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Abstract. We prove that Tandem-DM, which is one of the two “classi-
cal” schemes for turning a blockcipher of 2n-bit key into a double block
length hash function, has birthday-type collision resistance in the ideal
cipher model. A collision resistance analysis for Tandem-DM achieving
a similar birthday-type bound was already proposed by Fleischmann,
Gorski and Lucks at FSE 2009 [3]. As we detail, however, the latter
analysis is wrong, thus leaving the collision resistance of Tandem-DM as
an open problem until now. Our analysis exhibits a novel feature in that
we introduce a trick not used before in ideal cipher proofs.

1 Introduction

The Tandem-DM compression function is a 3n-bit to 2n-bit compression function
based on two applications of a blockcipher of 2n-bit key and n-bit word length
(Fig. 1). While Tandem-DM was proposed by Lai and Massey in 1992 [8] the
first proof of collision security for Tandem-DM (in the ideal cipher model, as is
usual for all such proofs) was only proposed in 2009 by Fleischmann, Gorski and
Lucks [3]. Unfortunately, as we detail in Section 3, the “FGL proof” (as we shall
refer to it) has a number of serious flaws which make it false and nonobvious to
repair. The purpose of this paper is to offer a correct collision resistance analysis
of Tandem-DM. We show that, as claimed in [3], Tandem-DM does indeed have
birthday-type collision security (necessitating at least 2120.8 queries to break
when the output length is 2n = 256 bits). A nice feature of our work is that
the analysis is relatively simple compared to typical results in this area. This
simplicity is afforded by a new trick we introduce, apparently not used before in
ideal cipher analyses.
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Fig. 1: The Tandem-DM compression function. All wires carry n-bit values. The top
and bottom blockciphers are the same. Each has a 2n-bit key and n-bit input/output.
The wire marked L is an input to the compression function (along with A and B).

Related work on double block length constructions. Another clas-
sical scheme for turning a 2n-bit key blockcipher into a 3n-bit to 2n-bit com-
pression function is Abreast-DM, pictured in Fig. 2, which was proposed by Lai
and Massey in the same paper as Tandem-DM [8]. The collision resistance of
Abreast-DM was independently resolved by Fleischmann, Gorski and Lucks [4]
and Lee and Kwon [9], who both showed birthday-type collision resistance for
Abreast-DM. Before that, Hirose [5] had given a collision resistance analysis for
a general class of compression functions that included Abreast-DM as a special
case, but under the assumption that the top and bottom blockciphers of the
diagram be distinct (this considerably simplifies the analysis). The work by Hi-
rose was further generalized by Özen and Stam [14], who additionally discuss
schemes that are only secure in the iteration.

Another 3n-bit to 2n-bit compression function making two calls to a blockci-
pher of 2n-bit key was proposed by Hirose [6], who proved birthday-type collision
resistance for his construction in the ideal cipher model. Hirose’s construction
(Fig. 3) is simpler than either Abreast-DM or Tandem-DM and in particular uses
a single keying schedule for the top and bottom blockciphers. It is noteworthy
that while Hirose introduced his construction over 10 years after Abreast-DM
and Tandem-DM his collision resistance analysis pre-dates similar collision re-
sistance analyses for Abreast-DM and Tandem-DM.

It is also possible to achieve birthday-type collision resistance for a 3n-bit to
2n-bit compression functions making only a single call to a 2n-bit key blockci-
pher [10, 13, 14, 19–22]; however these constructions have considerable overhead
(typically comparable to a blockcipher call itself).

Comparison. Of the three well-known 3n-bit to 2n-bit compression functions
making two calls to a 2n-bit key blockcipher—those being Tandem-DM, Abreast-
DM and Hirose’s construction—the two constructions whose collision resistance
has been successfully resolved (Hirose and Abreast-DM) share the feature that
the inputs to the top and bottom blockcipher are bijectively related. For exam-
ple, for Abreast-DM, if the top blockcipher call is EB‖L(A) then the bottom
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Fig. 2: The Abreast-DM compression function. The empty circle at bottom left denotes
bit complementation.
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Fig. 3: Hirose’s compression function. The bottom left-hand wire is not an input; it
carries an arbitrary nonzero constant c.

blockcipher call (for the same input A‖B) is EL‖A(B), where B denotes bit
complementation of B; thus the inputs to the top and bottom blockciphers are
related by the permutation π : {0, 1}3n → {0, 1}3n, π(X‖Y ‖Z) = Y ‖Z‖X . (Here
the last 2n bits are the key.) In Hirose’s construction, the inputs to the top and
bottom blockciphers are related by the permutation π′ : {0, 1}3n → {0, 1}3n,
π′(X‖Y ‖Z) = X ⊕ c‖Y ‖Z.

By contrast, Tandem-DM exhibits a more subtle relationship between the
inputs of the top and bottom blockciphers, as an output of the top blockcipher
is used to key the bottom blockcipher. It is the presence of this “feedback”
within the construction, it seems, that has complicated efforts to prove a collision
resistance bound. On the other hand, Tandem-DM still has the agreeable feature
that the top and bottom blockcipher calls uniquely determine each other in
the following sense: given the key B‖L and output R of the top cipher one
can determine the key L‖R and the input B of the bottom cipher, and vice-
versa. This contrasts with constructions such as MDC-2 which use two calls to
a blockcipher of n-bit key, and in which the top and bottom blockcipher calls
do not uniquely determine each other. Typically, collision resistance analyses
are much harder for the latter kind of compression functions. (MDC-2 can only



be proved nontrivially collision resistant in the iteration, and the current best
bound of O(2

3
5
n) queries due to Steinberger [18] is undoubtedly suboptimal.)

We note that the permutations π and π′ discussed above share the com-
mon feature of having small cycle lengths—all cycles of π have length 6 and
all cycles of π′ have length 2—which constitutes another strong similarity be-
tween Abreast-DM and Hirose’s scheme. In fact, due to this reason, Hirose’s
collision resistance proof and the Abreast-DM collision resistance proof can be
seen as special cases of the same framework, as noted in [4, 9]. Building on this
observation, Fleischmann et al. [4] defined a general class of compression func-
tions called ‘Cyclic-DM’ that are amenable to collision resistance analyses and
that include Hirose’s scheme and Abreast-DM as special cases. Similarly, one
can define collision-resistant generalizations of Tandem-DM by isolating those
properties of Tandem-DM that are used in our proof. While defining the most
all-encompassing possible collision resistant generalization of Tandem-DM is not
the goal of our work, we do briefly discuss these key properties and the corre-
sponding collision-resistant generalizations of Tandem-DM in the paper’s full
version [11].

We mention that Fleischmann et al. [2] also provided a comprehensive gen-
eralization of their earlier works [3, 4]. In particular, a new and tighter collision
resistance claim for Tandem-DM is made. Unfortunately, this second analysis
has many similar flaws to the first, which are fatal to the integrity of the argu-
ment and to the final bound (in particular, the crucial “Argument B” of [2] is
incorrect).

Full version contents. The proof of collision resistance that we provide in
this paper is very slick, but slightly mysterious in its efficacy because it relies
on a subtle trick that cuts out a large portion of the case analysis that “would
have been there” in a more standard proof. As a kind of pedagogical bonus, the
full version of this paper [11] contains a second collision resistance proof which
does not utilize this trick. This proof is more straightforward but much longer,
and the bound obtained is slightly worse (but still birthday).

Fleischmann et al. [3] also provide a preimage resistance proof for Tandem-
DM which, unfortunately, suffers from similar flaws as their collision resistance
proof. The full version of this paper [11] contains a description of these flaws,
as well as a corrected preimage analysis. This preimage analysis shows Ω(2n)
queries are necessary to invert Tandem-DM on a random range point. We note,
however, that dramatic progress has recently been made in this area, and it is
now known that Ω(22n) queries are necessary to invert Tandem-DM as well as
Abreast-DM and Hirose’s scheme [7, 12].

Further possible improvements. We note that our collision resistance has
the form Õ(q/(2n−q)) rather than Õ(q2/(2n−q)2). Both bounds reach constant
values when q = Ω(2n), however q2/(2n− q)2 grows slower than q/(2n− q) since
our bound is (only) “linear birthday” rather than true “quadratic birthday”.
We leave it as an open problem to prove “quadratic birthday”-type collision
resistance for Tandem-DM (as exists for Abreast-DM and Hirose’s scheme).



2 Definitions

A blockcipher is a function E : {0, 1}m × {0, 1}n → {0, 1}n such that E(K, ·)
is a permutation of {0, 1}n for each K ∈ {0, 1}m. We call m the key size and
n the word size of the blockcipher. It is customary to write EK(X) instead of
E(K,X) for K ∈ {0, 1}m, X ∈ {0, 1}n. The function E−1

K (·) denotes the inverse
of EK(·) (as EK(·) is a permutation).

Given a blockcipher E : {0, 1}2n × {0, 1}n → {0, 1}n we define the Tandem-
DM compression function TDME : {0, 1}3n → {0, 1}2n by

TDME(A‖B‖L) = (A⊕R)‖(B ⊕ S)

where

R = EB‖L(A) and S = EL‖R(B).

In the collision resistance experiment, a computationally unbounded adver-
sary A is given oracle access to a blockcipher E uniformly sampled among all
blockciphers of key length 2n and word length n. We allow A to query both
E and E−1. After q queries to E, the query history of A is the set of triples
Q = {(Xi,Ki, Yi)}

q
i=1 such that EKi

(Xi) = Yi and A’s i-th query is either
EKi

(Xi) or E
−1
Ki

(Yi) for 1 ≤ i ≤ q. We let Qi = {(Xj,Kj, Yj)}
i
j=1 be the first i

elements of the query history; thus Q = Qq. We say A succeeds or finds a colli-

sion after its first i queries if there exist distinct 3n-bit values, A‖B‖L, A′‖B′‖L′

such that TDME(A‖B‖L) = TDME(A′‖B′‖L′) and such that Qi contains both
the queries necessary to compute TDME(A‖B‖L) and TDME(A′‖B′‖L′). More
formally—and see Fig. 4—we define this event by a predicate Coll(Qi), which is
true if and only if there exist n-bit values A, B, L, R, S, A′, B′, L′, R′, S′ such
that

A‖B‖L 6= A′‖B′‖L′, A⊕R = A′ ⊕R′, B ⊕ S = B′ ⊕ S′ (1)

and such that

(A,B‖L,R), (B,L‖R,S), (A′, B′‖L′, R′), (B′, L′‖R′, S′) ∈ Qi. (2)

We denote by

Advcoll
TDM (q)

the maximum chance of an adversarymaking q queries causing Coll(Q) to become
true. The probability occurs over the uniform choice of E and over A’s coin
tosses, if any. Also note that n is a hidden parameter.

The “XOR-output” of a query (Xi,Ki, Yi) is the quantity Xi ⊕ Yi. Another
predicate which plays an important part in both our proof and the FGL proof
is the “many queries with the same XOR-output” predicate Xor(Q), defined on
a query history Q = {(Xi,Ki, Yi)}

q
i=1 by

Xor(Q) ⇐⇒ max
Z∈{0,1}n

|{i : Xi ⊕ Yi = Z}| > α.



Here α is a free parameter of the analysis which appears in the final collision re-
sistance bound. (In [3] this predicate is named Lucky(Q); in [18] a similar pred-
icate is named Win0(Q).) Without going into details at this point, we mention
that the FGL collision resistance proof—and ours, essentially, as well—upper
bounds Pr[Coll(Q)] by Pr[Xor(Q)] + Pr[Coll(Q) ∧ ¬Xor(Q)]. A larger α implies
a lower value for Pr[Xor(Q)] and a higher value for Pr[Coll(Q) ∧ ¬Xor(Q)]. The
best value of α can be found numerically for a given value of n and q. Gener-
ally, readers may think of α as some small constant value (e.g. for n = 128 and
q = 2120.87, α = 16).

So far, we have described “infrastructure” that is common to both proofs. We
shall now introduce some material proper to our proof. Note a query historyQ =
{(Xi,Ki, Yi)}

q
i=1 does not record whether each triple (Xi,Ki, Yi) was obtained

by the adversary through a forward query EKi
(Xi) or a backward queryE−1

Ki
(Yi).

For this, we maintain two arrays Fwd[·] and Bwd[·] where Fwd[i] = 1 if and only
if the adversary’s i-th query is a forward query and Bwd[i] = 1 if and only if
the adversary’s i-th query is a backward query. We then define an additional
predicate

FB(Q) ⇐⇒ max
Z∈{0,1}n

|{i : (Yi = Z ∧ Fwd[i] = 1) ∨ (Xi = Z ∧ Bwd[i] = 1)}| > α.

(3)

(‘FB’ stands for “Forward Backward”.) Here α is the same free parameter as
above. Note that ¬FB(Q) implies that

maxZ∈{0,1}n |{i : Yi = Z ∧ Fwd[i] = 1}| ≤ α, (4)

maxZ∈{0,1}n |{i : Xi = Z ∧ Bwd[i] = 1}| ≤ α. (5)

It is really consequences (4) and (5) of ¬FB(Q) that interest us, though we define
FB(Q) via (3) because this makes it slightly easier to bound Pr[FB(Q)]. We will
use the bound

Pr[Coll(Q)] ≤ Pr[Xor(Q)] + Pr[Coll(Q) ∧ ¬Xor(Q)]

≤ Pr[Xor(Q)] + Pr[FB(Q)] + Pr[Coll(Q) ∧ ¬Xor(Q) ∧ ¬FB(Q)]. (6)

One should thus think of FB(Q) and Xor(Q) as bad events whose nonoccurrence
helps bound the probability of Coll(Q) occurring. We warn that (6) constitutes a
slightly oversimplified encapsulation of our proof’s high-level structure. We refer
to Section 4 for more details.

3 The FGL collision resistance proof

Since the interest of our paper would be substantially diminished (though not
nullified, since our proof is much shorter) if the FGL collision resistance proof
were correct, we detail here some of our objections to [3]. This material also
serves as a good introduction to our own proof, and will give the reader more
intuition about Tandem-DM.



TL

BL
B

B L

A R

R

S B⊕S

A⊕R
TR

BR
B′

B′ L′

A′ R′

R′

S′ B′⊕S′

A′⊕R′

Fig. 4: The collision diagram for Tandem-DM. The adversary must find blockcipher
queries to fit both sides of the diagram such that A⊕ R = A′ ⊕R′, B ⊕ S = B′ ⊕ S′

and A‖B‖L 6= A′‖B′‖L′. More precisely, the adversary must find four queries of the
form EB‖L(A) = R, EL‖R(B) = S, EB′‖L′(A′) = R′, EL′‖R′(B′) = S′ such that the
above conditions hold. Each query could either be learned through a forward query (to
E) or through a backward query (to E−1). The four queries in the diagram are labeled
‘TL’, ‘BL’, ‘TR’, ‘BR’ for ‘Top Left’, ‘Bottom Left’, etc.

Starting with a q-query collision-finding adversary A, FGL first make the
standard assumption that A never makes a query to which it already knows the
answer (this could occur two ways: A could make the exact same query twice, or
A could query (say) E−1

K (Y ) after having received Y as an answer beforehand
to a query EK(X)). This ensures each answer A receives comes uniformly at
random from a set of size at least 2n − q (since EK(·) is a random permutation
for each K). Moreover, after A makes i queries its query history will contain
exactly i distinct elements.

Say A succeeds at the i-th query if Coll(Qi) holds but neither Coll(Qi−1)
nor Xor(Qi−1) holds. By upper bounding the probability that A ever succeeds
we upper bound Pr[Coll(Q)∧¬Xor(Q)]. (Upper bounding Pr[Xor(Q)] is an easy
probability exercise that we overlook for the purposes of this proof sketch.) A
good analogy is to view A as trying to complete a puzzle where each element of
its query history is a puzzle piece it can use to complete the collision diagram
of Fig. 4. We use the expressions “A succeeds”, “A finds a [puzzle] solution” or
“A completes a collision” interchangeably (and we will rarely remind that the
condition ¬Xor(Qi−1) must hold for A to succeed). We refer to the four queries
(in any hypothetical puzzle solution (a.k.a. collision)) as ‘TL’, ‘BL’, ‘TR’ and
‘BR’; see Fig. 4.

Note the constraint A‖B‖L 6= A′‖B′‖L′ does not imply that the queries TL,
BL, TR, BR are all distinct. For example, one could have TL = BR (in which case
(A,B‖L,R) = (B′, L′‖R′, S′), so A = B′, B = L′, L = R′ and R = S′) or TL =
BL (in which case we have the dramatic consequence that A = B = L = R = S,
as is easy to check). This gives rise to several combinatorially distinct cases
to consider; A’s chance of obtaining a solution of each kind is upper bounded
separately, and these probabilities are added together to form a final upper bound
on A’s chance of success. (Oddly, FGL include the cases TL = TR and BL = BR



in their analysis, while these are impossible since they imply A‖B‖L = A′‖B′‖L′.
This oversight, however, does not imply an incorrect proof in itself.)

We shall restrict our critique to FGL’s analysis of the “generic” case when the
queries TL, BL, TR, BR are all distinct. We note that, in these types of analyses,
the generic case is usually the hardest to handle as A’s job typically grows harder
when additional constraints are placed on its solution. (The possibility of reusing
the same query in two different positions of the collision diagram does, however,
occasionally prove useful to A, depending on the construction, so all cases must
always be considered.) We call a puzzle solution in which TL, BL, TR, BR are
distinct a “generic solution.”

If A succeeds in finding a generic solution there is a smallest i such that a
generic solution can be assembled from the queries in Qi. The i-th query is then
called the “last query” of A’s solution. To upper bound A’s chance of obtaining
a generic solution, FGL consider two cases. The first case is the event that A’s
last query can be used in position TL of the puzzle solution and the second case
is the event that A’s last query can be used in position BL (one of these two
cases must occur). We shall focus on the first of these two cases, which is also
the first analyzed in the order of the FGL proof. We call it the “TL generic”
case.

One would typically consider two subcases for the TL generic case (or any
other) depending on whether A’s last query is a forward query to E or an inverse
query to E−1, but FGL lump their analysis into a single argument claiming that
the two types of queries can be handled the same (in fact, they make this claim for
every case in their proof, and never distinguish between forward and backward
queries to E). For clarity, however, we shall restrict ourselves to considering the
case of a forward query to E, and discuss how their argument specializes to that
case. We also choose to specifically consider the forward query case because this
is where FGL’s analysis seems to be the most problematic.

The task at hand is thus to upper bound A’s chance of completing a generic
solution by making a forward query to E that can be used as query TL of such a
solution. The usual approach for this, and the one used by FGL, is to consider any
given forward queryEKi

(Xi) made byA and to upper bound the probability that
the answer Yi to this query is such that the query history element (Xi,Ki, Yi) can
be used in the desired manner; one then multiplies this probability by q since
A can make q queries total. With foresight on how we wish to use the query
EKi

(Xi) it is convenient to rename Ki as B‖L and Xi as A; thus the query is
EB‖L(A). To proceed, one would typically upper bound the number of values
R ∈ {0, 1}n such that, if we had EB‖L(A) = R, the query (A,B‖L,R) could
be used in position TL of a generic solution together with previous elements of
the query history, and divide this number by 2n − q, since the answer to the
query EB‖L(A) will come uniformly at random from a set of size at least 2n− q.
In turn, the standard, formal way of bounding the number of such R’s would
be to upper bound the possible number of query triples (BL, BR, TR) already
in the query history that could potentially be used with the query EB‖L(A) to
form a generic solution, as the number of such triples is an upper bound for



the number of R’s. Note such a triple must have the form BL = (B,L‖R,S),
BR = (B′, L′‖R′, S′), TR = (A′, B′‖L′, R′) where B ⊕ S = B′ ⊕ S′ (and note
that A, B and L are fixed here by the last query).

FGL, however, do not adopt4 this approach for bounding the number of good
R’s. Rather, they make the following argument: take the value of R, whatever
it is, that is returned by the query EB‖L(A); because ¬Xor(Qi−1) there will be
at most α queries TR = (A′, B′‖L′, R′) in the query history such that A⊕R =
A′ ⊕R′; as the TR query uniquely determines the BR query, there are at most
α possibilities for the BR query; now “give the query BL = (B,L‖R,S) for free
to the adversary”; then since there are at most α possibilities for the query BR
= (B′, L′‖R′, S′) there is chance at most α/(2n − q) that B ⊕ S = B′ ⊕ S′ for
one of the queries BR, so total chance at most qα/(2n − q) that the adversary
ever obtains a TL-generic solution with a forward query, there being at most q
queries total.

The fallacy in the above argument can be succinctly summarized by pointing
out that the query BL = (B,L‖R,S) may already be in the query history, in

which case there is no randomness left in the value B⊕S. However, let us review
in detail the argument in two different cases: when the query BL = (B,L‖R,S)
is already in the query history prior to the last query, and when it isn’t. (Note
that query BL only depends on R (besides B and L which are fixed by the last
query), and not on which queries are “chosen” for TR and BR.) In the latter
case, when BL = (B,L‖R,S) is not yet in the query history at the i-th query,
then A’s last query can in any case not succeed in completing a generic TL
collision since the query BL is missing; thus there is no need to bound anything
(and no need even to “give the query BL for free”). In the case when query BL
is already in the query history, on the other hand, all randomness is lost once R
is revealed. FGL successfully argue that, for a given value of R, there will be at
most α possibilities for the pair (TR , BR), but this does not in any way imply
the non-existence of such queries TR, BR.

Note also that nothing in the FGL argument precludes the possibility that,
when the adversary makes its i-th query EB‖L(A), there is not some very large
number of distinct values of R—say 20.5n—for which there exists a triplet of
queries (BL, TR, BR) of the form BL = (B,L‖R,S), BR = (B′, L′‖R′, S′),
TR = (A′, B′‖L′, R′) where B ⊕ S = B′ ⊕ S′, and such that R does not yet
appear as the third coordinate of any query in the query history with key B‖L.
Certainly, there being such a large number of values of R does not contradict
¬Xor(Qi−1). Also certainly, the i-th query would have chance 20.5n/(2n − q) of
making the adversary succeed if such a large number of values of R existed, and
not chance α/(2n − q). In other words, one can infer something is wrong with
the FGL argument because it simply does not address the main difficulty of the

4 Neither do we, in fact. Using a careful trick, we manage to upper bound the number
of good R’s by only considering the possibilities for the query BL rather than by
considering the possible triples (BL, TR, BR). In the full version [11], however, we
give for comparison the “brute force” proof which uses the method of upper bounding
the number of triples (BL, TR, BR).



case at hand—that being the potential existence of a large number of triples
(BL, BR, TR) that may fit with the query EB‖L(A).

Other issues are raised by FGL’s casual comment that the query BL =
(B,L‖R,S) is simply “given for free” to the adversary. Indeed, if this query
is not yet present, is it added to the query history before or after the i-th query
itself? Is this query only made after the value of R is revealed, or is it somehow
inserted into the query history before the value of R is revealed? The former
might be all right; the latter not, since it would (drastically) alter R’s distribu-
tion conditioned on the query history, i.e. R would no longer come uniformly
at random from a set of size ≥ 2n − q. Most importantly, since this free query
becomes part of the query history, one should account for the possibility that
this query (not the i-th query) causes the adversary to succeed (and not neces-
sarily by being used in position BL of a generic solution). Indeed, we are forced
to give such credit to the adversary, since we have required the adversary never
to make a query to which it already knows the answer, and since the adversary
may have wished to subsequently make this query itself; this means the case
analysis should be applied recursively to the free query, but if the case analysis
requires other queries to be “given for free”, then we bite our tail and end up
giving an astronomical number of free queries to the adversary (e.g., nearly all
possible queries).

While we singled out the TL generic case for examination, the same kinds
of problems recur throughout the FGL case analysis, essentially invalidating the
entire proof. Moreover, since the FGL proof sidesteps the most crucial challenges
posed by an analysis of Tandem-DM (see the paragraph before last), it leaves
little for any subsequent analysis to build on. We note that the FGL preimage
resistance proof suffers from very similar flaws as the collision resistance proof,
as discussed in the full version of this paper [11].

4 Main result: collision resistance of Tandem-DM

It will be easier to explain the form of the probability bound in our main theorem
if we explain a few high-level ideas from the proof beforehand. The proof starts by
considering an arbitrary q-query collision-finding adversary A for Tandem-DM.
We then construct an adversary A′ as follows: A′ simulates A, but after each
forward query EV ‖W (U) made by A, A′ makes the backward query E−1

U‖V (W )

if it does not already know5 the answer to this query, and after each backward
query E−1

U‖V (W ) made by A, A′ makes the forward query EV ‖W (U) if it does

not already know6 the answer to this query. (To better understand the relation
of these instructions to Tandem-DM, view U , V , W as B, L, R.) Moreover if
A ever makes a query to which A′ already knows the answer from its query
history, A′ ignores this query. Thus A′ never makes a query to which it knows
the answer.

5 More formally, if its query history does not contain any triple of the form (·, U‖V,W ).
6 More formally, if its query history does not contain any triple of the form (U, V ‖W, ·).



Let Q′ be the query history of A′ and Q be the query history of A. Then
Q ⊆ Q′ and |Q′| ≤ 2q. Since Q ⊆ Q′ we have

Pr[Coll(Q)]

≤ Pr[Coll(Q′)]

≤ Pr[Xor(Q′)] + Pr[FB(Q′)] + Pr[Coll(Q′) ∧ ¬Xor(Q′) ∧ ¬FB(Q′)]. (7)

Our proof uses the inequality above to bound Pr[Coll(Q)]. We point out that if
we construct an adversary A′′ from A′ the same way A′ is constructed from A,
then A′′ and A′ will have the same query history, as is not difficult to see. In
other words, every forward query EV ‖W (U) made by A′ (including its “own”

queries) is followed by the query E−1
U‖V (W ) unless A′ already knows this query,

and likewise every backward query E−1
U‖V (W ) made by A′ is followed by the

forward query EV ‖W (U) unless A′ already knows the answer to this query. The
use of the augmented adversaryA′ may seem superficially similar to Fleischmann
et al.’s idea of “giving away a query for free”. However, it will become clear from
our case analysis that we exploit the added structure of Q′ entirely differently
from the way Fleischmann et al. exploit their free queries. We also point out
that the added structure of Q′ enables the main interesting trick of our analysis,
to be found in case ‘TL Forward’ of Proposition 3 below.

We can now more easily discuss our main result:

Theorem 1. Let N = 2n, q < N/2, N ′ = N − 2q and let α be an integer,

1 ≤ α ≤ 2q. Then

Advcoll
TDM (q) ≤ 2N

(

2eq

αN ′

)α

+
4qα

N ′
+

4q

N ′
.

The term 2N
(

2eq
αN ′

)α
in Theorem 1 is an upper bound for Pr[Xor(Q′)]+Pr[FB(Q′)].

In fact Pr[Xor(Q′)] ≤ N
(

2eq
αN ′

)α
and Pr[FB(Q′)] ≤ N

(

2eq
αN ′

)α
. The two remaining

terms 4qα/N ′+4q/N ′ are an upper bound for Pr[Coll(Q′)∧¬Xor(Q′)∧¬FB(Q′)].
To bound Advcoll

TDM (q) for a given value of n and q one should optimize α numer-
ically. For example, for n = 128, Theorem 1 yields that Adv

coll
TDM (2120.87) < 1

2
using α = 16. Asymptotically, Theorem 1 yields the following result:

Corollary 1. limn→∞ Adv
coll
TDM (N/n) = 0.

Proof. Let q = N/n and α = n/ logn, where the logarithm takes base 2. Since
N ′ > N/2 for n > 4, we have

Advcoll
TDM (q) ≤ 2N

(

2eq

αN ′

)α

+
4qα

N ′
+

4q

N ′
≤ 2N

(

4eq

αN

)α

+
8qα

N
+

8q

N

≤ 2N

(

4e logn

n2

)
n

log n

+
8

logn
+

8

n
= 2

(

4e logn

n

)
n

log n

+
8

logn
+

8

n
.

The last expression obviously goes to zero as n → ∞. ⊓⊔



In particular, limn→∞ Advcoll
TDM

(

2(1−ε)n
)

= 0 for any fixed ε > 0.
The proof of Theorem 1 uses refinements Coll1(Q), Coll2(Q), Coll3(Q) of the

collision predicate Coll(Q), defined as follows:

Coll1(Q) occurs if Q contains a collision with TL, BL, TR, BR distinct.
Coll2(Q) occurs if Q contains a collision with either TL = BL or TR = BR.
Coll3(Q) occurs if Q contains a collision with either TL = BR or BL = TR.

For example, Coll2(Q) occurs if there exist values A,B,L,R, S,A′, B′, L′, R′, S′

such that (1)–(2) hold and such that (A,B‖L,R) = (B,L‖R,S). Since BL 6=
BR and TL 6= TR in any collision, we have the following proposition.

Proposition 1. Coll(Q) =⇒ Coll1(Q) ∨ Coll2(Q) ∨ Coll3(Q) for any query

history Q.

In view of proving Theorem 1, let A be an arbitrary q-query adversary for
Tandem-DM, and let A′ be obtained from A as outlined above; let Q be the
query history of A and Q′ be the query history of A′. Then by (7) it suffices to
show that

Pr[Xor(Q′)] ≤ N

(

2eq

αN ′

)α

Pr[FB(Q′)] ≤ N

(

2eq

αN ′

)α

Pr[Coll(Q′) ∧ ¬Xor(Q′) ∧ ¬FB(Q′)] ≤
4qα

N ′
+

4q

N ′

since the sum of the above probabilities is an upper bound for Pr[Coll(Q)]. More-
over, by Proposition 1, Pr[Coll(Q′)∧¬Xor(Q′)∧¬FB(Q′)] can be upper bounded
by finding upper bounds for Pr[Colli(Q

′) ∧ ¬Xor(Q′) ∧ ¬FB(Q′)] for i = 1, 2, 3
and taking the sum of these. We now upper bound these various probabilities in
a series of propositions. For these propositions q, N and α are as in Theorem 1,
and Q′ is the query history of any adversary A′ as just specified. We emphasize
that |Q′| ≤ 2q and that probabilities are taken over the random cipher E and
over the coins of A′, if any (it inherits these from A).

Proposition 2. Pr[Xor(Q′)] ≤ N
(

2eq
αN ′

)α
and Pr[FB(Q′)] ≤ N

(

2eq
αN ′

)α
.

Proof. Without loss of generality, we can assume that A′ always makes exactly
2q queries. Let Q′ = {(X ′

i,K
′
i, Y

′
i )}

2q
i=1 denote the query history of A′. Since

Pr[|{i : X ′
i ⊕ Y ′

i = Z}| > α] ≤

(

2q

α

)(

1

N ′

)α

,

for each Z ∈ {0, 1}n, we have

Pr[Xor(Q′)] ≤ N

(

2q

α

)(

1

N ′

)α

≤ N

(

2q · e

α

)α (

1

N ′

)α

≤ N

(

2eq

αN ′

)α

.

Pr[FB(Q′)] can be bounded similarly. ⊓⊔



Proposition 3. Pr[Coll1(Q
′) ∧ ¬Xor(Q′) ∧ ¬FB(Q′)] ≤ 4qα/N ′.

Proof. Let

Success1(Q
′
i) = Coll1(Q

′
i) ∧ ¬Coll1(Q

′
i−1) ∧ ¬Xor(Q′

i−1) ∧ ¬FB(Q′
i−1)

for i = 1 . . . 2q. Then Pr[Coll1(Q
′)∧¬Xor(Q′)∧¬FB(Q′)] ≤

∑2q
i=1 Pr[Success1(Q

′
i)]

and Pr[Success1(Q
′
i)] ≤ Pr[Coll1(Q

′
i)|¬Coll1(Q

′
i−1) ∧ ¬Xor(Q′

i−1) ∧ ¬FB(Q′
i−1)].

Fix a value of i, 1 ≤ i ≤ 2q. We call the i-th query made by A′ the last

query. If Success1(Q
′
i) occurs then either the adversary (i.e. A′) can use its last

query as query TL or as query BL of a collision in which TL, BL, TR and BR
are distinct, by symmetry. Moreover the last query could either be a forward
query or a backward query. This gives rise to four possible cases, and we bound
Pr[Success1(Q

′
i)] for each separately. (We note the very first case, ‘TL forward’,

is the case we discussed in Section 3.) For each case, we call the last query suc-

cessful if this query completes a collision with TL, BL, TR, BR distinct and
where the last query is used in the position stipulated by that case (e.g., for the
case ‘TL forward’, the last query must be used in position TL).

TL forward: Let the last query be EB‖L(A). Call a value R good if there exists
a query of the form (B,L‖R, ·) in Q′ that was obtained by A′ as a backward
query. We note that because of (5), ¬FB(Q′

i−1) implies there are at most α good
R’s.

We claim that for the last query to be successful the value R returned as an
answer to the query must be good. Indeed, let R be the value returned; then a
prerequisite for the query to be successful is that there be a query of the form
(B,L‖R, ·) in Q′

i−1. We claim that this query must have been obtained as a
backward query. Indeed, assume that the query (B,L‖R, ·) was obtained as a
forward query EL‖R(B) by A′. Then, by construction, A′ would have imme-

diately followed this query by the query E−1
B‖L(R) unless A′ already knew the

answer to E−1
B‖L(R). Either way, A′ would have the query (A,B‖L,R) in its

query history prior to the i-th (forward) query EB‖L(A), a contradiction since
A′ never makes a query to which it knows the answer. Thus the value R returned
as an answer to the query EB‖L(A) must be good for the query to be successful.

Since there are at most α good values of R and since A′ makes at most
2q queries, the probability that the last query is successful is therefore at most
α/(2n − 2q) = α/N ′.

TL backward: Let the last query be E−1
B‖L(R). For the last query to be successful,

there must be a (necessarily unique) query BL = (B,L‖R,S) ∈ Q′
i−1, for some

value S ∈ {0, 1}n. From the condition B ⊕ S = B′ ⊕ S′ and from ¬Xor(Q′
i−1)

there are at most α possibilities for the query BR. As each query BR uniquely
determines the query TR, there are at most α possibilities for the query TR as
well, and thus at most α possibilities for the value A′ ⊕ R′. Thus the value A
returned by the last query has chance at most α/N ′ that A ⊕ R will be equal
to A′ ⊕ R′ for one of these values A′ ⊕ R′, and so the last query has chance at



most α/N ′ of being successful.

BL forward: A 180◦ rotation of the collision diagram shows this case is symmet-
ric to the case TL backward. The chance of success in this case is therefore at
most α/N ′.

BL backward: A 180◦ rotation of the collision diagram shows this case is sym-
metric to the case TL forward. The chance of success in this case is therefore at
most α/N ′.

The chance a forward last query is successful is therefore at most 2α/N ′

(adding the TL and BL forward cases) and likewise the chance that a backward
last query is successful is at most 2α/N ′. Thus Pr[Success1(Q

′
i)] ≤ 2α/N ′ for all

i and
∑2q

i=1 Pr[Success1(Q
′
i)] ≤ 4qα/N ′. ⊓⊔

Proposition 4. Pr[Coll2(Q
′) ∧ ¬Xor(Q′) ∧ ¬FB(Q′)] ≤ 2q/N ′.

Proof. Note that when TL = BL, B‖L = L‖R, so B = L = R; moreover R = S
and A = B, so A = B = L = R = S. For the adversary to obtain a collision
with TL = BL, therefore, it must obtain a query of the form (U,U‖U,U). The
same argument applies to the case TR = BR. The chance of a query EU‖U (U)

or of a query E−1
U‖U (U) being answered by U is at most7 1/N ′. Thus, since 2q

queries are made total, Pr[Coll2(Q
′)] ≤ 2q/N ′. ⊓⊔

Proposition 5. Pr[Coll3(Q
′) ∧ ¬Xor(Q′) ∧ ¬FB(Q′)] ≤ 2qα/N ′ + 2q/N ′.

Proof. Note that in a collision with TL = BR we must have TL 6= BL and
A ⊕ R = B ⊕ S (since B ⊕ S = B′ ⊕ S′ = A ⊕ R, using TL = BR). Say the
event Coll

′
3(Q

′
i) occurs if there exist distinct queries (A,B‖L,R), (B,L‖R,S)

in Q′
i such that A ⊕ R = B ⊕ S. With the same argument applied to the case

BL = TR, we have Coll3(Q
′
i) =⇒ Coll

′
3(Q

′
i). Therefore it suffices to show

Pr[Coll′3(Q
′) ∧ ¬Xor(Q′) ∧ ¬FB(Q′)] ≤ 2qα/N ′ + 2q/N ′.

The analysis now proceeds rather similarly to Proposition 3. Let

Success
′
3(Q

′
i) = Coll

′
3(Q

′
i) ∧ ¬Coll′3(Q

′
i−1) ∧ ¬Xor(Q′

i−1) ∧ ¬FB(Q′
i−1).

We have Pr[Coll′3(Q
′) ∧ ¬Xor(Q′) ∧ ¬FB(Q′)] ≤

∑2q
i=1 Pr[Success

′
3(Q

′
i)].

Fix a value of i, 1 ≤ i ≤ 2q, and call the i-th query made by A′ the last

query. If Success′3(Q
′
i) occurs then either the adversary (i.e. A′) can use its last

query as query TL or as query BL of its Coll
′
3-solution. This gives rise to four

possible cases given that the last query could be either forward or backward. In
each case, we call the last query successful if Success′3(Q

′
i) occurs and if the last

query can be used in the position prescribed by that case (either TL or BL) in
the Coll

′
3-solution.

7 Since for each key there is only one relevant query, the tighter 1/N could be used as
well.



TL forward: We can use exactly the same analysis as in the case ‘Forward TL’
of Proposition 3. The probability that the last query is successful is therefore at
most α/N ′.

TL backward: Let E−1
B‖L(R) be the last query. For the last query to be success-

ful, there must be a (necessarily unique) query of the form (B,L‖R,S) ∈ Q′
i−1,

for some S ∈ {0, 1}n. Since the answer A to the last query must be such that
A⊕R = B⊕S (as per the definition of Coll′3) and B⊕S is uniquely determined,
the last query has chance at most 1/N ′ of success.

BL forward: A 180◦ rotation of the collision diagram shows this case is symmet-
ric to the case TL backward. The chance of success in this case is therefore at
most 1/N ′.

BL backward: A 180◦ rotation of the collision diagram shows this case is sym-
metric to the case TL forward. The chance of success in this case is therefore at
most α/N ′.

The chance a forward last query is successful is therefore at most (α+1)/N ′

(adding the TL and BL forward cases) and likewise the chance that a backward
last query is successful is at most (α+1)/N ′. Thus Pr[Success′3(Q

′
i)] ≤ (α+1)/N ′

for all i and
∑2q

i=1 Pr[Success1(Q
′
i)] ≤ 2qα/N ′ + 2q/N ′. (In fact, we even have

Pr[Coll3(Q
′)∧¬FB(Q′)] ≤ 2qα/N ′+2q/N ′ since ¬Xor(Q′) was never used in the

above.) ⊓⊔

Taking the sum of the bounds of Propositions 3, 4 and 5 one obtains that

Pr[Coll(Q′) ∧ ¬Xor(Q′) ∧ ¬FB(Q′)] ≤
6qα

N ′
+

4q

N ′
.

However, cases TL forward, BL backward and cases TL forward, BL backward
of Propositions 3 and 5 reference the same events (the adversary is successful
in case TL forward of Proposition 3 if and only if it is successful in case TL
forward of Proposition 5, and likewise for the BL backward cases), which results
in an “overcounting” of the adversary’s probability of success by 2qα/N ′. A more
careful accounting of the adversary’s probability of success thus shows

Pr[Coll(Q′) ∧ ¬Xor(Q′) ∧ ¬FB(Q′)] ≤
4qα

N ′
+

4q

N ′
. (8)

Here we have not established (8) entirely formally, though this is the bound
we use for Pr[Coll(Q′) ∧ ¬Xor(Q′) ∧ ¬FB(Q′)] in Theorem 1. Establishing (8)
formally would require dividing the event Coll(Q) into a different, less intuitive
set of events than Coll1(Q), Coll2(Q), Coll3(Q), events that are directly based
on those that occur in the case analyses of Propositions 3–5. (For example, one
of these events would be the event that the adversary ever obtains a “good R”
through a forward or backward query, as defined for forward queries in case
TL forward of Proposition 3 and implicitly defined (by symmetry) for backward



queries in case BL backward of Proposition 3; another event would cover the
cases TL backward and BL forward of Proposition 5; and so on.) The current
form of the proof is our best compromise between readability and formality. In
any case, the difference between 4qα/N ′ and 6qα/N ′ is relatively minor.

Summing (8) with the bounds of Proposition 2 and using (7), we obtain

Pr[Coll(Q)] ≤ 2N

(

2eq

αN ′

)α

+
4qα

N ′
+

4q

N ′
. (9)

Since (9) holds for an arbitrary q-query adversary A, this establishes Theorem
1.

5 Conclusion

In this work, we have shown that an earlier work concerning the security of
Tandem-DM was incorrect. However, with a new proof (exploiting new ideas)
we have shown that, in the ideal-cipher model, Tandem-DM is collision resistant
almost up to the birthday bound and (provably) preimage resistant essentially
up to the birthday bound (leaving considerable room for improvement for the
latter).

On a high level, our proof of collision resistance adheres to a (by now) stan-
dard framework. We first modify the collision-finding adversary by giving it sev-
eral “free” queries and subsequently we bound the modified adversary’s chance
of success using a case analysis. This approach allows to easily bound both the
number of free queries and the probability of a query (free or not) causing a
collision.

In contrast, the FGL proof directly uses a case analysis and subsequently
uses free queries within the case analysis. This ad hoc addition of free queries
(and its binding to a particular case) is problematic, as it does not allow proper
accounting of the free queries. In particular, if a free query is fresh it might cause
a collision (or other bad event) elsewhere whereas if the free query has actually
been asked before, no new randomness can be extracted from it.

Thus, apart from having established the security of Tandem-DM, we hope
that our work also serves as a useful reminder to some of the subtleties involved
in ICM proofs and as a guideline on how to avoid certain pitfalls.
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