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Abstract. We further the study of order-preserving symmetric encryp-
tion (OPE), a primitive for allowing efficient range queries on encrypted
data, recently initiated (from a cryptographic perspective) by Boldyreva
et al. (Eurocrypt ’09). First, we address the open problem of character-
izing what encryption via a random order-preserving function (ROPF)
leaks about underlying data (ROPF being the “ideal object” in the secu-
rity definition, POPF, satisfied by their scheme.) In particular, we show
that, for a database of randomly distributed plaintexts and appropriate
choice of parameters, ROPF encryption leaks neither the precise value
of any plaintext nor the precise distance between any two of them. The
analysis here is quite technically non-trivial and introduces useful new
techniques. On the other hand, we also show that ROPF encryption does
leak both the value of any plaintext as well as the distance between any
two plaintexts to within a range of possibilities roughly the square root
of the domain size. We then study schemes that are not order-preserving,
but which nevertheless allow efficient range queries and achieve security
notions stronger than POPF. In a setting where the entire database is
known in advance of key-generation (considered in several prior works),
we show that recent constructions of “monotone minimal perfect hash
functions” allow to efficiently achieve (an adaptation of) the notion of
IND-O(rdered) CPA also considered by Boldyreva et al., which asks that
only the order relations among the plaintexts is leaked. Finally, we intro-
duce modular order-preserving encryption (MOPE), in which the scheme
of Boldyreva et al. is prepended with a shift cipher. MOPE improves the
security of OPE in a sense, as it does not leak any information about
plaintext location. We clarify that our work should not be interpreted
as saying the original scheme of Boldyreva et al., or the variants that
we introduce, are “secure” or “insecure.” Rather, the goal of this line
of research is to help practitioners decide whether the options provide a
suitable security-functionality tradeoff for a given application.
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1 Introduction

Background and Motivation. An order-preserving symmetric encryption (or
OPE) scheme is a deterministic symmetric encryption scheme whose encryption
algorithm produces ciphertexts that preserve numerical ordering of the plain-
texts. OPE was proposed in the database community by Agrawal et al. [1] in 2004
as a tool to support efficient range queries on encrypted data. (When encryption
is done using an OPE scheme, a range query simply consists of the encryptions
of the two end-points.) However, the first formal cryptographic treatment of
OPE did not appear until recently, in the paper by Boldyreva et al. [8]. The
authors formalized a security requirement for OPE and proposed an efficient
blockcipher-based scheme provably meeting their security definition.

Yet despite having an OPE scheme that provably satisfies their security no-
tion, the authors warn against its practical use before further studies of its
security are performed. To explain this, consider the security notion (or “ideal
object”) from [8], called a pseudorandom order-preserving function (POPF).

Informally, the POPF notion calls an OPE scheme secure if oracle access to its
encryption algorithm is indistinguishable from that to a random order-preserving
function (ROPF), i.e., a random element of the set of all strictly-increasing func-
tions on the same domain and range. This is a rather straight-forward adaptation
of the classical notion of pseudorandom function (PRF)—which asks that oracle
access to a function be indistinguishable from that to a truly random function on
the same domain and range—to the order-preserving context, and it captures
some intuition of what should be the “best possible” OPE scheme. However,
the POPF definition is somewhat deceiving and confusing in terms of giving an
idea of what kind of security it describes. A random function’s behavior is well
understood: on a new input the output is a random point in the range. Hence,
an adversary seeing a function value learns absolutely no information about the
pre-image, unless the former happens to coincide with one it has previously seen.
But the situation with a random OPF is much harder to describe. It is clear that
a random OPF cannot provide such strong security, but what exactly is leaked
about the data and what is protected? The distribution of ciphertexts is known
and it is not immediately clear if encryption is even one-way.

Despite its authors’ warning of lingering unanswered questions, the OPE
scheme from [8] immediately received attention from the applied community
[21, 20, 18, 17, 14]. We agree that a secure OPE is better than no encryption at
all and understand why the idea of its implementation may sound appealing.
But practical use without a clear security understanding can be very dangerous
and thus it is very important to clarify the security questions as soon as possible.

In this work we first address this open problem. We revisit the security of the
“ideal object” ROPF introduced by [8] and provide results that help characterize
what it leaks and what it protects about the underlying data. We then observe
that it may be possible to achieve stronger security notions than POPF using
schemes that fall outside the OPE class but nevertheless allow efficient range



queries on encrypted data, and propose two such schemes. We now discuss our
contributions in more detail.

New Definitions for Studying ROPF Security. As (perhaps surprisingly)
pointed out by [8], a random order-preserving function—the ideal object in the
POPF definition from that paper—itself requires a cryptographic treatment.

In order to better understand the strengths and limitations of encryption with
an ROPF we first propose several security notions. One captures a basic one-
wayness security and measures the probability that an adversary, given a set of
ciphertexts of random messages, decrypts one of them. (The fact that messages
are chosen uniformly at random we call the “uniformity assumption,” and it
will be discussed later.) We give the adversary multiple challenge ciphertexts
because this corresponds to practical settings and because the ciphertexts are
not independent from each other: learning more points of the OPE function may
give the adversary additional information. We actually consider a more general
security notion that asks the adversary given same inputs to guess an interval
(window) within which the underlying challenge plaintext lies. This definition
helps us get a better sense of how accurately the adversary can identify the
location of a data point. The size of the window and the number of challenge
ciphertexts are parameters of the definition. When the window size is one, the
notion collapses to the case of simple one-wayness.

Our subsequent definitions address leakage of information not about the lo-
cation of the data points but rather the distances between them, which seems
crucial in other applications (e.g., a database of salaries). Indeed, [8] showed that
an ROPF with a practical range size does not hide distances between plaintexts.
We attempt to clarify this intuition. We consider a definition measuring the
adversary’s success in (precisely) guessing the distance3 between the plaintexts
corresponding to any two out of the set of ciphertexts of random messages given
to the adversary. Again, we also consider a more general definition where the
adversary is allowed to specify a window in which the distance falls.

We analyze security of an ROPF under these definitions as we believe this
helps to understand secure pseudorandom OPE schemes’ security guarantees
and limitations, and also to evaluate the risk of their usage in various applica-
tions. (Indeed, we believe they capture the information about the data, namely
location and relative distances, that practitioners are most likely to care about in
applications.) However, especially in light of the uniformity assumption (which
is unlikely to be satisfied in practice), we view our results as providing important
steps in the direction of this understanding (as even under this assumption our
results are challenging to prove) but still warn against practical usage of OPE
based on current knowledge.

3 Technically, for purposes that will become clear in the paper, “distance” actually
refers to “directed modular distance,” i.e. the distance from one point “up” to the
other point, possibly wrapping around the space. As such, distance in our context
is non-commutative.



Analysis of an ROPF. We first give an upper bound on the one-wayness ad-
vantage of any adversary attacking an ROPF. The proof is quite involved (and
is explained in detail in the full version [9]), but the result is a very concise,
understandable bound that, under reasonable assumptions, does not even de-
pend on the size of the ciphertext space. (Intuitively, an ROPF’s one-wayness
comes from the function’s probability to deviate from points on the linear OPF
m 7→ (N/M)m. Increasing the ciphertext space size beyond a certain amount has
little to no effect on these deviations.) We evaluate the bound for several param-
eters to get an idea of its quality. Our evaluation demonstrates that on practical
parameters ROPF and POPF-secure OPEs significantly resist one-wayness at-
tacks, i.e. the maximum one-wayness advantage of any adversary is quite low.

On the other hand, our ROPF analysis under the window one-wayness defi-
nition shows that a very efficient adversary can successfully break window one-
wayness if the size of the window is not very small. In particular, for message
space size M and arbitrary constant b, if the window size is approximately b

√
M ,

there exists an adversary A whose window one-wayness is at least 1 − 2e−b
2/2.

Thus, for b large enough (say, b ≥ 8), there exists an adversary with window
one-wayness advantage very close to one.

We then extend our analysis of an ROPF to the distance one-wayness and
window distance one-wayness definitions. Using similar techniques we show en-
tirely analogous results, namely that the former is very small but the latter
becomes large when the adversary is allowed to specify a window of size approx-
imately b

√
M .

We conclude our ROPF analysis with several important supplemental re-
marks regarding the effect of known-plaintext attacks in the schemes, choosing
an appropriate ciphertext space size, and the need to satisfy the uniformity
assumption in practical implementations.

Achieving Stronger Security. We next consider the question of whether dif-
ferent types of schemes that support efficient range queries can achieve stronger
security than POPF. To capture such schemes we introduce a general notion of
efficiently orderable encryption (EOE), that covers all schemes supporting stan-
dard range queries by requiring a publicly computable function that determines
order of the underlying plaintexts given any two ciphertexts. Since EOE leaks
order of ciphertexts, IND-OCPA (which [8] showed is unachievable by OPE) is
an ideal level of security for EOE schemes (although what information about
the data can be inferred from it is outside the scope of the current paper).

An Optimally Secure Committed EOE Scheme. We focus on a scenario
where we can show something like IND-OCPA security is possible. We define
“committed” versions of EOE and IND-OCPA, called CEOE and IND-CCPA,
corresponding to a setting where the database is static and completely known
to the user in advance of encryption. Such a scenario is apparently important as
it was considered in the first paper to propose an order-preserving scheme [1],
and was also studied in several works including [13] for the case of exact-match
queries. We observe that the more restrictive functionality in this setting allows
one to achieve IND-CCPA. We propose a new scheme that uses a monotone min-



imal perfect hash function (MMPHF) directly as an “order preserving tagging
algorithm” for the given message set, together with a secure encryption. The
construction allows for easy implementation of range queries while also achiev-
ing the strongest security. Moreover, while MMPHFs are known to require long
keys [4], recent constructions [4] are close to being space-optimal. Thus, this ap-
plication of MMPHFs for tagging seems to be a novel, nearly efficient-as-possible
way to support range queries, leaking nothing but the order of ciphertexts, when
the database is fixed in advance.

A New Modular OPE Scheme and its Analysis. Finally, we propose a
technique that improves on the security of any OPE scheme without sacrificing
efficiency. Recall that our ROPF analysis reveals information leakage in OPE not
alluded to by [8], namely about the locations of the data points rather than just
the distances between them. We suggest a modification to (that can be viewed as
a generalization of) an OPE scheme that overcomes this. The resulting scheme is
not order-preserving per se, but still permits range queries—in this case, modular
range queries. (When the left end of the queried range is greater than the right
end, a modular range query returns the “wrap-around range,” i.e. everything
greater than the left end or less than the right end.) The modification to the
scheme is simple and generic: the encryption algorithm just adds (modulo the
size of the message space) a secret offset to the message before encryption. (The
secret offset is the same for all messages.) We call a scheme obtained this way
a modular OPE scheme, and generalize the security notion: the ideal object is
now a random modular OPF (RMOPF), i.e. a random OPF applied to messages
with a randomly picked offset. It is easy to see that any secure OPE scheme
yields a secure modular OPE scheme using the above transformation.

We show that a random modular OPF, unlike a random OPF, completely
hides the locations of the data points (but has the same leakage with respect to
distance and window-distance one-wayness). On the other hand, if the adversary
is able to recover a single known plaintext-ciphertext pair, security falls back to
that of a random OPF.

We also note that the technique with a secret offset can be applied to the
CEOE scheme to enhance its security even beyond IND-CCPA when support
for modular range queries is sufficient.

Related Work. Efficient (sub-linear time) search on encrypted data for the case
of simple exact-match queries has been addressed by [2] in the symmetric-key
setting and [6, 10, 7] in the public-key setting. The work of [16] suggested enabling
efficient range queries on encrypted data not by using OPE but so-called prefix-
preserving encryption (PPE) [22, 5]. But as discussed in [16, 2], PPE schemes
are subject to certain attacks. Allowing range queries on encrypted data in the
public-key setting was studied in [11, 19], but the solutions are not suitable for
large databases, requiring to scan the whole database on every query. As we
mentioned, order preserving encryption as an efficient solution for range queries
has been proposed in [1], however, they do not provide any formal security
analysis.



2 Preliminaries

Notation. If M is an integer, then [M ] denotes the set {1, . . . ,M}. For a set S
and n ≤ |S|, let CombS

n denote the set of n-element subsets of S. If Enc is an en-
cryption function with key K, x = (x1, . . . , x`) is a vector, and X = {x1, . . . , x`}
is a set, then Enc(K,x) is shorthand for (Enc(K,x1), . . . , Enc(K,x`)) and Enc(K,
X) is shorthand for {Enc(K,x1), . . . , Enc(K,x`)}. The same holds for decryption
Dec.

A Convention. For simplicity, in many cases we will assume a domain/plaintext
space [M ] and range/ciphertext space [N ], for N ≥M . Naturally, all results for
arbitrary spaces D, R can be derived from those of [|D|], [|R|].

Range Queries. For fixed plaintext and ciphertext spaces [M ] and [N ], a range
query target is a pair of plaintexts (mL,mR) that comes in two varieties: standard
if mL ≤ mR, or wrap-around if mL > mR. If (mL,mR) is a target, its associated
range is [mL,mR] in the standard case and [mL,M ]∪ [1,mR] in the wrap-around
case.

To model the intended application, suppose a server has a database encrypted

under a scheme (K, Enc,Dec) with key K
$← K. In a standard range query, the

user submits two unordered ciphertexts {c1, c2} to the server. Let (m1,m2) =
Dec(K, (c1, c2)). Then the target is (min{m1,m2},max{m1,m2}), and the server
must return the set of ciphertexts in the database whose decryptions fall into
the associated range. Notice that these targets are always standard.

In a modular range query, the user submits two ordered ciphertexts (cL, cR).
Let (mL,mR) = Dec(K, (cL, cR)). Then the range query target is (mL,mR), and
the server must return the set of ciphertexts in the database whose decryptions
fall into the associated range. Notice that these targets can be standard or wrap-
around.

Order-Preserving Encryption (OPE). Following [8] we say that SED,R =
(K, Enc, Dec) with associated plaintext-space D and ciphertext-space R is de-
terministic if the encryption algorithm Enc is deterministic. For A,B ⊆ N with
|A| ≤ |B|, a function f : A→ B is order-preserving if for all i, j ∈ A, f(i) > f(j)
iff i > j. We say that deterministic encryption scheme SED,R = (K, Enc,Dec)
is order-preserving if Enc(K, ·) is an order-preserving function from D to R for
all K output by K (with elements of D,R interpreted as numbers, encoded as
strings).

Security of OPE. We recall the security definition for OPE from [8]. 4 Infor-
mally (refer to [8] for the formal definition), it says that an OPE scheme is secure
if oracle access to its encryption function is indistinguishable from oracle access
to a random order-preserving function (ROPF) on the same domain and range.

4 For simplicity, we do not discuss chosen-ciphertext attacks in detail. Note that sym-
metric schemes such as these can be made resistant to chosen-ciphertext attacks
by implementing Encrypt-then-MAC with a MAC having strong unforgeability, pre-
venting adversaries from even constructing valid ciphertexts.



Any secure OPE scheme (including the only currently known blockcipher-based
scheme from [8]) should “closely” imitate the behavior of an ROPF. Accordingly
we focus in this paper on analyzing the ideal object, an ROPF.

An “Ideal” Scheme ROPF. We define the “ideal” ROPF scheme as follows.
Let OPFD,R denote the set of all order-preserving functions from D to R. Define
ROPFD,R = (Kr, Encr,Decr) as the following encryption scheme:

• Kr returns a random element g of OPFD,R.
• Encr takes the key and a plaintext m to return g(m).
• Decr takes the key and a ciphertext c to return g−1(c).

Of course the above scheme is not computationally efficient, but our goal
is its security analysis for the purpose of clarifying security of all POPF-secure
constructions.

Most Likely Plaintext. Fix a symmetric encryption scheme SED,R = (K, Enc,Dec).
For given c ∈ R, if mc ∈ D is a message such that

Pr
[
K

$← K : Enc(K,m) = c
]

achieves a maximum at m = mc, then we call mc a (if unique, “the”) most likely
plaintext for c.

Most Likely Plaintext Distance. Fix a symmetric encryption scheme SE [M ],[N ] =
(K, Enc,Dec). For given c1, c2 ∈ R, if dc1,c2 ∈ {0, 1, . . . ,M − 1} such that

Pr
[
K

$← K : (c1, c2) = Enc(K, (m1,m2)) ; m2 −m1 mod M = d
]

achieves a maximum at d = dc1,c2 , then we call dc1,c2 a (if unique, “the”) most
likely plaintext distance from c1 to c2.

3 New Security Definitions

As explained in the introduction, the “ideal” ROPF scheme defined in Section 2
itself requires a cryptographic treatment. Toward this end, we propose several
generalized security definitions that help us understand its security.

Let SE [M ],[N ] = (K, Enc,Dec) be a deterministic symmetric encryption scheme.

Window One-Wayness. The most basic question left unanswered by [8] is
whether a POPF-secure scheme is even one-way. Towards this end we start
with the one-wayness definition. Our definition is a stronger and more general
version of the standard notion of one-wayness. For 1 ≤ r ≤ M and z ≥ 1, the
adversary is given a set of z ciphertexts of (uniformly) random messages and is
asked to come up with an interval of size r within which one of the underlying
plaintexts lies. We call our notion r, z-window one-wayness (or r, z-WOW). Note
that when r = 1, the definition collapses to the standard one-wayness definition
(for multiple ciphertexts), and we will call it one-wayness for simplicity.



The r, z-window one-wayness (r, z-WOW) advantage of adversary A against
SE [M ],[N ] is

Advr,z-wow
[M ],[N ] (A) = Pr

[
Expr,z-wow

SE[M],[N]
(A) = 1

]
,

where

Experiment Expr,z-wow
SE[M],[N]

(A)

K
$← K ; m

$← Comb[M ]
z ; c← Enc(K,m)

(mL,mR)
$← A(c)

Return 1 if (mR −mL) mod M + 1 ≤ r and there exists m ∈m so that
either m ∈ [mL,mR] or (mL > mR and m ∈ [mL,M ] ∪ [1,mR])

Return 0 otherwise

Notice that the latter success condition allows the adversary to specify a win-
dow that “wraps around” the message space. Granting this extra power to the
adversary will be useful in analyzing the MOPE scheme of Section 5.2.

Window Distance One-Wayness. To identify the extent to which an OPE
scheme leaks distance between plaintexts, we also provide a definition in which
the adversary attempts to guess the interval of size r in which the distance
between any two out of z random plaintexts lies, for 1 ≤ r ≤M and z ≥ 2. We
call the notion r, z-window distance one-wayness (r, z-WDOW). When r = 1,
the adversary has to guess the exact distance between any two of z ciphertexts.

The r, z-window distance one-way (r, z-WDOW) advantage of adversary A
against scheme SE [M ],[N ] is

Advr,z-wdow
[M ],[N ] (A) = Pr

[
Expr,z-wdow

SE[M],[N]
(A) = 1

]
,

where

Experiment Expr,z-wdow
SE[M],[N]

(A)

K
$← K ; m

$← Comb[M ]
z ; c← Enc(K,m)

(d1, d2)
$← A(c)

Return 1 if d2 − d1 + 1 ≤ r and there exist distinct mi,mj ∈m
with mj −mi mod M ∈ [d1, d2]

Return 0 otherwise

4 One-Wayness of a Random OPF

This section is devoted to analyzing the “ideal” scheme ROPF[M ],[N ] under the
security definitions given in the previous section. The first result shows an upper
bound on 1, z-WOW advantage against the scheme. This demonstrates that on
practical parameters, ROPF and POPF-secure OPEs significantly resist (size-
1-window) one-wayness attacks. In contrast, the second result shows the ideal
ROPF scheme is susceptible to an efficient large-window (a constant times

√
M)



one-wayness attack, by constructing an adversary and lower-bounding its r, z-
WOW advantage.

The analysis then proceeds similarly for window distance one-wayness defini-
tions: we will show analogous contrasting results for small- versus large-window
experiments. We now turn to the details of the analysis.

An Upper Bound on the 1, z-WOW Advantage. The following theorem
states an upper bound on the 1, z-WOW advantage of any adversary against
ROPF[M ],[N ].

Theorem 1. For any challenge set of size z and adversary A, if N ≥ 2M and
M ≥ 15 + z then

Adv1,z-wow
ROPF[M],[N]

(A) <
9z√

M − z + 1
.

The formal proof is quite involved and is in the full version [9]. The idea is to first
bound 1, z-WOW security in terms of 1, 1-WOW security; because ciphertexts
are correlated, a simple hybrid argument does not work and our reduction uses
new ideas. Then, to bound 1, 1-WOW security, we take a combinatorial strat-
egy, as follows. We define a ciphertext’s most likely plaintext (m.l.p.) and recall
the negative hypergeometric distribution (NHGD). We first relate the middle
ciphertext’s m.l.p.’s NHGD probability for a given plaintext/ciphertext space to
that of a space twice the size; iterating this result produces a formula for the
middle ciphertext’s m.l.p.’s NHGD probability in a large space given the anal-
ogous value in a small space. We then relate any ciphertext’s m.l.p.’s NHGD
probability to that of the middle ciphertext in the space. Finally, we approxi-
mate the sum of m.l.p. NHGD probabilities over the ciphertext space in terms
of that of the middle ciphertext, and hence to that of the middle ciphertext in a
smaller space. Plugging in a value for the m.l.p. NHGD probability on the small
space and simplifying yields the bound.

Evaluating the Bound. The bound of Theorem 1 is quite succinct—it does
not even rely on N (as long as N ≥ 2M). The result in essence shows that as
long as the challenge set size z is small compared to M , the bound is a small
constant times z/

√
M . This in turn is small as long as z is small compared to√

M .
Plugging in some parameters, we can see some numerical bounds. (In all the

following, we assume N ≥ 2M .) For M = 280 and z = 1, the bound is 1.2 · 2−37.
For M = 280 and z = 220, the bound is 1.2 · 2−17. For M = 280 and z = 238, the
bound is no longer useful at 1.2.

We see that ROPF[M ],[N ] has very good one-wayness security for reasonably-
sized parameters. Given the results of [8] our bound for ROPF can be easily
adjusted for their POPF construction, by taking into account pseudorandomness
of an underlying blockcipher. But as we discussed in the introduction, standard
one-wayness may not be sufficient in all applications and we have to also analyze
the schemes under other security notions. Thus, we turn to the next result.

A Lower Bound on Large Window One-Wayness. Here we show that there
exists a very efficient adversary attacking the window one-wayness of an ROPF



for a sufficiently large window size. A more intuitive explanation of the result
follows the theorem.

Theorem 2. For any window size r and challenge set size z, there exists an
adversary A such that

Advr,z-wow
ROPF[M],[N]

(A) ≥ Advr,1-wow
ROPF[M],[N]

(A) ≥ 1− 2e−
(r−1)2

2
(M−1)

M2 .

The proof is in the full version [9]. There, we construct a straightforward
attack and demonstrate that it has the above probability of success, using some
bounds by Chvátal on the tail probabilities of the hypergeometric distribution.

Intuitively, Theorem 2 implies that for r ≈ b
√
M , where b is a large enough

constant (say b ≥ 8), there exists an adversary A whose r-window one-wayness
is very close to 1. More precisely, let r = b M√

M−1 + 1, and the theorem implies

there exists an A such that

Advr,z-wow
ROPF[M],[N]

(A) ≥ 1− 2e−b
2/2 .

An Upper Bound on the 1, z-WDOW Advantage. The following theorem,
with the proof in the full version [9] , states an upper bound on the 1, z-distance
one-wayness of a random OPF that is very similar to the bound in Theorem 1.

Theorem 3. For any challenge set size z and adversary A, if N ≥ 2M and
M ≥ 16 + z then

Adv1,z-wdow
ROPF[M],[N]

(A) ≤ 9z(z − 1)√
M − z + 1

.

Naturally, as this result looks very much like that of Theorem 1, the proof follows
the same strategy and achieves similar results. The only differences are that the
initial reduction relates r, z-WDOW security to r, 2-WDOW security, incurring
a factor z(z − 1) advantage increase as opposed to just z, and the initial (tight)
bound formula replaces parameters N , M with N − 1, M − 1. See Appendix ??
for proof details.

Thus, the 1, z-window distance one-wayness of a random OPF is upper-
bounded in a similar fashion as the 1, z-window one-wayness, and we conclude
that random OPFs have good 1, z-WDOW security. Again, though, that is not
the whole story, as we see next.

A Lower Bound on Window Distance One-Wayness of ROPF. Here,
we derive a result similar to that of Theorem 2, but for the window distance
one-wayness of a random OPF.

Theorem 4. For any window size r and challenge set size z, there exists an
efficient adversary A such that

Advr,z-wdow
ROPF[M],[N]

(A) ≥ Advr,1-wdow
ROPF[M],[N]

(A) ≥ 1− 2e
− (r−1)2

2
(M−2)

(M−1)2 .



The proof uses directly a result from the proof of Theorem 2 and appears in the
full version [9].

Intuitively, Theorem 4 implies that for r ≈ b
√
M , where b is a large enough

constant (say, b ≥ 8), there exists an efficient adversary A whose r-window dis-
tance one-wayness advantage is very close to 1. More precisely, let r = b M−1√

M−2+1,

and the theorem implies there exists an A such that

Advr,z-wow
ROPF[M],[N]

(A) ≥ 1− 2e−b
2/2.

4.1 Further Security Considerations for ROPFs

In this section, we explore several important questions regarding our ROPF
security analysis.

Effect of Known-Plaintext Attacks. It is a natural question to ask what
happens to the security of an ROPF scheme when the adversary knows a certain
number of plaintext-ciphertext pairs. In general, we can answer this question for
each definition of one-wayness using a simple extension of the arguments above.

In the scheme ROPFD,R, known plaintext-ciphertext pairs split the plaintext
and ciphertext spaces into subspaces. On each subspace, the analysis under each
one-wayness definition reduces to that of an ROPF on the domain and range
of the subspace. For instance, if (m1, c1) and (m2, c2) are known for m1 < m2,
and no other known plaintext-ciphertext pairs occur between these two, then for
D′ = {m ∈ D | m1 < m < m2} and R′ = {c ∈ R | c1 < c < c2}, we analyze
the behavior of the function on this subspace by considering the one-wayness
bounds on ROPFD′,R′ .

This brings up an important issue. For much of our analysis to apply to a
scheme, it must be the case that the ciphertext space is at least twice the size of
the message space. Therefore, in order to make sure that our analysis will still
apply to most subspaces once several plaintext-ciphertext pairs are discovered
by the adversary, we would like to choose the initial parameters in such a way
that subspaces are unlikely to violate this condition.

Choosing the Ciphertext Space Size. This brings us to the question posed
in [8]: given a plaintext space of size M , what should be the size N of the
ciphertext space? The recommendation and justification given in [8] was ad-hoc,
necessarily so because the paper lacked a notion of security that would in any
way depend on the size of N compared to M . Indeed, the choice of N has to
do with the nature of the ideal object, an ROPF, while [8] was focused only
on pseudorandomly sampling that ideal object, not analyzing it. Now that we
have ways of characterizing the security of an ROPF using our one-wayness
definitions, we can more justifiably discuss the question of what to choose for
N .

For g ∈ OPF[M ],[N ], if m1 < m2 ∈ [M ] exist such that g(m2) − g(m1) <
2(m2−m1), then we say that g is shallow on the ciphertext interval [g(m1), g(m2)].
The bounds found in the previous sections assume that N ≥ 2M . Thus, any non-
shallow interval can be analyzed through our theorems about one-wayness, and



as a result we would like to choose N to avoid shallow intervals, both in the
original space and in potential subspaces.

In particular, consider the following result, which bounds the probability that
an interval between encryptions of two random plaintexts is shallow.

Proposition 1. Let t = (N − 1)/(M − 1), and assume t ≥ 7. Let m1
$← [M ],

m2
$← [M ] \ {m1}, K

$← Kr, Encr(K, (m1,m2)) = (c1, c2), w = c2 − c1 mod M ,
and d = m2 −m1 mod M . Then over the choice of m1,m2,K,

Pr [ 2d > w ] <
3

t

1√
(M − 1)/ lnM

.

The proof can be found in [9] and is mostly algebraic fiddling.

This bound gives us an idea of good values for t ≈ N/M . In particular, it
seems that choosing a constant for t ≥ 7, that is, taking N to be a constant
multiple of M , is sufficient in order to make the above probability negligible.
Whether the constant should be large or small depends on one’s tolerance for
random intervals to be shallow.

On Implementing a Scheme to Support Range Queries using POPF.
We stress that most of our analysis relies on the uniformity assumption as-
sumption, namely that challenge messages come from a uniform distribution.
(Intuitively, the we need this in our analysis so that the ciphertexts fall into
a range subset of the range.) It is an open problem to extend our analysis to
other input distributions, and until that is accomplished, we do not recommend
practitioners draw any conclusions from the analysis.

5 Achieving Stronger Security

We study new ways to achieve better security than the OPE scheme of [8] while
still allowing for efficient range queries on encrypted data. But first, we define
a general primitive, Efficiently Orderable Encryption (EOE), that includes all
schemes that support efficient standard range queries, including OPE. We show
that IND-OCPA, defined and shown to be unachievable by OPE in [8], is the
ideal security definition for such schemes.

We define “committed” analogues of EOE and IND-OCPA, namely CEOE
and IND-CCPA, that apply to the practical scenario where the database to
encrypt is pre-determined and static. Such a setting has been studied in several
works on searchable encryption, including the first paper to propose an order-
preserving scheme [1, 13]. We then propose a new CEOE scheme that is CCPA-
secure.

Finally, we develop a generic modification of an OPE that supports modular
range queries (but not standard range queries) and overcomes some of the se-
curity weaknesses of any OPE that we studied in Section 4. The scheme is not
EOE because it does not leak order; rather, it leaks only “modular” order.



Efficiently Orderable Encryption. We say that EOE = (K, Enc,Dec,W ) is
an efficiently-orderable encryption (EOE) scheme if K, Enc,Dec are the algo-
rithms of a symmetric encryption scheme, W is an efficient algorithm that takes
two ciphertexts as input, and defining CK = {Enc(K ,m) | m ∈ M} as the set
of valid ciphertexts for key K ,

W (c0, c1) =


1 if Dec(K , c0) < Dec(K , c1)

0 if Dec(K , c0) = Dec(K , c1)

−1 if Dec(K , c0) > Dec(K , c1)

for any key K and all c0, c1 ∈ CK . It is easy to see that such a scheme permits
efficient standard range queries, as the server can keep the encrypted database
sorted using W .

It is also clear that any OPE scheme (K, Enc,Dec) corresponds to an EOE
scheme with the same key generation, encryption, and decryption algorithms,
and W (c0, c1) outputting 1, 0, or −1 if the relation between c0 and c1 is <, =, or
>, respectively. But in general an EOE scheme does not have to be deterministic.

5.1 Committed Efficiently-Orderable Encryption

Range Queries on a Predetermined Static Database. Now we consider
schemes for the settings when it is possible for the user to preprocess the whole
data before encrypting and sending it to the server. For that we allow the key
generation of an EOE scheme to take the message set as input, which we rename
a committed EOE scheme.

Committed efficiently-orderable encryption. A committed efficiently-order-
able encryption (CEOE) scheme on domain D is a tuple (K, Enc,Dec,W ) satis-
fying the following.

– The randomized key generation algorithm K takes a message space M⊂ D
(called the committed message space) as input and outputs a secret key K .

– For any committed message spaceM⊂ D, (K(M), Enc,Dec,W ) is an EOE
scheme on M.

We will show that a CEOE scheme can achieve very strong security. In par-
ticular, it can achieve the “committed” adaptation of the IND-OCPA notion
from [8], where the adversary outputs two vectors of plaintexts with the same
order and equality pattern and is asked to guess whether it is given encryptions
of the first or second vector. We define indistinguishability under committed
chosen plaintext attacks (IND-CCPA). The definition mimics IND-OCPA ex-
cept that the adversary chooses the challenge vectors (now viewed as message
spaces) before key generation, and the scheme’s key generation algorithm takes
the appropriate message space as input.

IND-CCPA. Let CEOE = (K, Enc,Dec,W ) be a CEOE scheme on message
space M.



For an adversary A = (A1, A2) and b ∈ {0, 1} consider the following experi-
ment. (σ denotes a state.)

Experiment Expind-ccpa-b
CEOE (A)

(M0,M1, σ)
$← A1 ; If |M0| 6= |M1| then output ⊥.

Otherwise, let l = |M0| = |M1|
Let mj

1 < mj
2 < . . . < mj

l be the elements of Mj , for j = 0, 1
If there exist 1 ≤ i ≤ l so that |m0

i | 6= |m1
i | then output ⊥

K
$← K(Mb) ; cj ← Enc(K ,mb

j) for j = 1, . . . , l

d
$← A2(σ, c1, c1, . . . , cl). Return d

For an adversary A, define its ind-ccpa advantage against SE as

Advind-ccpa
CEOE (A) = Pr

[
Expind-ccpa-1

CEOE (A) = 1
]
− Pr

[
Expind-ccpa-0

CEOE (A) = 1
]
.

We say that CEOE is IND-CCPA secure if the ind-ccpa advantage of any adver-
sary against CEOE is small.

Our CEOE construction and its security. We now propose a CEOE scheme
that will achieve IND-CCPA security. A ciphertext in our scheme consists of a
semantically-secure ciphertext of the message concatenated with the tag, which
indicates the order of the message in the ordered message list. As a building
block for our scheme we use monotone minimal perfect hash functions, defined
as follows.

LetM be a set with a total (lexicographical) order. h is a monotone minimal
perfect hash function [4] (MMPHF) on M if h sends the ith largest element of
M to i, for i = 0, 1, . . . , |M|− 1. Notice that the MMPHF on any given domain
M is unique. So that we can use MMPHFs in the upcoming construction, let an
index tagging scheme (K, τ) be a pair of algorithms such that K takes a domain
M and outputs a secret key KM so that τ(KM, ·) is the (unique) MMPHF for
M, while τ(K ,m) =⊥ for any m /∈M.

Our CEOE construction is based on two building blocks: MMPHF tagging
and any symmetric encryption scheme.

Let (Kt, τ) be an index tagging scheme. Fix a universe D, and let SE =
(K′, Enc′,Dec′) be any symmetric encryption scheme on D. We construct a
CEOE scheme (K, Enc,Dec,W ) as follows.

– K takes M ⊂ D as input, runs Kt ← Kt(M) and Ke ← K′, and returns
K = Kt‖Ke.

– Enc takes key K = Kt‖Ke and message m as input, and computes i =
τ(Kt,m). If i =⊥ then Enc returns ⊥, otherwise it returns i‖Enc′(Ke,m).

– Dec takes key K = Kt‖Ke and ciphertext c = i‖c′ as input, and returns
Dec′(Ke, c

′).

– W takes ciphertexts c0 = i0‖c′0 and c1 = i1‖c′1 as input, and returns 1 if
i0 < i1, 0 if i0 = i1, and −1 if i0 > i1.



We note that unlike the scheme with pre-processing for exact-match queries [13],
when using the above scheme the server does indexing and query processing as
for unencrypted data, which is a practical advantage. Also, as the following result
shows, the scheme is secure under IND-CCPA.

Theorem 5. The CEOE scheme defined above is IND-CCPA-secure provided
the underlying symmetric encryption scheme is IND-CPA secure.

The proof is in the full version [9].
Note that our secure CEOE construction relies on an efficient MMHPF im-

plementation. Luckily, MMHPFs were studied recently by [4]. They showed that
for a universe of size 2w and for n ≥ logw, the shortest possible description of an
MMPHF function (and thus, best possible key length for a tagging scheme) on
n elements is unfortunately quite large at Ω(n) bits. This is somewhat disheart-
ening, as a naive solution, in which the MMPHF key consists of an n-entry array
whose ith entry is the ith largest element in the domain, has a key length of
O(nw). Nevertheless, the authors of [4] were able to generate MMPHF descrip-
tions that are closer to the optimal bound: one construction uses O(n log logw)
bits and has query time O(logw), and the other uses O(n logw) bits and has
constant query time. This is still large, but may be practical depending on the
parameters involved.

5.2 Modular OPE and Analysis of an Ideal MOPE Scheme

Modular OPE. We propose a modification to (that can be viewed as a gen-
eralization of) an OPE scheme that improves the security performance of any
OPE. The resulting scheme is no longer strictly order-preserving, but it still
permits range queries. However, now the queries must be modular range queries.
Standard range queries are not supported, as only “modular order” rather than
order is leaked. The modification from OPE is simple, generic, and basically free
computation-wise.

Let SE [M ],[N ] = (K, Enc,Dec) be an order-preserving encryption scheme.
Define a modular order-preserving encryption scheme (MOPE) SE [M ],[N ] = (Km,
Encm, Decm) as follows.

• Km runs K to get K, picks j
$← [M ] and returns (K, j).

• Encm on input (K, j) and m returns Enc(K,m− j mod M).
• Decm on inputs (K, j) and c returns Dec(K, c) + j mod M .

Notice that a MOPE is suitable for modular range query support as follows. To
request the ciphertexts of the messages in the range [m1,m2] (if m1 ≤ m2), or
[m1,M ] ∪ [1,m2] (if m1 > m2), the user computes c1 ← Encm(K,m1), c2 ←
Encm(K,m2) and submits ciphertexts (c1, c2) as the query. The server returns
the ciphertexts in the interval [c1, c2] (if c1 ≤ c2) or [c1, N ] ∪ [1, c2] (if c1 > c2).

MOPE Security and Random MOPF. In order to define the security of
an MOPE scheme, we introduce a generalization of OPFs. For j ∈ [M ], let



φj : [M ] → [M ] be the cyclic transformation φj(x) = (x − j − 1) mod M + 1.
We define the set of modular order preserving functions from [M ] to [N ] as

MOPF[M ],[N ] = {f ◦ φj | f ∈ OPF[M ],[N ], j ∈ [M ]} .

Note that all OPFs are MOPFs; on the other hand, most MOPFs are not
OPFs. However, a MOPF g is “modular order-preserving” in that the function
g − g(0) mod N is order-preserving.

Now, define RMOPF[M ],[N ] = (Krm, Encrm, Decrm), the random modular
order-preserving function scheme, as the following (inefficient) encryption scheme:

• Krm returns a random instance g of MOPF[M ][N ].
• Encrm takes the key g and a plaintext m to return g(m).
• Decrm takes the key g and a ciphertext c to return g−1(c).

Note that an MOPF could alternatively be defined with a random ciphertext
shift following the OPF rather than a random plaintext shift preceding it. The
advantage of the above definition is that the map from (OPF, ciphertext offset)
pairs to MOPFs is bijective whereas in the alternative it is not one-to-one.

We now are ready to define MOPE security. Fix an MOPE scheme SE [M ],[N ] =
(Km, Encm,Decm). Let RMOPF[M ],[N ] = (Krm, Encrm,Decrm) be as defined

above. For an adversary A, define its Advpmopf
SE (A), pmopf-advantage (or pseu-

dorandom modular order-preserving function advantage) against SE as

Pr
[
K

$← Km : AEncm(K,·) = 1
]
− Pr

[
g

$← RMOPF[M ],[N ] : Ag(·) = 1
]
.

It is straightforward to show that the MOPE scheme obtained from any
POPF-secure OPE scheme via the transformation defined in the beginning of
Section 5.2 is PMOPF-secure, under the same assumption as the base scheme.
We omit the details.

We now analyze the ideal object, RMOPF, under the one-wayness definitions.

Window One-Wayness of RMOPF. The following proposition, proved in [9],
establishes that RMOPF is optimally r, z-window one-way (and hence optimally
one-way, taking r = 1) in the sense that an adversary cannot do better than
an adversary that outputs a random window independent of the challenge set.
(Reminder: “window” includes windows that wrap around the edge of the space.)

Proposition 2. Fix any window size r and challenge set size z. Let Arand(r)
be an r, z-WOW adversary that, on any input, outputs a random r-window from
[M ]. Then for any adversary A,

Advr,z-wow
RMOPF[M],[N]

(A) ≤ Advr,z-wow
RMOPF[M],[N]

(Arand(r)) ≤ rz/M .

As one might surmise, the above “optimal” characterization of the one-
wayness of a random MOPF fails to show a complete picture of the information
a random MOPF leaks. To investigate further, we turn to distance one-wayness.

WDOW Advantage Bounds for RMOPF. We claim that the distance one-
wayness analysis for RMOPF is exactly the same as for ROPF. To see this,
consider the following proposition, whose (short) proof is in [9].



Proposition 3. Let c1, c2 ∈ [N ]. Then for any d ∈ {0, . . . ,M − 1},

Pr [Decr(K1, c2)−Decr(K1, c1) = d ]

= Pr [Decrm(K2, c2)−Decrm(K2, c1) = d ] ,

where the probabilities are over, respectively, K1
$← Kr and K2

$← Krm.

Therefore, the 1, z-WDOW advantage upper bound of Theorem 3 and the r, z-
WDOW advantage lower bound of Theorem 4 against ROPF schemes also apply
to RMOPF schemes on the same parameters.

So, while an RMOPF has similar security to that of an ROPF for distance and
window distance one-wayness, it is better in terms of one-wayness and window
one-wayness. The analysis easily transfers to any secure MOPE scheme. We now
discuss a few supplemental security considerations for RMOPF schemes.

Effect of a Known-Plaintext Attack on RMOPF. In the RMOPF[M ],[N ]

scheme, if the adversary learns a single plaintext-ciphertext pair, then the one-
wayness analysis reduces to that of ROPF[M−1],[N−1]. To see this, note that if g
is a random function in MOPF[M ],[N ], and it is revealed that g(m0) = c0, then
f(m) = g(m+m0 mod M)−c0 mod N is a random function in OPF[M−1],[N−1].

On Implementing a Scheme to Support Range Queries using PMOPF.
We note that when a pseudorandom MOPF scheme is used to implement a
range-query-supporting database, even wrap-around target range queries must
be made, for otherwise an adversary may infer the secret offset of the MOPF
scheme after observing many non-wrap-around target queries.

Remark. We finally note that the tagging scheme defined in Section 5.1 could
be similarly modified so that its tag receives a secret offset. The resulting scheme
would support modular range queries in predetermined static database scenario,
and satisfy a stronger version of IND-CCPA, leaking only “modular” order.
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