
A New Variant of PMAC:
Beyond the Birthday Bound

Kan Yasuda

NTT Information Sharing Platform Laboratories, NTT Corporation, Japan
yasuda.kan@lab.ntt.co.jp

Abstract. We propose a PMAC-type mode of operation that can be
used as a highly secure MAC (Message Authentication Code) or PRF
(Pseudo-Random Function). Our scheme is based on the assumption
that the underlying n-bit blockcipher is a pseudo-random permutation.
Our construction, which we call PMAC Plus, involves extensive modifica-
tion to PMAC, requiring three blockcipher keys. The PMAC Plus algo-
rithm is a first rate-1 (i.e., one blockcipher call per n-bit message block)
blockcipher-based MAC secure against O

(
22n/3

)
queries, increasing the

O
(
2n/2
)

security of PMAC at a low additional cost. Our analysis uses
some of the security-proof techniques developed with the sum construc-
tion (Eurocrypt 2000) and with the encrypted-CBC sum construction
(CT-RSA 2010).

Keywords: 64-bit blockcipher, PRP, sum construction, CBC vs. PMAC,
game-playing technique.

1 Introduction

MACs (Message Authentication Codes) are frequently realized by making iter-
ative use of blockciphers. They are called blockcipher-based MACs and specified
in a large number of standardized documents including ISO 9797-1 [13].

The majority of blockcipher-based MACs iterate a blockcipher in the so-
called CBC (Cipher Block Chaining) style [3, 19, 15], by xor-ing the current mes-
sage block with the previous chaining value and then inputting the xor-ed result
into the next blockcipher call. CBC-type MACs have a history of continuous
updates, whose purpose is mainly to reduce the number of keys and to increase
efficiency in the last message block. CMAC [18] a.k.a. OMAC [11], the first 1-
key CBC MAC derived from XCBC [7], can be regarded as an outcome of such
evolution.

On the other hand, PMAC (Parallelizable MAC) [8] is a distinctive, paral-
lelizable blockcipher-based MAC. Its internal structure is completely different
from CBC iteration, which is inherently sequential and not parallelizable. If se-
quentially implemented, then PMAC becomes slightly slower than CBC MACs,
because PMAC requires an extra operation at every blockcipher call. The ex-
tra operation is typically a constant multiplication in the finite field, which is
fast but still slower than a simple xor operation used by CBC MACs. However,

under parallel implementation, PMAC can possibly outperform CBC MACs sig-
nificantly.

We believe it is worth re-evaluating PMAC-type constructions under the
current trend of “parallelizable” (pipeline, superscalar, vector, and multi-core)
CPUs (e.g., see [14] for a state-of-the-art implementation of AES in this di-
rection). It seems that today PMAC is still not as widespread as CBC MACs,
perhaps because most of the computational environments commercially avail-
able so far have been increasing the clock rate and hence the speed of sequential
operations.

In this paper we look at another advantageous aspect of PMAC-type con-
structions. That is its proof of security. The parallel construction has a structure
easy to analyze and to obtain better bounds. Intuitively, the difference between
PMAC-type and CBC-type iterations lies in the “long-message attacks” noted
by Preneel and Oorschot [20]: Suppose, for the moment, that we iterate an n-bit
function rather than permutation. Then two messages M00 · · · 0 and M ′00 · · · 0
would collide at some point of the CBC iteration if they are long enough—say
2n blocks—and the collision would propagate through the output of the MAC
algorithm. An event of this sort does not happen to PMAC. This appealing as-
pect of PMAC-type constructions is already pointed out, though implicitly, by
Minematsu [17] in obtaining an O

(
ℓq2/2n

)
-type bound for PMAC (where ℓ is

the maximum length of a message, q the maximum number of queries and n
the block size). Recall that obtaining such a bound for CBC MACs seems more
troublesome [4].

Besides PMAC, there have been a few proposals of parallelizable MACs, for
which a blockcipher can be used. These include XOR MAC by Bellare et al. [2]
and PCS by Bernstein [6]. There have been also some improvements or al-
ternatives to PMAC. These include PMAC1 by Rogaway [21] and iPMAC by
Sarkar [22].

Birthday-Bound Problems and Our Contributions. We take the advan-
tage of the provable-security aspect of PMAC-type constructions in solving the
so-called birthday-bound problem of iterative MACs [20]. That is, a MAC con-
struction having an n-bit size of intermediate values cannot be secure against
more than O

(
2n/2

)
queries—a forgery becomes possible after so many queries.

Typical MAC constructions iterating an n-bit blockcipher suffer from this prob-
lem.

This is a sever problem particularly for 64-bit blockciphers. Not to mention
the fact that the legacy Triple-DES is still widely used (especially in finan-
cial services), we also have new 64-bit blockciphers such as HIGHT [10] and
present [9], possibly due to industrial demands for “lightweight” algorithms.
The birthday bound may not be a serious problem for 128-bit blockciphers at the
current moment. However, it contributes not only to existing 64-bit blockciphers
but also to the longevity of 128-bit blockciphers in future use to construct an
efficient MAC mode which is free of the birthday-bound problem.

2

Table 1. Summary of our result and comparison with previous constructions

Rate # of keys Parallelizable? Security bound Ref.

Alg. 6 of ISO 9797-1 1/2 6 O
(
ℓ4q3/22n

)
or [13]

restricted O
(
ℓ3q3/22n

)
SUM-ECBC 1/2 4 O

(
ℓ4q3/22n

)
or [23]

restricted O
(
ℓ3q3/22n

)
PMAC Plus 1 3 X O

(
ℓ3q3/22n + ℓq/2n

)
This
work

The first attempt to solve this problem was made in ISO 9797-1 (without
proofs of security).1 Unfortunately, Algorithm 4 of ISO 9797-1 was attacked and
shown insecure (“insecure” meaning secure only up to the O

(
2n/2

)
birthday

bound) by Joux et al. [12]. Algorithm 6 of ISO 9797-1, on the other hand, has
been proven secure against O

(
22n/3

)
queries [23]. The O

(
22n/3

)
bound holds only

with certain restrictions on the message length. The work [23] has also presented
SUM-ECBC, the sum (xor) of two encrypted CBC MACs. SUM-ECBC has be-
come a 4-key rate-1/2 (meaning two encryptions to process n-bits) blockcipher-
based MAC having the same security bound as Algorithm 6 of ISO 9797-1. We
improve over these MAC constructions by utilizing a PMAC-type iteration. We
propose a new MAC algorithm PMAC Plus. PMAC Plus is an extensively modified
version of PMAC. PMAC Plus remains rate-1 but operates with three blockcipher
keys. PMAC Plus has an O(22n/3) bound without such a restriction on the mes-
sage length as existed with the security bound for the previous constructions.2

Table 1 summarizes our result.

Organization. Section 2 provides necessary background. In Section 3 we define
our algorithm PMAC Plus and state its security result. The entire Section 4 is
devoted to proofs of security. The paper ends with brief discussion in Section 5.

2 Preliminaries

Symbols and Notation. We fix a block size n, which is typically 64 or 128.
We write Perm(n) for the set of permutations P : {0, 1}n → {0, 1}n. We also
fix a key space K . Usually K = {0, 1}κ, where κ = 80, 128, 192 or 256. A
blockcipher E is a function E : K × {0, 1}n → {0, 1}n such that for each key
K ∈ K we have EK ∈ Perm(n), where EK : {0, 1}n → {0, 1}n is defined as
EK(X) := E(K, X). We can then write E−1

K for the inverse permutation.
The set {0, 1}n can be regarded as a set of integers {0, 1, . . . , 2n − 1}. This

can be done by converting an n-bit string an−1 · · · a1a0 ∈ {0, 1}n to an inte-
1 See, for example, [1] for another direction (using random coins) of treating birthday-

bound problems.
2 Our new bound would become vacuous for very long messages, say 22n/3 blocks.

3

ger an−12n−1 + · · · + a12 + a0, where multiplication and addition are integer
arithmetic.

Let GF (2n) denote the finite field with 2n elements. We regard {0, 1}n as
GF (2n). That is, we identify an n-bit string an−1 · · · a1a0 ∈ {0, 1}n with a formal
polynomial an−1xn−1 + · · · a1x + 1 ∈ GF (2)[x]. To do so we need to fix an
irreducible polynomial a(x) = xn + an−1xn−1 + · · · + a1x + a0 ∈ GF (2)[x]. We
sometimes write ⊕ and ⊙ to emphasize addition and multiplication in the field,
respectively. So for example we have 2⊕3 = x+(x + 1) = 1 and 3⊙3 = (x+1)2 =
x2 + 1 = 5 if n ≥ 3.

We choose irreducible polynomials a(x) = x64 +x4 +x3 +x+1 for n = 64 and
a(x) = x128+x7+x2+x+1 for n = 128. These are actually primitive polynomials,
meaning the element 2 = x generates the entire multiplicative group GF (2n)∗

of order 2n − 1.

Security Notions. An adversary A is an oracle machine. A has access to its
oracle O(·) and, after interaction with the oracle, outputs a bit, 1 or 0. We write
A O(·) = 1 to denote the event that A outputs 1 after interacting with O(·).
We measure the resources of A in terms of time and query complexities. We
fix a model of computation and a method of encoding. The query complexity
is measured in terms of the number of queries (usually denoted q) and also in
terms of the maximum length of each query (denoted ℓ). The length of a query
is measured in blocks (n bits).

We say that (informally) a block cipher E is a (secure) pseudo-random permu-
tation (PRP) if it is indistinguishable from a random permutation P

$←− Perm(n),
where $←− means uniformly random sampling. Specifically, we consider the ad-
vantage function

Advprp
E (A) := Pr

[
A EK(·) = 1;K $←− K

]
− Pr

[
A P (·) = 1; P $←− Perm(n)

]
,

and if this quantity is “small enough” for a class of adversaries, then we say
that E is a PRP. Here note that the probabilities are defined over internal coin
tosses of A , if any, as well as over the choices of K and P . We further define
Advprp

E (t, q) := maxA Advprp
E (A), where the max runs over all adversaries A

whose running time is at most t, making at most q queries to its oracle.
With abuse of notation let {0, 1}∗ denote the set of finite bit strings whose

length is at most ℓq blocks. Let Func(∗, n) denote the set of functions G :
{0, 1}∗ → {0, 1}n. Our goal is to construct a pseudo-random function (PRF)
FK : {0, 1}∗ → {0, 1}n having keys K ∈ K ′ (and preferably K ′ is not much
larger than K). Recall that any PRF can be used as a secure MAC. We
say that F is a secure PRF if it is indistinguishable from a random function
G

$←− Func(∗, n), or more precisely, we define

Advprf
F (A) := Pr

[
A FK(·) = 1;K $←− K ′]− Pr

[
A G(·) = 1;G $←− Func(∗, n)

]
.

We also define Advprf
F (t, q, ℓ) to be the maximum advantage running over all

adversaries A whose running time is at most t, making at most q queries to its
oracle, each query being at most ℓ blocks.

4

Game-Playing Techniques. Our proofs of security largely depend on the so-
called game-playing techniques [5]. In particular, we perform lazy sampling for
a random permutation P

$←− Perm(n). That is, P is initially set everywhere
undefined, and when a value P (X) becomes necessary at some point in the
game, a corresponding range point Y is randomly sampled as Y

$←− {0, 1}n,
so that we have P (X) = Y . We implicitly maintain two sets, DomP and RanP ,
which keep the record of already-defined domain points and that of range points,
respectively.

3 PMAC Plus: Specification and Security

There exist different versions of PMAC. The version that we use here is based
on the discrete-log-based LFSR (linear feedback shift register) developed by
Rogaway [21]. Our MAC construction PMAC Plus is defined in Algorithm 1. It
calls a subroutine Internal, which is described in Algorithm 2. In Algorithm 2,

Algorithm 1 PMAC Plus[EK1 , EK2 , EK3](M)
1: (Σ, Θ)← Internal[EK1](M)
2: T ← EK2(Σ)⊕ EK3(Θ)
3: return T

Algorithm 2 Subroutine Internal[EK](M)
1: ∆0 ← EK(0)
2: ∆1 ← EK(1)
3: M ←M∥10∗

4: Partition M into M [1]
∥∥ · · · ∥∥M [m]

5: for i = 1 to m do
6: X[i]←M [i]⊕ 2i ·∆0 ⊕ 22i ·∆1

7: Yi ← EK

(
X[i]
)

8: end for
9: Σ ← Y1 ⊕ · · · ⊕ Ym

10: Θ ← Y1 ⊕ 2 · Y2 ⊕ · · · ⊕ 2m−1 · Ym

11: return (Σ, Θ)

by “M [m]
∥∥ 10∗” we mean appending a bit 1 and then an appropriate number

of bits 0 so that the bit length of M [m]
∥∥ 10∗ becomes n. By “partition M” we

mean M = M [1]
∥∥ · · · ∥∥ M [m] so that

∣∣M [1]
∣∣ =

∣∣M [m]
∣∣ = n. See Fig. 1 for a

pictorial representation of our construction PMAC Plus.
The security of our PMAC Plus construction is as follows:

5

Fig. 1. Our PMAC Plus algorithm using three blockcipher keys K1, K2 and K3, where
E1 = EK1 , E2 = EK2 , E3 = EK3 , ∆0 = E1(0) and ∆1 = E1(1).

Theorem 1 (Security of PMAC Plus). We have

Advprf
PMAC Plus(t, q, ℓ) ≤

27ℓ3q3

22n
+

3ℓq

2n
+ 3Advprp

E (t′, ℓq + 2),

where t′ is about t plus a time complexity necessary to compute E for ℓq +2q +2
times.

The additional term of 3Advprp
E (t′, ℓq+2) comes from the standard argument of

replacing actual blockciphers E1 = EK1 , E2 = EK2 and E3 = EK3 with random
permutations P1, P2 and P3, respectively.

4 Proofs of Security

We now prove that PMAC Plus[P1, P2, P3] is an O(22n/3)-secure PRF given ran-
dom permutations P1, P2 and P3.

4.1 Basic Ideas

Let A be an adversary that makes at most q queries, each query being at most
ℓ blocks. The goal of A is to distinguish between the PMAC Plus[P1, P2, P3](·)
oracle and a random function G : {0, 1}∗ → {0, 1}n. We consider the game
described in Fig. 2. In games, given a set S ⊂ {0, 1}n, we write for its complement
S := {0, 1}n \ S. Codes of subroutines are given in Figures 3, 4, 5 and 6.

We observe that the game with single-boxed statements coincides with a
random function G, whereas the game with double-boxed statements is exactly
PMAC Plus[P1, P2, P3]. These two algorithms differ only when Bad events occur.
Therefore, by the fundamental lemma of game-playing [5], we have

Pr
[
A PMAC Plus[P1,P2,P3](·) = 1

]
− Pr

[
A G(·) = 1

]
≤ Pr

[
A sets Bad

]
,

6

1: ∆0, ∆1
$←− {0, 1}n // sampling P1(0) and P1(1)

2: if ∆0 = 0 or ∆1 = 0 then
3: Zero∗ ← true
4: Bad← true ∆∗

$←− {0}
5: end if
6:
7: upon a query M do
8: (Σ, Θ)← Internal[P1](M) // lazy sampling for P1

9: if Σ /∈ DomP2 and Θ /∈ DomP3 then
10: go to Case A // lazy sampling for P2 and P3

11: end if
12: if Σ ∈ DomP2 and Θ /∈ DomP3 then
13: go to Case B // lazy sampling for P3

14: end if
15: if Σ /∈ DomP2 and Θ ∈ DomP3 then
16: go to Case C // lazy sampling for P2

17: end if
18: if Σ ∈ DomP2 and Θ ∈ DomP3 then
19: go to Case D // a bad event
20: end if
21: return T

Fig. 2. Main game

where the bad events are classified into five “winning” events as

Pr[A sets Bad]
≤Pr[A sets Zero∗, Unfair∗, UpLow∗, LowUp∗ or Coll∗]
≤Pr[Zero∗] + Pr[Unfair∗] + Pr[UpLow∗] + Pr[LowUp∗] + Pr[Coll∗].

The first term can be easily bounded; it remains to bound the last four terms.
These correspond to Cases A, B, C and D, respectively, and they are described
as subroutines. Up to this point we essentially follow the same framework as the
proof of SUM-ECBC [23].

1: Choose a fair set R ⊂ RanP2 × RanP3

2: (U, L)
$←− RanP2 × RanP3

3: if (U, L) ̸∈ R then
4: if ¬Bad then
5: Unfair∗ ← true
6: end if
7: Bad← true (U, L)

$←− R
8: end if
9: T ← U ⊕ L

Fig. 3. Code for Case A

7

1: U ← P2(Σ)

2: L
$←− {0, 1}n

3: if L ∈ RanP3 then
4: if ¬Bad then
5: UpLow∗ ← true
6: end if

7: Bad← true L
$←− RanP3

8: end if
9: T ← U ⊕ L

Fig. 4. Code for Case B

1: L← P3(Θ)

2: U
$←− {0, 1}n

3: if U ∈ RanP2 then
4: if ¬Bad then
5: LowUp∗ ← true
6: end if

7: Bad← true U
$←− RanP2

8: end if
9: T ← U ⊕ L

Fig. 5. Code for Case C

1: if ¬Bad then
2: Coll∗ ← true
3: end if
4: Bad← true T

$←− {0, 1}n T ← P2(Σ)⊕ P3(Θ)

Fig. 6. Code for Case D

4.2 Bounding the Probability of Each Winning Event

Case A: Unfair∗. This case can be essentially handled by the technique of
fair sets developed by Lucks [16]. The proof is exactly the same as the case of
SUM-ECBC [23].

Lemma 1 (Case A). We have

Pr[A sets Unfair∗] ≤ 2q3

22n
,

for q ≤ 2n−1.

Proof. The proof is given in [23], but for the sake of completeness we give one
in Appendix. ⊓⊔

Case B: UpLow∗. To treat this case we need the following:

Lemma 2. For a pair of messages (M, M ′) such that M ̸= M ′, each being at
most ℓ blocks, we have

Pr
[
Σ = Σ′;P $←− Perm(n)

]
≤ 8ℓ

2n
,

where (Σ, Θ)← Internal[P](M) and (Σ′, Θ′)← Internal[P](M ′).

Proof. Consider lazy sampling for P . First draw a range point ∆ := P (0). We
assume that ∆ ̸= 0; the probability that ∆ = 0 occurs is 1/2n. We next assume
that none of the input blocks X[a] or X ′[a] is 0 or 1; the probability that X[a] =
0, 1 or X ′[a] = 0, 1 occurs for some a ≤ ℓ is at most 4ℓ/2n.

8

Now without loss of generality we assume that |M | ≥ |M ′|. Let m, m′ be
the number of blocks in M and in M ′, respectively. Observe that we must have
m ≥ 2 for the above probability to be non-trivial. So assume m ≥ 2.

Determine an index i ∈ {1, . . . , m−1} as follows. If m > m′, then set i := m.
If m = m′ and the last blocks are the only blocks that differ, then the above
probability becomes vacuous. So in the case of m = m′, let i ≤ m be the
maximum index such that M [i] ̸= M ′[i].

We focus on the input block X[i]. Assume that X[i] does not appear in any of
X[a] (1 ≤ a ≤ m−1) or X ′[a′] (1 ≤ a ≤ m′−1) except for itself. The probability
that X[i] = X[a] or X[i] = X ′[a′] occurs is at most

(
(ℓ−1)+ℓ

)
/2n = (2ℓ−1)/2n.

Finally, consider the condition Σ = Σ′. Now resume the lazy sampling for P .
Sample the point P (X[i]) as Yi

$←− RanP after finishing sampling all other
points; the point P (X[i]) gets always sampled according to the way of choosing
the index i. In such a scenario the probability that Σ = Σ′ holds is at most
1/

∣∣RanP
∣∣ ≤ 1/

(
2n − 1 − (ℓ − 2) − (ℓ − 1)

)
/2n ≤ 1/(2n − 2ℓ) ≤ 2/2n, assuming

ℓ ≤ 2n−2 (otherwise the desired inequality would become meaningless).
We sum up each terms. Overall, the probability can be bounded as

1
2n

+
4ℓ

2
+

2ℓ− 1
2n

+
2
2n
≤ 8ℓ

2n
,

as desired. ⊓⊔

Now let M (1), . . . , M (q) denote A ’s queries. Then the probability that A
sets the UpLow∗ flag can be bounded as

q∑
i=2

Pr
[
Σ(i) ∈ DomP2 ∧ L(i) ∈ RanP3; P1, P2, P3

$←− Perm(n)
]

≤
q∑

i=2

i−1∑
j=1

Pr
[
(Σ(i) = Σ(j));P1

$←− Perm(n)
]
· Pr

[
L(i) ∈ RanP3; L(i) $←− {0, 1}n

]
≤

q∑
i=2

i−1∑
j=1

8ℓ

2n
·
∣∣RanP3

∣∣
2n

≤
q∑

i=2

i−1∑
j=1

8ℓ

2n
· 2q

2n
≤ q2

2
· 8ℓ

2n
· 2q

2n
=

8ℓq3

22n
,

where we wrote (Σ(i), Θ(i)) := Internal[P1]
(
M (i)

)
and L(i) the sampling of L

at the i-the query.

Case C: LowUp∗. For this case we need the following lemma. Then the compu-
tation is similar to Case B, and we obtain the same bound of 8ℓq3/22n.

Lemma 3. For a pair of messages (M, M ′) such that M ̸= M ′, each being at
most ℓ blocks, we have

Pr
[
Θ = Θ′; P $←− Perm(n)

]
≤ 8ℓ

2n
,

where (Σ, Θ)← Internal[P](M) and (Σ′, Θ′)← Internal[P](M ′).

Proof. Similar to Lemma 2. ⊓⊔

9

Case D: Coll∗. Since P1 is independent from P2 and from P3, we may fix
A ’s (distinct) queries and let M (1), . . . , M (q) denote them. We would like to
compute the probability that at the i-th query M (i) we get Σ(i) ∈ DomP2 and
Θ(i) ∈ DomP3. The event implies that there exist some earlier queries M (j) and
M (k) (j and k may be equal) such that Σ(j) = Σ(i) and Θ(k) = Θ(i).

Before evaluating the probability

Pr
[
(Σ(j) = Σ(i)) ∧ (Θ(k) = Θ(i));P1

$←− Perm(n)
]
,

we first exclude the case that Ya
$←− RanP1 becomes zero (i.e., Ya = 0) in

sampling range points of P1 for messages M (1), . . . , M (q). The overall probability
that this event occurs is at most ℓq/2n.

We then consider the case when an “input collision” occurs among X(i)[a],
X(j)[a], X(k)[a]. By an “input collision” we mean an event X(∗)[a] = X(∗)[a′] for
some a ̸= a′. If input collisions occur at indices a < b < c such that X(∗)[a] =
X(∗)[b] = X(∗)[c], then this system of equations would determine the values
∆0,∆1, so the probability that this occurs is at most

(
3ℓ
3

)
· 1/2n ≤ 5ℓ3/2n.

Suppose no 3-collision occurs. The probability that a 2-collision happens
upon sampling ∆

$←− {0, 1}n for a fix set of M (i), M (j) and M (k) is at most(
3ℓ
2

)
· 1/2n ≤ 4.5ℓ2/2n. Under the event of an input (2-)collision, we focus on

the equation Θ(i) = Θ(k). We show that this provides a non-trivial equation for
some random variable Y

(∗)
a . Without loss of generality assume, for the moment,

that m(i) ≤ m(k) where these are the number of blocks in the message M (i) and
that in M (k), respectively. Let α ∈ {1, . . . ,m(i)} be the largest index such that
M (i)[α] ̸= M (k)[α], if such an index exists. Then we have X(i)[α] ̸= X(k)[α], so
at least one of these input values is non-zero, which means that either Y

(i)
α =

P (X(i)[α]) or Y
(k)
α = P (X(k)[α]) gets sampled. For that random variable the

equation Θ(i) = Θ(k) is non-trivial. On the other hand, if no such index α exists,
then it means that M (i)[a] = M (k)[a] for all a ∈ {1, . . . ,m(i)} and m(i)+1 ≤ m(k)

(In such a case we say that M (i) is “contained” in M (k)). Consider the values
X(k)[m(i)+1], . . . , X(k)[m(k)]. It cannot be the case that all of these input values
are the same, as it would imply a zero value in the range of P1. Therefore, we
have m(i) + 2 ≤ m(k), and let β ∈ {m(i) + 1, . . . , m(k)} be the largest index such
that X(k)[β] ̸= 0. Then we see that Y

(k)
β = P (X(k)[β]) gets always sampled.

Therefore, the probability that this equation is satisfied is at most 1/
∣∣RanP1

∣∣ ≤
1/(2n − 2ℓ) ≤ 2/2n assuming ℓ ≤ 2n−2.

We can now bound the probability that, for a fix set of M (i), M (j) and M (k),
an input collision occurs and the equation Θ(i) = Θ(k) holds. It would be at
most 4.5ℓ2/2n · 2 · /2n ≤ 9ℓ2/22n.

Consider the case when no input collision occurs among X(i)[a], X(j)[a],
X(k)[a]. We start with the case j = k. Without loss of generality assume, for
the moment, that m(i) ≤ m(j) where these are the number of blocks in the
message M (i) and that in M (j), respectively. It can be directly verified that we
can choose indices α < β such that (a) β ≤ m(i) and M (i)[α] ̸= M (j)[α] and
M (i)[β] ̸= M (j)[β], (b) α ≤ m(i) and M (i)[α] ̸= M (j)[α] and m(i)+1 ≤ β ≤ m(j),

10

or (c) m(i) +1 ≤ α < β ≤ m(j). In any case, the system of equations Σ(j) = Σ(i)

and Θ(j) = Θ(i) provides a unique solution set for the random variables Y
(∗)
α ,

Y
(∗)
β . So the probability of this event is at most 1/

∣∣RanP1

∣∣ ·1/
∣∣RanP1

∣∣ ≤ 1/(2n−
2ℓ)2 ≤ 4/22n, assuming ℓ ≤ 2n−2.

It remains to treat the case j ̸= k. We consider the cases (a) M (i) is contained
in M (j), (b) M (j) is contained in M (i), (c) M (i) is contained in M (k), or (d) M (k)

is contained in M (i). For example, we discuss case (a). We can choose indices α, β
such that (a1) m(k) +1 ≤ α ≤ m(i) and m(i) +1 ≤ β ≤ m(j), (a2) m(i) +1 ≤ α ≤
m(k) and m(k)+1 ≤ β ≤ m(j), (a3) m(i)+1 ≤ α ≤ m(j) and m(j)+1 ≤ β ≤ m(k),
(a4) m(i) + 1 ≤ α ≤ m(j) and 1 ≤ β ≤ m(i) and M (i)[β] = M (j)[β] ̸= M (k)[β],
or (a5) m(i) + 1 ≤ α ≤ m(j) and M (j)[α] ̸= M (k)[α]. In any case, the system
of equations Σ(j) = Σ(i) and Θ(j) = Θ(i) provides a unique solution set for two
random variables, so the probability of this event is at most 4/22n, assuming
ℓ ≤ 2n−2.

Lastly, assume that none of the containment (a) through (d) occurs. Then it
means that there exist indices α, β such that M (i)[α] ̸= M (j)[α] and M (i)[β] ̸=
M (k)[β]. If α ̸= β, then we can simply choose Y

(i)
α and Y

(i)
β to be the two

variables. Suppose no such indices exist, that is, α = β and this is the only
index that a difference occurs. If M (j)[α] ̸= M (k)[α], then we can choose two
variables accordingly. If M (j)[α] = M (k)[α], then since M (j) ̸= M (k), then M (j)

is contained in M (k), or M (k) is contained in M (j), or there exists an index γ > α
such that M (j)[γ] ̸= M (k)[γ]. In any case, the system of equations Σ(j) = Σ(i)

and Θ(j) = Θ(i) gives us a unique solution set for two random variables, and the
probability of this event can be bounded as 4/22n, again assuming ℓ ≤ 2n−2.

Now we are done with Case D. We just run indices i, j and k to get

ℓq

2n
+

q∑
i=2

i−1∑
j=1

i−1∑
k=1

5ℓ3 + 9ℓ2 + 4 + 4 + 4
22n

≤ ℓq

2n
+

q3

3
· 26ℓ2

22n
≤ ℓq

2n
+

9ℓ2q3

22n

for bounding the probability that case D happens.

4.3 Summing Up the Probabilities

We now bound the overall probability. The bound sums up to

Pr[A sets Zero∗, Unfair∗, UpLow∗, LowUp∗ or Coll∗]

≤ 2
2n

+
2q3

22n
+

8ℓq3

22n
+

8ℓq3

22n
+

ℓq

2n
+

9ℓ3q3

22n

≤27ℓ2q3

22n
+

3ℓq

2n
,

which completes the proof.

11

5 Discussion

We have presented a 3-key rate-1 MAC construction based on a PMAC-type it-
eration. This raises a challenge to come up with a 1-key rate-1 MAC construction
which is secure beyond the birthday bound.

After beating the birthday bound of O(2n/2), we seem to be encountering
another “bound problem” at the query complexity of O(22n/3). To beat this new
bound efficiently is also a challenge for blockcipher-based message authentica-
tion.

Acknowledgments

The author would like to thank CRYPTO 2011 program committee members
and reviewers for valuable feedback.

References

1. Mihir Bellare, Oded Goldreich, and Hugo Krawczyk. Stateless evaluation of pseu-
dorandom functions: Security beyond the birthday barrier. In Michael J. Wiener,
editor, CRYPTO 1999, volume 1666 of LNCS, pages 270–287. Springer, 1999.

2. Mihir Bellare, Roch Guérin, and Phillip Rogaway. XOR MACs: New methods for
message authentication using finite pseudorandom functions. In Don Coppersmith,
editor, CRYPTO 1995, volume 963 of LNCS, pages 15–28. Springer, 1995.

3. Mihir Bellare, Joe Kilian, and Phillip Rogaway. The security of cipher block chain-
ing. In Yvo Desmedt, editor, CRYPTO 1994, volume 839 of LNCS, pages 341–358.
Springer, 1994.

4. Mihir Bellare, Krzysztof Pietrzak, and Phillip Rogaway. Improved security analyses
for CBC MACs. In Victor Shoup, editor, CRYPTO 2005, volume 3621 of LNCS,
pages 527–545. Springer, 2005.

5. Mihir Bellare and Phillip Rogaway. The security of triple encryption and a frame-
work for code-based game-playing proofs. In Serge Vaudenay, editor, EURO-
CRYPT 2006, volume 4004 of LNCS, pages 409–426. Springer, 2006.

6. Daniel J. Bernstein. How to stretch random functions: The security of Protected
Counter Sums. J. Cryptology, 12(3):185–192, 1999.

7. John Black and Phillip Rogaway. CBC MACs for arbitrary-length messages: The
three-key constructions. In Mihir Bellare, editor, CRYPTO 2000, volume 1880 of
LNCS, pages 197–215. Springer, 2000.

8. John Black and Phillip Rogaway. A block-cipher mode of operation for paralleliz-
able message authentication. In Lars R. Knudsen, editor, EUROCRYPT 2002,
volume 2332 of LNCS, pages 384–397. Springer, 2002.

9. Andrey Bogdanov, Lars R. Knudsen, Gregor Leander, Christof Paar, Axel
Poschmann, Matthew J. B. Robshaw, Yannick Seurin, and C. Vikkelsoe.
PRESENT: An ultra-lightweight block cipher. In Pascal Paillier and Ingrid Ver-
bauwhede, editors, CHES 2007, volume 4727 of LNCS, pages 450–466. Springer,
2007.

12

10. Deukjo Hong, Jaechul Sung, Seokhie Hong, Jongin Lim, Sangjin Lee, Bonseok Koo,
Changhoon Lee, Donghoon Chang, Jaesang Lee, Kitae Jeong, Hyun Kim, Jongsung
Kim, and Seongtaek Chee. HIGHT: A new block cipher suitable for low-resource
device. In Louis Goubin and Mitsuru Matsui, editors, CHES 2006, volume 4249
of LNCS, pages 46–59. Springer, 2006.

11. Tetsu Iwata and Kaoru Kurosawa. OMAC: One-key CBC MAC. In Thomas
Johansson, editor, FSE 2003, volume 2887 of LNCS, pages 129–153. Springer,
2003.

12. Antoine Joux, Guillaume Poupard, and Jacques Stern. New attacks against stan-
dardized MACs. In Thomas Johansson, editor, FSE 2003, volume 2887 of LNCS,
pages 170–181. Springer, 2003.

13. JTC1. ISO/IEC 9797-1:1999 Information technology—Security techniques—
Message Authentication Codes (macs)—Part 1: Mechanisms using a block cipher,
1999.

14. Emilia Käsper and Peter Schwabe. Faster and timing-attack resistant AES-GCM.
In Christophe Clavier and Kris Gaj, editors, CHES 2009, volume 5747 of LNCS,
pages 1–17. Springer, 2009.

15. Kaoru Kurosawa and Tetsu Iwata. TMAC: Two-key CBC MAC. In Marc Joye,
editor, CT-RSA 2003, volume 2612 of LNCS, pages 33–49. Springer, 2003.

16. Stefan Lucks. The sum of PRPs is a secure PRF. In Bart Preneel, editor, EURO-
CRYPT 2000, volume 1807 of LNCS, pages 470–484. Springer, 2000.

17. Kazuhiko Minematsu and Toshiyasu Matsushima. New bounds for PMAC, TMAC,
and XCBC. In Alex Biryukov, editor, FSE 2007, volume 4593 of LNCS, pages 434–
451. Springer, 2007.

18. NIST. Recommendation for block cipher modes of operation: The CMAC mode
for authentication. SP 800-38B, 2005.

19. Erez Petrank and Charles Rackoff. CBC MAC for real-time data sources. J.
Cryptology, 13(3):315–338, 2000.

20. Bart Preneel and Paul C. van Oorschot. MDx-MAC and building fast MACs from
hash functions. In Don Coppersmith, editor, CRYPTO 1995, volume 963 of LNCS,
pages 1–14. Springer, 1995.

21. Phillip Rogaway. Efficient instantiations of tweakable blockciphers and refinements
to modes OCB and PMAC. In Pil Joong Lee, editor, ASIACRYPT 2004, volume
3329 of LNCS, pages 16–31. Springer, 2004.

22. Palash Sarkar. Pseudo-random functions and parallelizable modes of operations of
a block cipher. IEEE Transactions on Information Theory, 56(8):4025–4037, 2010.

23. Kan Yasuda. The sum of CBC MACs is a secure PRF. In Josef Pieprzyk, editor,
CT-RSA 2010, volume 5985 of LNCS, pages 366–381. Springer, 2010.

A Proof Lemma 1

Proof. The proof is almost exactly the same as the one for Lucks’ sum2 con-
struction P2(X) ⊕ P3(X) [16]. The fact that we have Σ ̸= Θ does not have
much effect on the computation of the probability. Specifically, we consider the
following simulation of P2(Σ) ⊕ P3(Θ). The code without the boxed statement
corresponds with P2(Σ) ⊕ P3(Θ). The code with the boxed statement corre-
sponds with a random oracle R, because the set R is fair; that is, R is chosen
so that the number of pairs (U,L) ∈ R such that

T = U ⊕ L

13

1: Y ← RanP2, Z ← RanP3

2: Choose a fair set R ⊂ Y × Z
3: (U, L)

$←− Y × Z
4: if (U, L) ̸∈ R then

5: Bad ← true (U, L)
$←− R

6: end if
7: T ← U ⊕ L
8: return T

is the same for each value T ∈ {0, 1}n. In the code, we choose a fair set R as
follows. Enumerate RanP2 as {U1, . . . , Uα} and RanP3 as {L1, . . . , Lβ}. For each
i and j such that 1 ≤ i ≤ α and 1 ≤ j ≤ β we choose arbitrarily representatives
(U ′

i , L
′
j) ∈ Y × Z such that U ′

i ⊕ L′
j = Ui ⊕ Lj . We then define R ← Y × Z \∪

i,j{(U ′
i , L

′
j)}. We see that, for each value T ∈ {0, 1}n,∣∣{(U,L) ∈ R | U ⊕ L = T}

∣∣ = 2n − α− β,

so R is indeed a fair set.
After q queries, the overall probability that the bad event occurs becomes

Pr
[
Bad

]
≤

q∑
i=1

∣∣(Y × Z) \R
∣∣

|Y × Z|

=
q∑

i=1

αβ

(2n − α)(2n − β)

≤
q−1∑
i=0

i2

(2n − q)2

≤ 1
(2n − q)2

·
q−1∑
i=0

i2

≤ 1
(2n−1)2

· q(q − 1)(2q − 1)
6

≤ 2q3

22n
,

where we used the condition q ≤ 2n−1. ⊓⊔

14

