research Grant.

References

1. Abdalla, M., Namprempre, C., Neven, G.: On the (im)possibility of blind message
authentication codes. In: CT-RSA 2006. LNCS, vol. 3860, pp. 262–279. Springer
(2006)

2. Abe, M.: A secure three-move blind signature scheme for polynomially many
signatures. In: EUROCRYPT 2001. LNCS, vol. 2045, pp. 136–151. Springer (2001)

3. Abe, M., Fuchsbauer, G., Groth, J., Haralambiev, K., Ohkubo, M.: Structure-
preserving signatures and commitments to group elements. In: CRYPTO 2010. pp.
209–236. LNCS, Springer (2010)

4. Abe, M., Haralambiev, K., Ohkubo, M.: Signing on elements in bilinear groups for
modular protocol design. IACR ePrint 2010/133 (2010)

5. Abe, M., Ohkubo, M.: A framework for universally composable non-committing
blind signatures. In: ASIACRYPT 2009. LNCS, vol. 5912, pp. 435–450. Springer
(2009)

6. Bellare, M., Namprempre, C., Pointcheval, D., Semanko, M.: The one-more-RSA-
inversion problems and the security of Chaum’s blind signature scheme. Journal of
Cryptology 16(3), 185–215 (2003)

7. Boldyreva, A.: Threshold signatures, multisignatures and blind signatures based on
the gap-Diffie-Hellman-group signature scheme. In: PKC 2003. LNCS, vol. 2567,
pp. 31–46. Springer (2003)

8. Brands, S., Paquin, C.: U-prove cryptographic specification v1.0. http://connect.
microsoft.com/site642/Downloads/DownloadDetails.aspx?DownloadID=26953
(Mar 2010)

9. Brands, S.A.: Rethinking Public Key Infrastructures and Digital Certificates: Build-
ing in Privacy. MIT Press (2000)

10. Camenisch, J., Groß, T.: Efficient attributes for anonymous credentials. In: ACM
CCS 08. pp. 345–356. ACM Press (2008)

11. Camenisch, J., Koprowski, M., Warinschi, B.: Efficient blind signatures without
random oracles. In: SCN 04. LNCS, vol. 3352, pp. 134–148. Springer (2004)

12. Camenisch, J., Neven, G., Shelat, A.: Simulatable adaptive oblivious transfer. In:
EUROCRYPT 2007. LNCS, vol. 4515, pp. 573–590. Springer (2007)

13. Chaum, D.: Blind signatures for untraceable payments. In: CRYPTO’82. pp. 199–
203. Plenum Press (1983)

14. Chaum, D.: Blind signature system. In: CRYPTO’83. p. 153. Plenum Press (1984)
15. Dwork, C., Naor, M.: Zaps and their applications. SIAM J. Comput. 36(6), 1513–

1543 (2007)
16. Fischlin, M.: Round-optimal composable blind signatures in the common reference

string model. In: CRYPTO 2006. LNCS, vol. 4117, pp. 60–77. Springer (2006)
17. Fischlin, M., Schröder, D.: Security of blind signatures under aborts. In: PKC 2009.

LNCS, vol. 5443, pp. 297–316. Springer (2009)
18. Fischlin, M., Schröder, D.: On the impossibility of three-move blind signature

schemes. In: EUROCRYPT 2010. LNCS, vol. 6110, pp. 197–215. Springer (2010)
19. Fuchsbauer, G.: Automorphic signatures in bilinear groups and an application to

round-optimal blind signatures. IACR ePrint 2009/320 (2009)

http://connect.microsoft.com/site642/Downloads/DownloadDetails.aspx?DownloadID=26953


20. Garg, S., Rao, V., Sahai, A.: Round optimal blind signatures in the standard model.
Manuscript (2011)

21. Garg, S., Rao, V., Sahai, A., Schröder, D., Unruh, D.: Round optimal blind
signatures. IACR ePrint (2011)

22. Ghadafi, E., Smart, N.: Efficient two-move blind signatures in the common reference
string model. IACR ePrint 2010/568 (2010)

23. Hazay, C., Katz, J., Koo, C.Y., Lindell, Y.: Concurrently-secure blind signatures
without random oracles or setup assumptions. In: TCC 2007. LNCS, vol. 4392, pp.
323–341. Springer (2007)

24. Horvitz, O., Katz, J.: Universally-composable two-party computation in two rounds.
In: CRYPTO 2007. LNCS, vol. 4622, pp. 111–129. Springer (2007)

25. Juels, A., Luby, M., Ostrovsky, R.: Security of blind digital signatures (extended
abstract). In: CRYPTO’97. LNCS, vol. 1294, pp. 150–164. Springer (1997)

26. Katz, J., Schröder, D., Yerukhimovich, A.: Impossibility of blind signature from
one-way permutation. In: TCC 2011. LNCS, vol. 6597, pp. 615–629. Springer (2011)

27. Kiayias, A., Zhou, H.S.: Concurrent blind signatures without random oracles. In:
SCN 06. LNCS, vol. 4116, pp. 49–62. Springer (2006)

28. Kiayias, A., Zhou, H.S.: Equivocal blind signatures and adaptive UC-security. In:
TCC 2008. LNCS, vol. 4948, pp. 340–355. Springer (2008)

29. Lindell, Y.: Bounded-concurrent secure two-party computation without setup as-
sumptions. In: STOC 2003. pp. 683–692. ACM Press (2003)

30. Lindell, Y.: Lower bounds for concurrent self composition. In: TCC 2004. LNCS,
vol. 2951, pp. 203–222. Springer (2004)

31. Meiklejohn, S., Shacham, H., Freeman, D.M.: Limitations on transformations from
composite-order to prime-order groups: The case of round-optimal blind signatures.
In: ASIACRYPT 2010. pp. 519–538. LNCS, Springer (2010)

32. Naor, M., Pinkas, B.: Efficient oblivious transfer protocols. In: SODA 2001. pp.
448–457 (2001)

33. Okamoto, T.: Efficient blind and partially blind signatures without random oracles.
In: TCC 2006. LNCS, vol. 3876, pp. 80–99. Springer (2006)

34. Pass, R.: Limits of provable security from standard assumptions. In: STOC 2011.
ACM Press (2011), to appear

35. Pointcheval, D., Stern, J.: Security arguments for digital signatures and blind
signatures. Journal of Cryptology 13(3), 361–396 (2000)

36. Prabhakaran, M., Rosen, A., Sahai, A.: Concurrent zero knowledge with logarithmic
round-complexity. In: FOCS 2002. pp. 366–375. IEEE (2002)

37. Rückert, M.: Lattice-based blind signatures. In: ASIACRYPT 2010. pp. 413–430.
LNCS, Springer (2010)

38. Schröder, D., Unruh, D.: Round optimal blind signatures. IACR ePrint (2011)
39. Schröder, D., Unruh, D.: Security of blind signatures revisited. IACR ePrint (2011)


	Round Optimal Blind Signatures

