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Abstract. At Eurocrypt 2010 van Dijk et al. described a fully homomor-
phic encryption scheme over the integers. The main appeal of this scheme
(compared to Gentry’s) is its conceptual simplicity. This simplicity comes
at the expense of a public key size in Õ(λ10) which is too large for any
practical system. In this paper we reduce the public key size to Õ(λ7)
by encrypting with a quadratic form in the public key elements, instead
of a linear form. We prove that the scheme remains semantically secure,
based on a stronger variant of the approximate-GCD problem, already
considered by van Dijk et al.
We also describe the first implementation of the resulting fully homomor-
phic scheme. Borrowing some optimizations from the recent Gentry-Halevi
implementation of Gentry’s scheme, we obtain roughly the same level
of efficiency. This shows that fully homomorphic encryption can be
implemented using simple arithmetic operations.

1 Introduction

Fully Homomorphic Encryption. An encryption scheme is homomorphic if
it supports operations on encrypted data. For example RSA is multiplicatively
homomorphic since c1 = me

1 mod N and c2 = me
2 mod N yield the encryption

of m1 ·m2 without using the private key.
Similarly, Paillier cryptosystem [12] is additively homomorphic because from

c1 = gm1rN mod N2 and c2 = gm2sN mod N2 one can compute the encryption
of m1 +m2.

In a breakthrough work Gentry described in 2009 the first encryption scheme
that supports both addition and multiplication on ciphertexts, i.e. a fully homo-
morphic encryption scheme [5]. The construction proceeds by successive steps:
First Gentry describes a “somewhat homomorphic” scheme that supports a lim-
ited number of additions and multiplications on ciphertexts. This is because every
ciphertext has a noise component and any homomorphic operation applied to
ciphertexts increases the noise in the resulting ciphertext. Once this noise reaches
a certain threshold the resulting ciphertext does not decrypt correctly anymore;
this limits the degree of the polynomial that can be applied to ciphertexts.



Secondly Gentry shows how to “squash” the decryption procedure so that it
can be expressed as a low degree polynomial in the bits of the ciphertext and
the secret key (equivalently a circuit of small depth). Then the breakthrough
idea consists in evaluating this decryption polynomial not on the bits of the
ciphertext and the secret key (as in regular decryption), but homomorphically
on the encryption of those bits. Then instead of recovering the bit plaintext, one
gets an encryption of this bit plaintext, i.e. yet another ciphertext for the same
plaintext; see Figure 1 for an illustration. Now if the degree of the decryption
polynomial is small enough, the resulting noise in this new ciphertext can be
smaller than in the original ciphertext; this is called the “ciphertext refresh”
procedure. Given two refreshed ciphertexts one can apply again the homomorphic
operation (either addition or multiplication), which was not necessarily possible
on the original ciphertexts because of the noise threshold. Using this “ciphertext
refresh” procedure the number of permissible homomorphic operations becomes
unlimited and we get a fully homomorphic encryption scheme.
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Fig. 1. The decryption circuit applied on the ciphertext bits and secret key bits (left),
and the ciphertext refresh procedure with the decryption circuit applied homomorphi-
cally on the encryption of those bits (right).

The prerequisite for the “ciphertext refresh” procedure is that the degree of
the polynomial that can be evaluated on ciphertexts exceeds the degree of the
decryption polynomial (times two, since one must allow for a subsequent addition
or multiplication of refreshed ciphertexts); this is called the “bootstrappability”
condition. Once the scheme becomes bootstrappable it can be converted into a
fully homomorphic encryption scheme by providing the encryption of the secret
key bits inside the public key.

Based on Gentry’s approach, two different fully homomorphic schemes are
known: Gentry’s scheme [5] based on ideal lattices and a scheme by van Dijk,
Gentry, Halevi and Vaikuntanathan (DGHV) over the integers, that appeared at
Eurocrypt 2010 [4].



Gentry’s scheme and its implementations. Gentry described in [5] a some-
what homomorphic encryption scheme that is similar to GGH [7, 14] over ideal
lattices. To reduce the degree of the decryption polynomial, Gentry introduced
the following transformation [5]: instead of using the original secret key, the
decryption procedure uses a very sparse subset of values that adds up to the
secret key; the full set of values is made part of the public key. To apply the
new decryption procedure the original ciphertext must first be “expanded” using
the full set of public values. This expanded ciphertext can then be decrypted
with a low-degree polynomial in the bits of the new secret key (which are the
characteristic vector of the sparse subset sum); this is called the “squashed
decryption” procedure.

At PKC 2010 Smart and Vercauteren [16] made the first attempt to implement
Gentry’s scheme using a variant based on principal ideal lattices and requiring
that the determinant of the lattice be a prime number. However the authors of
[16] could not obtain a bootstrappable scheme because that would have required
a lattice dimension of at least n = 227, whereas due to the prime determinant
requirement they could not generate keys for dimensions n > 2048.

Gentry and Halevi described in [6] the first implementation of Gentry’s
scheme. The authors follow the same direction as Smart and Vercauteren, but for
key generation they eliminate the requirement that the determinant is a prime.
Additionally they present many clever optimizations. Four concrete parameter
settings are provided, from a “toy” setting in dimension 512, to “small”, “medium”
and “large” settings of dimensions 2048, 8192 and 32768, respectively. For the
“large” setting public key size is 2.3 Gigabytes. The authors of [6] report that for
an optimized implementation on a high-end workstation, key generation takes
2.2 hours, encryption takes 3 minutes, and ciphertext refresh takes 30 minutes.

The DGHV fully homomorphic scheme over the integers. At Eurocrypt
2010, van Dijk, Gentry, Halevi and Vaikuntanathan described a fully homomorphic
encryption scheme over the integers [4]. As in Gentry’s scheme the authors first
describe a somewhat homomorphic scheme supporting a limited number of
additions and multiplications over encrypted bits. Then they apply Gentry’s
“squash decryption” technique to get a bootstrappable scheme and then Gentry’s
“ciphertext refresh” procedure (see Fig. 1) to get a fully homomorphic scheme.

The main appeal of the scheme (compared to the original Gentry’s scheme) is
its conceptual simplicity; namely all operations are done over the integers instead
of ideal lattices. However the public-key was in Õ(λ10) which is too large for any
practical system.

Our Contributions. In this paper we show how to reduce the public key size
of the somewhat homomorphic scheme from O(λ10) down to O(λ7). The idea
consists in storing only a smaller subset of the public key and then generating
the full public key on the fly by combining the elements in the small subset
multiplicatively; we describe the new scheme in Section 3. In Section 4 we show



that the new scheme is still semantically secure, but under a stronger variant of
the approximate GCD assumption.

Our second contribution is to describe an implementation of the fully ho-
momorphic DGHV scheme under our variant, using some of the optimizations
from [6]. We use the refined analysis from [17] of the sparse subset sum problem;
however we do not use the probabilistic decryption circuit from [17] because
as in [6] the error probability is too high for our set of parameters. The main
difficulty is to determine a secure set of concrete parameters; our approach is
to implement the known attacks, measure their running time and extrapolate
for large parameters; we can then fix the concrete parameters according to the
desired level of security.

We obtain similar performances as the Gentry-Halevi implementation of
Gentry’s scheme [6]. More precisely we use four security levels inspired by the levels
from [6] (though they may not be directly comparable due to different notions of
“security bits”): “toy”, “small”, “medium” and “large”, corresponding to 42, 52,
62 and 72 bits of security respectively. For “large” parameters, encryption and
recryption take 3 minutes and 14 minutes respectively, with a public key size of
800 MBytes. Decryption is always close to instantaneous. This shows that fully
homomorphic encryption can be implemented with a simple scheme.

2 The DGHV Scheme over the Integers.

In this section we first recall the somewhat homomorphic encryption scheme
published by van Dijk, Gentry, Halevi and Vaikuntanathan at Eurocrypt 2010
[4]. The scheme is based on a set of public integers: xi = p · qi + ri, 0 ≤ i ≤ τ ,
where the integer p is secret.

Notation. We use the same notation as in [4]. For a real number x, we denote by
dxe, bxc and dxc the rounding of x up, down, or to the nearest integer. For integers
z, p we denote the reduction of z modulo p by [z]p with −p/2 < [z]p ≤ p/2. We

also denote [z]p by z mod p. We write f(λ) = Õ(g(λ)) if f(λ) = O(g(λ) logk g(λ))
for some k ∈ N.

The scheme parameters. Given the security parameter λ, the following pa-
rameters are used:

• γ is the bit-length of the xi’s.
• η is the bit-length of secret key p.
• ρ is the bit-length of the noise ri.
• τ is the number of xi’s in the public key.
• ρ′ is a secondary noise parameter used for encryption.

For a specific η-bit odd integer p, we use the following distribution over γ-bit
integers:

Dγ,ρ(p) =
{
Choose q ← Z∩ [0, 2γ/p), r ← Z∩ (−2ρ, 2ρ) : Output x = q · p+ r

}



KeyGen(1λ). Generate a random odd integer p of size η bits. For 0 ≤ i ≤ τ sample
xi ← Dγ,ρ(p). Relabel so that x0 is the largest. Restart unless x0 is odd and [x0]p
is even. Let pk = (x0, x1, . . . xτ ) and sk = p.

Encrypt(pk,m ∈ {0, 1}). Choose a random subset S ⊆ {1, 2, . . . , τ} and a random
integer r in (−2ρ

′
, 2ρ
′
), and output the ciphertext:

c =

[
m+ 2r + 2

∑
i∈S

xi

]
x0

Evaluate(pk,C, c1, . . . , ct): given the circuit C with t input bits, and t ciphertexts
ci, apply the addition and multiplication gates of C to the ciphertexts, performing
all the additions and multiplications over the integers, and return the resulting
integer.

Decrypt(sk, c). Output m ← (c mod p) mod 2. Note that since c mod p =
c− p · bc/pe and p is odd, one can compute instead: m← [c]2 ⊕ [bc/pe]2.

This completes the description of the scheme. It is shown in [4] that the
scheme is a somewhat homomorphic scheme and that it is semantically secure
under the approximate-GCD assumption.

Definition 2.1 (Approximate GCD). The (ρ, η, γ)-approximate-GCD prob-
lem is: For a random η-bit odd integer p, given polynomially many samples from
Dγ,ρ(p), output p.

Note that after one Mult operation c ← c1 · c2 the ciphertext size doubles
since there is no modular reduction involved. To reduce the ciphertext size after
one Mult two techniques are described in [4]. The second and simpler technique
consists in generating x0 without noise, that is x0 = q0 · p, and then reducing
the ciphertext modulo x0. The scheme is still semantically secure under the
(stronger) approximate-GCD assumption with error-free x0. While this problem
seems easier to solve, as the adversary is given an exact multiple of p, no better
attack is known against it than on the unmodified problem.

We recall in the full version of this paper [3] the constraints on the scheme
parameters. To satisfy theses constraints the following parameter set is suggested
in [4]: ρ = λ, ρ′ = 2λ, η = Õ(λ2), γ = Õ(λ5) and τ = γ + λ. The public key size
is then Õ(λ10). In practice the size of the xi’s should be at least γ = 223 bits to
prevent lattice attacks. The public key size is then at least 246 bits, which is too
large for any practical system.

3 Our Variant of the DGHV Scheme

3.1 Description

Our technique consists in working with integers x′ij of the form x′i,j = xi,0 · xj,1
mod x0 for 1 ≤ i, j ≤ β where β is a new parameter. Then only 2β integers xi,b



need to be stored in the public key in order to generate the τ = β2 integers x′ij
used for encryption. In other words we encrypt using a quadratic form in the
public key elements instead of a linear form, which enables to reduce the public
key size from τ down to roughly 2

√
τ integers of γ bits.

Our technique requires to use an error-free x0, that is x0 = q0 · p, since
otherwise the error would grow too large. Additionally for encryption we consider
a linear combination of the x′i,j with coefficients in [0, 2α) instead of bits; this
enables to further reduce the public key size.

KeyGen(1λ). Generate a random prime p ∈ ∩[2η−1, 2η). Let x0 = q0 · p where q0
is a random square free 2λ-rough1 integer in [0, 2γ/p). Generate integers xi,b for
1 ≤ i ≤ β and b ∈ {0, 1}:

xi,b = p · qi,b + ri,b, 1 ≤ i ≤ β, 0 ≤ b ≤ 1 (1)

where qi,b are random integers in [0, q0) and ri,b are integers in (−2ρ, 2ρ). Let
sk = p and pk = (x0, x1,0, x1,1, . . . xβ,0, xβ,1).

Encrypt(pk,m ∈ {0, 1}). Generate a random vector b = (bi,j) of size τ = β2 and

with components in [0, 2α). Generate a random integer r in (−2ρ
′
, 2ρ

′
). Output

the ciphertext:

c = m+ 2r + 2
∑

1≤i,j≤β

bi,j · xi,0 · xj,1 mod x0 (2)

Evaluate and Decrypt: same as in the original scheme, except that ciphertexts are
reduced modulo x0 after addition and multiplication.

3.2 Constraints on the Parameters

The first three constraints are the same as in the original DGHV scheme:

• ρ = ω(log λ) to avoid brute force attack on the noise (see Section 6.1).
• η ≥ (2ρ+ α) · Θ(λ log2 λ) in order to support homomorphic operations for

evaluating the “squashed decryption circuit” (see Section 5).
• γ = ω(η2 · log λ) in order to thwart lattice-based attacks (see Section 6).
• α · β2 ≥ γ + ω(log λ) for the reduction to approximate GCD (see Section 4).
• ρ′ = 2ρ+ α+ ω(log λ) for the secondary noise parameter (see Section 4).

To satisfy these conditions we can still take ρ = λ, η = Õ(λ2) and γ = Õ(λ5)
as in the original scheme, and we can take α = λ, β = Õ(λ2) and ρ′ = 4λ. The
main difference is that instead of having τ = Õ(λ5) integers xi’s, we now have
only 2β = Õ(λ2) integers xi. Hence the public key size becomes Õ(λ7) instead
of Õ(λ10). In Section 7.5 we describe concrete parameters in order to resist all
known attacks.

1 An integer is said to be a-rough when it does not contain prime factors smaller than
a. Note that for a > 2 such integer must be odd.



Remark 3.1. It is possible to generate q0 as a uniformly random square free
2λ-rough integer of suitable size in probabilistic polynomial time: it suffices to
generate a uniformly random number with known factorization [1] and try again
if it has small or repeated factors. However, this makes key generation rather
unpractical. Alternatively, one can choose q0 as the product of (γ−η)/λ2 random
primes, each of size λ2 bits.2 This is faster, but the security of the scheme then
depends on a slightly more convoluted, though no less plausible, computational
assumption, to account for the different key distribution.

3.3 Correctness

We refer to the full version of this paper [3] for the definition of correct homomor-
phic scheme with respect to a given circuit or circuit set. As in [4, 5] we define a
permitted circuit as one where for any i ≥ 1 and any set of integer inputs all less
than τ i · 2i(ρ′+2) in absolute value, the generalized circuit’s output has absolute
value at most 2i(η−3−n) with n = dlog2(λ+ 1)e; we let CE be the set of permitted
circuits. As in [4], we have (see proof in the full version of this paper [3]):

Lemma 3.1. The scheme from above is correct for CE .

Remark 3.2. Since “fresh” ciphertexts output by Encrypt have noise at most
τ · 2ρ′+2, the ciphertext output by Evaluate applied to a permitted circuit has
noise at most 2η−3−n < p/(4(λ + 1)). A bound of p/2 would suffice to ensure
correct decryption, but this stronger bound will be useful to prove the correctness
of the bootstrappable version of this scheme later on.

Remark 3.3. The definition of a permitted circuit doesn’t seem to give an easy
criterion to determine whether a given computation is permitted. However, it
is easy to give a sufficient condition on a multivariate polynomial f for the
associated arithmetic circuit C to be permitted. If f is of degree d and if the
sum of the absolute values of its coefficients is denoted by ‖f‖1, then C ∈ CE
provided that:

d ≤ η − 3− n− log ‖f‖1
ρ′ + 2 + 2 log β

Following [4], we refer to such polynomials f as permitted polynomials, and denote
the set of these polynomials by PE .

4 Security of our Variant

4.1 Overview

In this section we show that our variant is still semantically secure, but under the
(stronger) error-free approximate GCD assumption. Our security proof follows

2 The reason we choose λ2-bit factors rather than λ is because factorization algorithms
like ECM have a complexity subexponential in the size of factors, and can thus be
used to extract λ-bit prime factors efficiently. In the implementation, to thwart this
attack, it is safe to generate q0 as a product of, say, 1000-bit primes.



the same strategy as in [4]: show that an adversary breaking the scheme’s
semantic security can be converted into a LSB predictor for z mod p, where z is
an integer such that z mod p is small; this in turns enables to recover p in the
approximate-GCD problem.

For this one must show that given c ← Encrypt(pk,m), the distribution of
c′ = [c+ z]x0 is essentially the same as Encrypt(pk,m′) with m′ = m⊕ [z mod p]2.
In [4] this is done by showing that the distribution of bc/pe =

∑τ
i=1 bi · qi where

b← {0, 1}τ is statistically close to uniform in Zq0 . For this [4] applies the leftover
hash lemma on the hash function family h(b) =

∑τ
i=1 bi ·qi mod q0 parametrized

by the qi’s, which is clearly pairwise independent.

Similarly to prove the security of our variant we must apply the leftover hash
lemma on the hash function family h′ : [0, 2α)β

2 → Zq0 where:

h′(b) =
∑

1≤i,j≤β

bi,j · qi,0 · qj,1 mod q0

The main difficulty is to show that h′ is (almost) pairwise independent; as shown
below this requires to study the zeroes of the corresponding quadratic form. We
note that our result might be of independent interest since it enables to construct
a universal hash function with a small memory footprint.

4.2 Leftover Hash Lemma

A family H of hash functions h : X → Y is pairwise independent if for all
x 6= x′ it holds that Prh[h(x) = h(x′)] = 1/|Y |. Since h′ is not exactly pairwise
independent we introduce a slightly more general definition:3

Definition 4.1. A family H of hash functions h : X → Y is ε-pairwise indepen-
dent if ∑

x 6=x′

(
Pr
h←H

[h(x) = h(x′)]− 1

|Y |

)
≤ |X|2 · ε

|Y |

The following lemma is a straightforward generalization of the usual leftover
hash lemma. We provide the proof in the full version of this paper [3].

Lemma 4.1 (Leftover hash lemma). Let H be a family of ε-pairwise inde-
pendent hash functions. Suppose that h← H and x← X are chosen uniformly
and independently. Then (h, h(x)) is ( 1

2

√
|Y |/|X|+ ε)-uniform over H× Y .

3 Note that this is quite different from “ε-almost universal hash function families” in
the sense of Wegman and Carter [19]. We need the collision probability Prh←H[h(x) =
h(x′)] to be at most (1 + ε)/|Y | on average, with negligible ε; 2/|Y | is not good
enough.



4.3 Proof of Pairwise Independence

Let q be an integer. Let H be a hash function family from {0, . . . , 2α − 1}β×β to
Zq. The members h ∈ H are associated to elements qi,0, qi,1 of Zq for 1 ≤ i ≤ β.
For b ∈ {0, . . . , 2α − 1}β×β , we let:

h(b) =
∑

1≤i,j≤β

bijqi,0qj,1 mod q

Lemma 4.2. For an odd prime integer q, the hash function family H is ε-
pairwise independent, with:

ε =
1

q
+

β2

2αβ2−2(α+1)β

Proof. For each choice of b 6= b′, the probability Prh←H[h(b) = h(b′)] can be
expressed in terms of the number of zeros of a certain hyperbolic quadratic form
in Z2β

q . More precisely let A = (aij) be the β × β matrix in Mβ(Zq) given by
aij = bij − b′ij . We have:

Pr
h

[h(b) = h(b′)] =
1

q2β
#

{
(u1, . . . , uβ , v1, . . . , vβ) ∈ Z2β

q :
∑

1≤i,j≤β

aijuivj = 0

}

Now the quadratic form Q =
∑

1≤i,j≤β aijuivj has the matrix 1
2

(
0 A

AT 0

)
, which

is clearly conjugate to 1
2

(
0 J
J 0

)
where J is the canonical row echelon form of A. It

follows that Q is the orthogonal sum of r hyperbolic planes, with r the rank of
A. Hence, its number of zeros is well-known (see e.g. [9, Theorem 6.32] for the
non-degenerate case, from which the general case follows immediately):

#

{
(u1, . . . , uβ , v1, . . . , vβ) ∈ Z2β

q :
∑

1≤i,j≤β

aijuivj = 0

}
= q2β−1+q2β−r−q2β−r−1

In particular, we get:

Pr
h

[h(b) = h(b′)]− 1

q
≤ 1

qr

This estimate is quite sufficient for our purposes, except in the case when
r = 1. Therefore, we need to bound the number of pairs (b, b′) such that
the corresponding matrix A is of rank 1. Noting that A has all its entries
in −2α + 1, . . . , 2α − 1, it is enough to bound the cardinality of the set Uα of
matrices of rank 1 in Mβ(Zq) with entries in that interval.

To do so, note that a matrix of rank 1 with a nonzero upper-left entry is
entirely determined by its first line and its first column. If the entries are in
{−2α + 1, . . . , 2α − 1}, this leaves 2α+1 − 2 choices for the upper-left entries and
(2α+1 − 1)2β−2 choices for the remainder of the first line and the first column.
Hence, there are less than 22(α+1)(β−1) matrices in Uα with a nonzero upper-left
entry (and usually much fewer, since not all first lines and first columns need



to give rise to matrices with all their entries in the proper interval). The same
argument can be applied to any other nonzero entry (i, j), leading to the coarse
bound:

|Uα| < β2 · 22(α+1)β

Now, the number of pairs (b, b′) such that the corresponding matrix A is
of rank 1 is at most |X| · |Uα|, since for any choice of b, there are at most |Uα|
possible values of b′ such that A is in Uα. We can thus bound the value δ defined
by:

δ =
|Y |
|X|2

∑
b 6=b′

(
Pr
h

[h(b) = h(b′)]− 1

|Y |

)
as required. Indeed:

δ =
q

|X|2
∑
b 6=b′

(
Pr
h

[h(b) = h(b′)]− 1

q

)
≤ q

|X|2

( ∑
b 6=b′

A 6∈Uα

1

q2
+
∑
b 6=b′

A∈Uα

1

q

)

≤ q

|X|2

(
|X|2

q2
+
|X| · |Uα|

q

)
≤ 1

q
+
|Uα|
|X|

≤ 1

q
+

β2

2αβ2−2(α+1)β

which concludes the proof. ut

Corollary 4.1. When q is a product of distinct primes greater than 2α, the hash
function family H is ε-pairwise independent, with:

ε =
log q

log p

(
e

p
+
β2 · 2(log q)/(log p)

2αβ2−2(α+1)β

)
where p is the smallest prime factor of q.

Proof. The proof is largely similar to the previous one. See the full version of
this paper [3] for details.

4.4 Semantic Security

We are now ready to show that our variant is semantically secure under the
(stronger) error-free approximate GCD assumption. The proof follows the same
strategy as [4]; we refer to the full version of this paper [3] for the details. For
two specific integers p and q0, we define the modified distribution:

D′ρ(p, q0) =
{
Choose q ← [0, q0), r ← Z ∩ (−2ρ, 2ρ) : Output x = q · p+ r

}
Definition 4.2 (Error-free approximate GCD). The (ρ, η, γ)-error-free-ap-
proximate-GCD problem is: For a random η-bit prime integer p, given x0 = q0 · p
where q0 is a random square free 2λ-rough integer in [0, 2γ/p), and polynomially
many samples from D′ρ(p, q0), output p.

Theorem 4.1. Let A be an attacker with advantage ε against our variant en-
cryption scheme with parameters (ρ, ρ′, η, γ, τ = β2) polynomial in the security
parameter λ. There exists an algorithm B for solving the (ρ, η, γ)-error-free-
approximate-GCD problem that succeeds with probability at least ε/2. The running
time of B is polynomial in the running time of A, λ and 1/ε.



5 Making the Scheme Fully Homomorphic

5.1 The Squashed Scheme

Gentry’s transformation to “squash the decryption” consists in adding to the
public key some extra information about the secret key and use this extra
information to “post process” the ciphertext. Then the post-processed ciphertext
can be decrypted by a decryption polynomial of small degree. This requires to
introduce an additional complexity assumption, namely the sparse subset-sum
assumption.

We follow the description of [4]. Three more parameters κ, θ and Θ are added.
Concretely, one uses θ = λ, κ = γ + 2 + dlog2(θ + 1)e, and Θ = Õ(λ3).4 One
adds to the public key a set y = {y1, . . . , yΘ} of rational numbers in [0, 2) with κ
bits of precision, such that there is a sparse subset S ⊂ {1, . . . , Θ} of size θ with∑
i∈S yi ' 1/p mod 2. The expanded ciphertext is computed using the yi’s. The

secret key sk is replaced by the indicator vector of the subset S.
However adding Θ elements yi each of size κ bits would give a public key of

size Θ · κ = Õ(λ8), instead of Õ(λ7) in our variant. Therefore instead of storing
the yi’s in the public key as in [4], we generate the yi’s using a pseudo-random
generator5 f(se). Then only the seed se and y1 need to be stored in the public
key, and the other yi’s can be recovered during ciphertext expansion by applying
f(se) again. We obtain the following squashed scheme:

KeyGen. Generate sk∗ = p and pk∗ as before. Set xp ← b2κ/pe, choose at random
a Θ-bit vector s = (s1, . . . , sΘ) with Hamming weight θ with s1 = 1, and let
S = {i : si = 1}.

Initialize a system-wide pseudo-random number generator f with a random
seed se, and use f(se) to generate integers ui ∈ [0, 2κ+1) for 2 ≤ i ≤ Θ. Then,
set u1 such that

∑
i∈S ui = xp mod 2κ+1. Set yi = ui/2

κ and y = {y1, . . . , yΘ}.
Hence each yi is a positive number smaller than two, with κ bits of precision
after the binary point. Also, [

∑
i∈S yi]2 = (1/p)−∆p for some |∆p| < 2−κ.

Output the secret key sk = s and public key pk = (pk∗,y).

Encrypt and Evaluate. Generate a ciphertext c∗ as before. Then for i ∈ {1, . . . , Θ}
set zi ← [c∗ · yi]2, keeping only n = dlog2(θ+ 1)e bits of precision after the binary
point for each zi. Output both c∗ and z = (z1, . . . , zΘ).

Decrypt: Output m← [c∗ − b
∑
i sizie]2.

This completes the description of the scheme. Note that as in [6] we use
n = dlog2(θ + 1)e bits of precision, instead of n = dlog2 θe + 3 in the original
scheme. This enables to reduce the degree of the decryption polynomial. In

4 We use Θ = Õ(λ3) instead of Θ = ω(κ · log λ) in [4] from a better analysis of the
hardness of the SSSP problem (see Section 6.3).

5 Note that f doesn’t really need to be a cryptographically strong PRNG: all that
is needed is that the sparse subset-sum problem remains hard when the subset is
generated by f . Heuristically, this is a mild requirement. In our implementation, we
use random numbers produced by the PRNG from the glibc.



practice we will use n = 4. Note that for encryption we don’t need to store all
the yi’s in memory again; we can generate them one by one from the PRNG to
compute zi ← [c∗ · yi]2 with n bits of precision.

The proof of the following lemma is similar to the one in [4] (see the full
version of this paper [3]), but we can handle a smaller precision n, as in [6],
because in our scheme, ciphertext size does not grow in homomorphic operations.

Lemma 5.1. The modified scheme is correct for the set C(PE) of circuits that
compute permitted polynomials.

5.2 Bootstrapping

As in [4], one obtains that the scheme is bootstrappable. From Gentry’s theorem
we obtain homomorphic encryption schemes for circuits of any depth.

Theorem 5.1. Let E be the scheme above, and let DE be the set of augmented
(squashed) decryption circuits. Then, DE ⊂ C(PE).

Proof. The proof is as in [4]. We provide a slightly different analysis. We consider
the decryption equation:

m← c∗ −

⌊
Θ∑
i=i

si · zi

⌉
mod 2

where si are the secret key bits and zi are rational numbers in [0, 2) with n bits
of precision after the binary point (therefore n+ 1 bits in total). We must express
the decryption equation as a low degree polynomial in the bits si and the bits in
zi, i.e. a permitted polynomial.

11111

11111

11111

248

359

79

15

15 815

Fig. 2. Grade-school addition for Θ or θ = 15 numbers of n = 4 bits of precision after
the binary point. The numbers indicate the degree of each bit as a binary polynomial
in the input bits.



For this one uses a simple grade-school addition of the numbers ai = si · zi.
As illustrated in Fig. 2 the bits of the ai’s are arranged in Θ rows and n + 1
columns (one column before the binary point and n columns after). To see how
this grade-school addition can be performed efficiently, first recall the following
result from [4, §6.2].

Lemma 5.2. Let b = (b1, b2, . . . , bΘ) be any binary vector, and denote its Ham-

ming weight by W . Write the binary digits of W as W = Wk · · ·W1W0
2
. Then

the j-th bit Wj of W can be expressed as a binary polynomial of degree exactly
2j in the bi’s, namely the 2j-th elementary symmetric polynomial:

Wj =
∑

I⊂{1,...,Θ}
|I|=2j

∏
i∈I

bi

Moreover, the bits W0,W1, . . .Wj can be simultaneously computed by an arith-
metic circuit of size 2j ·Θ.

That the Wj ’s are given by elementary symmetric polynomials is classical
(see e.g. [2, Lemma 4]). Thus, to compute them, it suffices to find the top 2j

coefficients of the polynomial (X − b1)(X − b2) · · · (X − bΘ), which can be done
iteratively with at most 2j · Θ operations. We recall in the full version of this
paper [3] the dynamic programming algorithm from [4].

Then, the procedure to compute

Q =

⌊
Θ∑
k=1

ak

⌉
is as follows. We number the columns containing the ak’s from left to right as 0
(before the binary point), −1, −2, . . . , −n.

As usual, grade-school addition starts from the rightmost column (column
−n). Adding all Θ bits from that column produces a bit of result and a certain
number of bits of carry. Since we are only interested in the n+ 1 least significant
bits of the sum, we only need to keep track of the result and the first n carry bits:

this amounts to computing the rightmost bits W
(−n)
0 ,W

(−n)
1 , . . . ,W

(−n)
n of the

Hamming weight W (−n) of column −n, which can be done with at most 2n ·Θ
multiplications according to the previous lemma.

Now, push carry bit W
(−n)
1 to column −n + 1, carry bit W

(−n)
2 to column

−n+ 2 and so on. We can then continue the grade-school addition process from
column −n + 1, where we only need to compute the result and n − 1 carry

bits, namely the bits W
(−n+1)
j of the Hamming weight W (−n+1) of the column,

including the possible carry bit from column −n. This amounts to at most

2n−1 · (Θ + 1) multiplications. When this is done, push the carry bits W
(−n+1)
1 ,

. . .W
(−n+1)
n−1 to columns −n + 2, −n + 3, . . . , 0 respectively, move to the next

column and continue as before. This is illustrated in Figure 2 for n = 4.
As shown in the full version of this paper [3], this can be done in O(Θ · θ)

multiplications, and the decryption polynomial is a polynomial f of the ciphertext



bits and the secret key satisfying d = deg f = 2n+1 and ‖f‖1 ≤ 2Θ. In view of
Remark 3.3, f is a permitted polynomial as long as d ≤ (η− 4−n− log2Θ)/(ρ′+
2 + 2 log2 β) ≈ η/ρ′ which is satisfied by choosing η according to the constraint
in Section 3.2. ut

6 Attacks

In this section we recall the known attacks. For each attack we provide an
asymptotic analysis (as in [4]) and we also run the attacks in practice in order
to derive concrete parameters for our implementation. We use four security
levels inspired by the levels from [6]: “toy”, “small”, “medium” and “large”,
corresponding to 42, 52, 62 and 72 bits of security respectively. For security
parameter λ we wish to ensure that the best attack requires at least 2λ clock
cycles on a standard PC.

Note that we use the SAGE [13] interface to the fplll lattice reduction
package [15] which is to our knowledge the fastest publicly available. However
any progress in LLL implementations will require an increase of our security
parameters.

6.1 Brute Force Attack on the Noise

The easiest attack is the brute force attack on the noise in the public key. Given
x0 = q0 · p and x1 = q1 · p + r1 with |r1| < 2ρ, one can guess r1 and compute
gcd(x0, x1−r1) to recover p. The state of the art algorithm for computing GCD’s
is the Stehlé-Zimmermann algorithm [18] with time complexity Õ(γ) for integers
of γ bits. The attack complexity is then 2ρ ·Õ(γ). Therefore the attack is thwarted
if ρ = ω(log λ).

A better attack [11] consists in computing p = gcd(x0,
∏2ρ

i=−2ρ(x1 − i) [x0]).

Using fast multiplication the asymptotic complexity is also 2ρ · Õ(γ). Experimen-
tally this later attack is roughly 5 times faster. See the full version of this paper
[3] for concrete parameters.

6.2 Approximate-GCD Attack on the Public Key

We do not consider Coppersmith’s attack since as shown in [4] it does not apply
for the range of parameters. We consider the attack based on Nguyen and Stern’s
orthogonal lattice [10] (see Section B.1 in [4]). One considers the first t ≤ τ
integers xi = p · qi + ri and x0 = p · q0. The attack builds the lattice L of row
vectors orthogonal to x = (x1, . . . , xt) modulo x0 (see the full version of this
paper [3] for more details). One must find a vector u ∈ L such that ‖u‖∞ ≤ 2η−ρ.
From Minkowski’s bound there exists a nonzero lattice vector of norm about√
t · det(L)1/t ' 2γ/t, which gives the condition t > γ/η. However when the

lattice dimension t is large, lattice reduction algorithms will not recover such a
short vector but only an approximation.



As in [4] we use the following “rule of thumb” conjecture about lattice
algorithms performance: there exists a constant µ such that for any k and any
dimension t, one cannot find a µt/k approximation of the shortest vector in
time smaller than 2k. Since we must find a vector u such that ‖u‖∞ ≤ 2η−ρ,
we need better than a 2η−ρ approximation of the shortest vector. To get a 2η

approximation (which is not quite enough to recover u), from t > γ/η the time
required is then at least 2k where k = (log2 µ)γ/η2. We recover the asymptotic
condition γ = η2 · ω(log λ). To obtain concrete parameters we have run some
experiments with the LLL and BKZ-20 lattice reduction algorithms; see the full
version of this paper [3].

6.3 Lattice Attack on the Sparse Subset-sum Problem

We use the refined analysis from [17] of the sparse subset sum problem. The

attacker must solve the equation
∑Θ
i=1 si ·ui = xp mod 2κ where s = (s1, . . . , sΘ)

is of small Hamming weight θ.
As shown in the full version of this paper [3] the lattice attack leads to a lattice

L of determinant detL ' 2Θ+κ ' 2Θ+γ . The lattice has a short vector of norm
about

√
Θ. From Minkowsky’s bound we can expect that the norm of the second

shortest vector is ' (detL)1/Θ ' 2γ/Θ. Therefore to find the shortest vector
we need better than a 2γ/Θ approximation. From the lattice “Rule of Thumb”
conjecture with the previous notations the time required is then at least 2k with
k = (log2 µ)Θ2/γ. Asymptotically the condition is therefore Θ2 = γ · ω(log λ).
Therefore with γ = Õ(λ5) we can take Θ = Õ(λ3). We refer to the full version of
this paper [3] for concrete parameters; we also consider a birthday-like attack on
the sparse subset-sum problem.

7 Implementation of the Fully Homomorphic Scheme

7.1 Recryption

Now that decryption can be expressed as an arithmetic circuit of low depth, it is
possible to achieve bootstrapping, i.e. to publicly evaluate the decryption circuit
homomorphically on a ciphertext, which produces another ciphertext for the
same message, but with possibly less noise (a “recryption”). This process, which
is Gentry’s key idea [5] for achieving fully homomorphic encryption, is illustrated
in Figure 1. The procedure that evaluates the decryption circuit homomorphically,
called Recrypt, takes as input encryptions of the ciphertext bits, and encryptions
of the secret key bits.

In the case of the DGHV scheme or of our variant, 0 and 1 are valid encryptions
of themselves, so the ciphertext bits can be passed as is to the decryption circuit.
However, encryptions of the secret key bits should also be made available publicly,
so the key generation from §5.1 should be modified to include encryptions σi
of the si’s into the public key pk = (pk∗,y,σ). Then the Recrypt procedure is
simply obtained by applying the decryption circuit to the ciphertext bits and
the encrypted secret key bits.



Note that such ciphertexts σi are normally generated using the xi,b’s from
the public key, leading to σi’s with noise of size ρ′. However since we are at key
generation phase we can do better and let σi = si + 2r′i + 2p · q′i mod x0 for
1 ≤ i ≤ Θ, for random integers q′i modulo q0 and random integers r′i in (−2ρ, 2ρ).
The resulting ciphertexts σi have the same distribution as regular ciphertexts
but with noise ρ instead of ρ′. Since ρ < ρ′ this enables to reduce the size η of p
required to achieve bootstrappability.

For the refreshed ciphertext to decrypt correctly, its noise must be small
enough, and in fact small enough that a multiplication operation between refreshed
ciphertexts still decrypts correctly. The ciphertext bits are noise-free encryptions
of themselves and the encrypted secret key bits contain ρ bits of noise, so one
must have d · ρ < η/2, where d is the degree of the decryption circuit discussed
in the previous section (or in fact, only half that degree, because only the degree
with respect to the secret key bits matters; the contribution in the ciphertext
bits zi can be ignored as they are used directly and without noise).

7.2 Optimization of the Decryption Circuit

We use the optimization from [4] which consists in representing the secret key
s in θ boxes of B = Θ/θ bits each, such that each box has a single 1-bit in it.
This enables to obtain a grade-school addition algorithm that requires O(θ2)
multiplications of bits instead of O(Θ · θ). We refer to the full version of this
paper [3] for the details. Note in particular that it results from the analysis that
the degree of the decryption polynomial in the secret key bits is exactly θ. See
also Fig. 2 for an illustration of the grade-school addition algorithm with n = 4.

7.3 Compression of Encrypted Secret Key Bits

The modification of the public key described previously, to accommodate for the
Recrypt procedure, has the problem of increasing public key size significantly.
Namely the vector σ in the enlarged public key consists of Θ = Õ(λ3) ciphertexts,
each of size γ = Õ(λ5), so we obtain a public key size of Õ(λ8), instead of Õ(λ7)
in the basic scheme.

To alleviate this problem, an additional compression trick is described in [6].
Instead of generating the secret key as a single bit vector s = (s1, . . . , sΘ), one
uses two bit vectors s(0) and s(1) of length

√
Θ, and s is then recovered on the fly

during decryption with si,j = s
(0)
i · s

(1)
j . See the full version of this paper [3] for

the details. This brings down the size of the encrypted secret key bits to about√
Θ · γ = Õ(λ6.5). Note on the other hand that this increases the noise in σ by a

factor of 2 since the σi,j are obtained as products of two ciphertexts; this implies
that to keep bootstrappability the size η of p must be doubled.

7.4 Smaller Dimension for Knapsack Encryption

From the previous section the size of the public key in the full scheme is now
about (β +

√
Θ) · γ bits. The conditions from Section 3.2 imply that we must



have β = Õ(λ2) to apply the leftover hash lemma. Since
√
Θ = Õ(λ1.5) we have

that β is the bottleneck. Therefore in practice we would like to use a smaller β,
for which the leftover hash lemma would not apply but no attack would work.

This implies that we must consider a lattice attack against the knapsack sum
in the encryption algorithm. The analysis is the same as in Section 6.3, with
τ = β2 instead of Θ. This gives the asymptotic condition τ2 = γ · ω(log λ) which
for α < τ is weaker than the condition α · τ ≥ γ + ω(log λ) necessary for the
reduction to the approximate GCD problem. Under this condition we can take
τ = Õ(γ3) instead of τ = Õ(γ4) and therefore β = Õ(γ1.5) instead of β = Õ(γ2).
The public key size is then (β +

√
Θ) · γ = Õ(λ6.5) instead of Õ(λ7).

7.5 Concrete Parameters

From the analysis of the known attacks in the previous section we are now ready
to derive the concrete parameters for the four levels of security. For all four levels
we take θ = 15. In this case the degree of the decryption polynomial is 2θ = 30
when using the degree-2 compression of the encryption of the secret key bits.
Since we must allow for an additional multiplication after Recrypt, the total
degree is d = 4 · θ = 60. To allow for some margin we take η = (d+ 8)ρ = 68 · ρ.
We obtain the parameters given in Table 1.

Parameters λ ρ η γ β Θ

Toy 42 16 1088 1.6 · 105 12 144

Small 52 24 1632 0.86 · 106 23 533

Medium 62 32 2176 4.2 · 106 44 1972

Large 72 39 2652 19 · 106 88 7897

Parameters KeyGen Encrypt Expand Decrypt Recrypt pk size

Toy 4.38 s 0.05 s 0.03 s 0.01 s 1.92 s 0.95 MB

Small 36 s 0.79 s 0.46 s 0.01 s 10.5 s 9.6 MB

Medium 5 min 9 s 10 s 8.1 s 0.02 s 1 min 20 s 89 MB

Large 43 min 2 min 57 s 3 min 55 s 0.05 s 14 min 33 s 802 MB

Table 1. Concrete parameters and corresponding timings, as measured using our
implementation in Sage 4.5.3 [13] and GMP 4.3.2 [8], on a single core of a desktop
computer with an Intel Core2 Duo E8500 CPU at 3.12 GHz. The public key is roughly
2(β +

√
Θ + 1)γ bit long. Note that almost all the CPU time of key generation is spent

in primality tests, to generate a rough q0.
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