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Abstract. The aim of position-based cryptography is to use the ge-
ographical position of a party as its only credential. In this work, we
study position-based cryptography in the quantum setting.

We show that if collaborating adversaries are allowed to pre-share an
arbitrarily large entangled quantum state, then position-verification, and
as a consequence position-based cryptography in general, is impossible
(also) in the quantum setting.

To this end, we prove that with the help of sufficient pre-shared entan-
glement, any non-local quantum computation, i.e., any computation that
involves quantum inputs from two parties at different locations, can be
performed instantaneously and without any communication, up to local
corrections that need to be applied to the outputs. The latter can be un-
derstood in that the parties obtain their respective outputs “encrypted”,
where each corresponding encryption key is known by the opposite party.
This result generalizes to any number of parties, and it implies that any
non-local quantum computation can be performed using a single round
of mutual communication (in which the parties exchange the encryption
keys), and that any position-verification scheme can be broken, assuming
sufficient pre-shared entanglement among the adversaries.

On the positive side, we show that for adversaries that are restricted to
not share any entangled quantum states, secure position-verification is
achievable. Jointly, these results suggest the interesting question whether
secure position-verification is possible in case of a bounded amount of
entanglement. Our positive result can be interpreted as resolving this
question in the simplest case, where the bound is set to zero.
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1 Introduction

1.1 Background

The goal of position-based cryptography is to use the geographical position of a
party as its only “credential”. For example, one would like to send a message
to a party at a geographical position pos with the guarantee that the party can
decrypt the message only if he or she is physically present at pos. The general
concept of position-based cryptography was introduced by Chandran, Goyal,
Moriarty and Ostrovsky [1]; certain specific related tasks have been considered
before under different names (see below and Sect. 1.3).

A central task in position-based cryptography is the problem of position-
verification. We have a prover P at position pos, wishing to convince a set of
verifiers V0, . . . , Vk (at different points in geographical space) that P is indeed at
that position pos. The prover can run an interactive protocol with the verifiers
in order to convince them. The main technique for such a protocol is known as
distance bounding [2]. In this technique, a verifier sends a random nonce to P
and measures the time taken for P to reply back with this value. Assuming that
the speed of communication is bounded by the speed of light, this technique
gives an upper bound on the distance of P from the verifier.

The problem of secure positioning has been studied before in the field of
wireless security, and there have been several proposals for this task ([2–9]).
However, [1] shows that there exists no protocol for secure positioning that offers
security in the presence of multiple colluding adversaries. In other words, the set
of verifiers cannot distinguish between the case when they are interacting with
an honest prover at pos and the case when they are interacting with multiple
colluding dishonest provers, none of which is at position pos. Their impossibility
result holds even if one makes computational hardness assumptions, and it also
rules out most other interesting position-based cryptographic tasks.

In light of the strong impossibility result, [1] considers a setting that assumes
restrictions on the parties’ storage capabilities, called the Bounded-Retrieval
Model (BRM) in the full version of [1], and constructs secure protocols for
position-verification and for position-based key exchange (wherein the verifiers,
in addition to verifying the position claim of a prover, also exchange a secret key
with the prover). While these protocols give us a way to realize position-based
cryptography, the underlying setting is relatively hard to justify in practice.

This leaves us with the question: is there any other assumption or setting in
which position-based cryptography is realizable?

1.2 Our Approach and Our Results

In this work, we study position-based cryptography in the quantum setting. To
start with, let us briefly explain why moving to the quantum setting might be
useful. The impossibility result of [1] relies heavily on the fact that an adversary
can locally store all information he receives and at the same time share this
information with other colluding adversaries, located elsewhere. Recall that the
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positive result of [1] in the BRM circumvents the impossibility result by assuming
that an adversary cannot store all information he receives. By considering the
quantum setting, one may be able to circumvent the impossibility result thanks
to the following observation. If some information is encoded into a quantum
state, then the above attack fails due to the no-cloning principle: the adversary
can either store the quantum state or send it to a colluding adversary (or do
something in-between, like store part of it), but not both.

However, this intuition turns out to be not completely accurate. Once the
adversaries pre-share entangled states, they can make use of quantum telepor-
tation [10]. Although teleportation on its own does not appear to immediate
conflict with the above intuition, we show that, based on techniques by Vaid-
man [11], adversaries holding a large amount of entangled quantum states can
perform instantaneous nonlocal quantum computation, which in particular im-
plies that they can compute any unitary operation on a state shared between
them, using only local operations and one round of classical mutual communica-
tion. Based on this technique, we show how a coalition of adversaries can attack
and break any position-verification scheme.

Interestingly, sharing entangled quantum systems is vital for attacking the
position-verification scheme. We show that there exist schemes that are secure
in the information-theoretic sense, if the adversary is not allowed to pre-share or
maintain entanglement. Furthermore, we show how to construct secure protocols
for several position-based cryptographic tasks: position-verification, authentica-
tion, and key exchange.

This leads to an interesting open question regarding the amount of pre-
shared entanglement required to break the positioning scheme: the case of a
large amount of pre-shared states yields a complete break of any scheme while
having no pre-shared states leads to information-theoretically secure schemes.
The threshold of pre-shared quantum systems that keeps the system secure is
yet unknown.

1.3 Related Work

To the best of our knowledge, quantum schemes for position-verification have
first been considered by Kent in 2002 under the name of “quantum tagging”.
Together with Munro, Spiller and Beausoleil, a patent for an (insecure) scheme
was filed for HP Labs in 2004 and granted in 2006 [12]. Their results have not
appeared in the academic literature until 2010 [13]. In that paper, they describe
several basic schemes and describe how to break them using teleportation-based
attacks. They propose other variations (Schemes IV–VI in [13]) not suspect to
their teleportation attack and leave their security as an open question. Our
general attack presented here shows that these schemes are insecure as well.

Concurrent and independent of our work reported here and the work on
quantum tagging described above, the approach of using quantum techniques
for secure position-verification was proposed by Malaney [14, 15]. However, the
proposed scheme is merely claimed secure, and no rigorous security analysis is
provided. As pointed out in [13], Malaney’s schemes can also be broken by a
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teleportation-based attack. Chandran et al. have proposed and proved a secure
quantum scheme for position-verification [16]. However, their proof implicitly
assumed that the adversaries have no pre-shared entanglement; as shown in [13],
their scheme also becomes insecure without this assumption.

In a subsequent paper [17], Lau and Lo use similar ideas as in [13] to show
the insecurity of position-verification schemes that are of a certain (yet rather
restricted) form, which include the schemes from [14, 15] and [16]. Furthermore,
they propose a position-verification scheme that resists their attack, and they
conjecture it secure. While these protocols might be secure if the adversaries do
not pre-share entanglement, our attack shows that all of them are insecure in
general.

In a recent note [18], Kent considers a different model for position-based
cryptography where the prover’s position is not his only credential, but he is
assumed to additionally share with the verifiers a classical key unknown to the
adversary. In this case, quantum key distribution can be used to expand that key
ad infinitum. This classical key stream is then used as authentication resource.

The idea of performing “instantaneous measurements of nonlocal variables”
has been put forward by Vaidman [11] and was further investigated by Clark et
al. [19]. The concept of instantaneous nonlocal quantum computation presented
here is an extension of Vaidman’s task. After the appearance and circulation of
our work, Beigi and König [20] used the technique of port-based teleportation by
Ishizaka and Hiroshima [21, 22] to reduce the amount of entanglement required
to perform instantaneous nonlocal quantum computation (from our double ex-
ponential) to exponential.

In [23], Giovannetti et al. show how to measure the distance between two
parties by quantum cryptographic means so that only trusted people have access
to the result. This is a different kind of problem than what we consider here,
and the techniques used there are not applicable in our setting.

1.4 Our Attack and Our Schemes in More Detail

Position-Verification - A Simple Approach. Let us briefly discuss here the
1-dimensional case in which we have two verifiers V0 and V1, and a prover P at
position pos that lies on the straight line between V0 and V1. Now, to verify P ’s
position, V0 sends a BB84 qubit Hθ|x〉 to P , and V1 sends the corresponding
basis θ to P . The sending of these messages is timed in such a way that Hθ|x〉
and θ arrive at position pos at the same time. P then has to measure the qubit
in basis θ to obtain x, and immediately send x to both V0 and V1, who verify
the correctness of x and if it has arrived “in time”.

The intuition for this scheme is the following. Consider a dishonest prover
P̂0 between V0 and P , and a dishonest prover P̂1 between V1 and P . (It is not
too hard to see that additional dishonest provers do not help.) When P̂0 receives
the BB84 qubit, she does not know yet the corresponding basis θ. Thus, if she
measures it immediately when she receives it, then she is likely to measure it
in the wrong basis and P̂0 and P̂1 will not be able to provide the correct x.
However, if she waits until she knows the basis θ, then P̂0 and P̂1 will be too late
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in sending x to V1 in time. Similarly, if she forwards the BB84 qubit to P̂1, who
receives θ before P̂0 does, then P̂0 and P̂1 will be too late in sending x to V0. It
seems that in order to break the scheme, P̂0 needs to store the qubit until she
receives the basis θ and at the same time send a copy of it to P̂1. But this is
excluded by the no-cloning principle.

The Attack and Instantaneous Nonlocal Quantum Computation. The
above intuition turns out to be wrong. Using pre-shared entanglement, P̂0 and
P̂1 can perform quantum teleportation which enables them (in some sense) to act
coherently on the complete state immediately upon reception. Combining this
with the observation by Kent et al. [13] that the Pauli-corrections resulting from
the teleportation commute with the actions of the honest prover in the above
protocol shows that colluding adversaries can perfectly break the protocol.

Much more generally, we will show how to break any position-verification
scheme, possibly consisting of multiple (and interleaved) rounds. To this end,
we will show how to perform instantaneous nonlocal quantum computation. In
particular, we prove that any unitary operation U acting on a composite system
shared between players can be computed using only a single round of mutual
classical communication. Based on ideas by Vaidman [11], the players teleport
quantum states back and forth many times in a clever way, without awaiting the
classical measurement outcomes from the other party’s teleportations.

Position-Verification in the No-PE Model. On the other hand, the above
intuition is correct in the no pre-shared entanglement (No-PE) model, where the
adversaries are not allowed to have pre-shared entangled quantum states prior
the execution the protocol, or, more generally, prior the execution of each round
of the protocol in case of multi-round schemes. Even though this model may be
somewhat unrealistic and artificial, analyzing protocols in this setting serves as
stepping stone to obtaining protocols which tolerate adversaries who pre-share
and maintain some limited amount of entanglement. But also, rigorously proving
security in the restrictive (for the adversary) No-PE model is already non-trivial
and requires heavy machinery. Our proof uses the strong complementary infor-
mation trade-off (CIT) due to Renes and Boileau [24], and it guarantees that
for any strategy, the success probability of P̂0 and P̂1 is bounded by approxi-
mately 0.89. By repeating the above simple scheme sequentially, we get a secure
multi-round positioning scheme with exponentially small soundness error. We
note that when performing sequential repetitions in the No-PE model, the ad-
versaries must enter each round with no entanglement; thus, they are not allowed
to generate entanglement in one round, store it, and use it in the next round(s).

Position-based authentication and key-exchange in the No-PE Model.
Based on (sequential repetitions of) our position-verification scheme in the No-
PE model, we can also construct schemes for position-based authentication and
for position-based key-exchange, and prove their security in the No-PE model.
Due to space limitation, these schemes and their analyses only appear in the full
version of this paper [25].
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2 Preliminaries

2.1 Notation and Terminology

We assume familiarity with the basic concepts of quantum information theory
and refer to [26] for an excellent introduction; we merely fix some notation here.

Qubits. A qubit is a quantum system A with a 2-dimensional state space HA =
C2. The computational basis {|0〉, |1〉} (for a qubit) is given by |0〉 =

(
1
0

)
and

|1〉 =
(
0
1

)
, and the Hadamard basis by H {|0〉, |1〉} = {H|0〉, H|1〉}, where H

denotes the 2-dimensional Hadamard matrix, which maps |0〉 to (|0〉 + |1〉)/
√

2
and |1〉 to (|0〉− |1〉)/

√
2. The state space of an n-qubit system A = A1 · · ·An is

given by the 2n-dimensional space HA = (C2)⊗n = C2 ⊗ · · · ⊗ C2.
Since we mainly use the above two bases, we can simplify terminology and

notation by identifying the computational basis {|0〉, |1〉} with the bit 0 and the
Hadamard basis H {|0〉, |1〉} with the bit 1. Hence, when we say that an n-qubit
state |ψ〉 ∈ (C2)⊗n is measured in basis θ ∈ {0, 1}n, we mean that the state is
measured qubit-wise where basis Hθi {|0〉, |1〉} is used for the i-th qubit. As a
result of the measurement, the string x ∈ {0, 1}n is observed with probability
|〈ψ|Hθ|x〉|2, where Hθ = Hθ1 ⊗ · · · ⊗Hθn and |x〉 = |x1〉 ⊗ · · · ⊗ |xn〉.

An important example of a 2-qubit state is the EPR pair, which is given
by |ΦAB〉 = (|0〉|0〉 + |1〉|1〉)/

√
2 ∈ HA ⊗ HB = C2 ⊗ C2 and has the following

properties: if qubit A is measured in the computational basis, then a uniformly
random bit x ∈ {0, 1} is observed and qubit B collapses to |x〉. Similarly, if qubit
A is measured in the Hadamard basis, then a uniformly random bit x ∈ {0, 1}
is observed and qubit B collapses to H|x〉.

Teleportation. The goal of teleportation is to transfer a quantum state from
one location to another by only communicating classical information. Telepor-
tation requires pre-shared entanglement among the two locations. To teleport
a qubit Q in an arbitrary unknown state |ψ〉 from Alice to Bob, Alice per-
forms a Bell-measurement on Q and her half of an EPR-pair, yielding a classical
measurement outcome k ∈ {0, 1, 2, 3}. Instantaneously, the other half of the cor-

responding EPR pair, which is held by Bob, turns into the state σ†k|ψ〉, where
σ0, σ1, σ2, σ3 denote the four Pauli-corrections {I, X, Z,XZ}, respectively, and
σ† denotes the complex conjugate of the transpose of σ. The classical informa-
tion k is then communicated to Bob who can recover the state |ψ〉 by performing

σk on his EPR half. Note that the operator σk is Hermitian, thus σ†k = σk.

3 Setup and The Task of Position Verification

3.1 The Security Model

We informally describe the model we use for the upcoming sections, which is a
quantum version of the Vanilla (standard) model introduced in [1] (see there for
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a full description). We also describe our restricted model used for our security
proof, that we call the no pre-shared entanglement (No-PE) model. We consider
entities V0, . . . , Vk called verifiers and an entity P , the (honest) prover. Addition-
ally, we consider a coalition P̂ of dishonest provers (or adversaries) P̂0, . . . , P̂`.
All entities can perform arbitrary quantum (and classical) operations and can
communicate quantum (and classical) messages among them.

For our positive results, we consider a restricted model, which prohibits en-
tanglement between the dishonest verifiers. Specifically, the No-PE model is such
that the dishonest provers enter every new round of communication, initiated
by the verifiers, with no pre-shared entanglement. That is, in every round, a
dishonest prover can send an entangled quantum state only after it receives the
verifier’s message, and the dishonest provers cannot maintain such an entangled
state in order to use it in the next round. As mentioned in the introduction, con-
sidering this simple (but possibly unrealistic) model may help us in obtaining
protocols that are secure against adversaries with limited entanglement.

For simplicity, we assume that quantum operations and communication are
noise-free; however, our results generalize to the more realistic noisy case, assum-
ing that the noise is low enough. We require that the verifiers have a private and
authenticated channel among themselves, which allows them to coordinate their
actions by communicating before, during or after protocol execution. We stress
however, that this does not hold for the communication between the verifiers and
P : P̂ has full control over the destination of messages communicated between
the verifiers and P (both ways). This in particular means that the verifiers do
not know per-se if they are communicating with the honest or a dishonest prover
(or a coalition of dishonest provers).

The above model is now extended by incorporating the notion of time and
space. Each entity is assigned an arbitrary fixed position pos in the d-dimensional
space Rd, and we assume that messages to be communicated travel at fixed
velocity v (e.g. with the speed of light), and hence the time needed for a message
to travel from one entity to another equals the Euclidean distance between the
two (assuming that v is normalized to 1). This holds for honest and dishonest
entities. We assume on the other hand that local computations take no time.

Finally, we assume that the verifiers have precise and synchronized clocks, so
that they can coordinate exact times for sending off messages and can measure
the exact time of a message arrival. We do not require P ’s clock to be precise or
in sync with the verifiers. However, we do assume that P cannot be reset.

This model allows to reason as follows. Consider a verifier V0 at position pos0,
who sends a challenge ch0 to the (supposedly honest) prover claiming to be at
position pos. If V0 receives a reply within time 2d(pos0, pos), where d(·, ·) is the
Euclidean distance measure in Rd and thus also measures the time a message
takes from one point to the other, then V0 can conclude that he is communicating
with a prover that is within distance d(pos0, pos).

We stress that in our model, the honest prover P has no advantage over the
dishonest provers beyond being at its position pos. In particular, P does not
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share any secret information with the verifiers, nor can he per-se authenticate
his messages by any other means.

Throughout the article, we require that the honest prover P is enclosed by
the verifiers V0, . . . , Vk in that the prover’s position pos ∈ Rd lies within the
tetrahedron, i.e., convex hull, Hull(pos0, . . . , posk) ⊂ Rd formed by the respective
positions of the verifiers. Note that in this work we consider only stand-alone
security, i.e., there exists only a single execution with a single honest prover, and
we do not guarantee concurrent security.

3.2 Secure Position Verification

A position-verification scheme should allow a prover P at position pos ∈ Rd
(in d-dimensional space) to convince a set of k + 1 verifiers V0, . . . , Vk, who are
located at respective positions pos0, . . . , posk ∈ Rd, that he is indeed at position
pos. We assume that P is enclosed by V0, . . . , Vk. We require that the verifiers
jointly accept if an honest prover P is at position pos, and we require that the
verifiers reject with “high” probability in case of a dishonest prover that is not
at position pos. The latter should hold even if the dishonest prover consist of
a coalition of collaborating dishonest provers P̂0, . . . , P̂` at arbitrary positions
apos0, . . . , apos` ∈ Rd with aposi 6= pos for all i. We refer to [1] for the gen-
eral formal definition of the completeness and security of a position-verification
scheme. In this article, we mainly focus on position-verification schemes of the
following form:

Definition 1. A 1-round position-verification scheme PV = (Chlg,Resp,Ver)
consists of the following three parts. A challenge generator Chlg, which outputs
a list of challenges (ch0, . . . , chk) and auxiliary information x; a response al-
gorithm Resp, which on input a list of challenges outputs a list of responses
(x′0, . . . , x

′
k); and a verification algorithm Ver with Ver(x′0, . . . , x

′
k, x) ∈ {0, 1}.

PV is said to have perfect completeness if Ver(x′0, . . . , x
′
k, x) = 1 with

probability 1 for (ch0, . . . , chk) and x generated by Chlg and (x′0, . . . , x
′
k) by Resp

on input (ch0, . . . , chk).

The algorithms Chlg, Resp and Ver are used as described in Fig. 1 to verify the
claimed position of a prover P . We clarify that in order to have all the challenges
arrive at P ’s (claimed) location pos at the same time, the verifiers agree on a
time T and each Vi sends off his challenge chi at time T − d(posi, pos). As a
result, all chi’s arrive at P ’s position pos at time T . In Step 3, Vi receives x′i in
time if x′i arrives at Vi’s position posi at time T + d(posi, pos). Throughout the
article, we use this simplified terminology. Furthermore, we are sometimes a bit
sloppy in distinguishing a party, like P , from its location pos.

We stress that we allow Chlg, Resp and Ver to be quantum algorithms and chi,
x and x′i to be quantum information. In our constructions, only ch0 will actually
be quantum; thus, we will only require quantum communication from V0 to P ,
all other communication is classical. Also, in our constructions, x′0 = . . . = x′k,
and Ver(x′0, . . . , x

′
k, x) = 1 exactly if x′i = x for all i.
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Common input to the verifiers: their respective positions pos0, . . . , posk, and P ’s
(claimed) position pos.

0. V0 generates a list of challenges (ch0, . . . , chk) and auxiliary information x
using Chlg, and sends chi to Vi for i = 1, . . . , k.

1. Every Vi sends chi to P in such a way that all chi’s arrive at the same time
at P ’s position pos.

2. P computes (x′0, . . . , x
′
k) := Resp(ch0, . . . , chk) as soon as all the chi’s arrive,

and he sends x′i to Vi for every i.

3. The Vi’s jointly accept if and only if all Vi’s receive x′i in time and
Ver(x′0, . . . , x

′
k, x) = 1.

Fig. 1. Generic 1-round position-verification scheme.

Definition 2. A 1-round position-verification scheme PV = (Chlg,Resp,Ver) is
called ε-sound if for any position pos ∈ Hull(pos0, . . . , posk), and any coalition
of dishonest provers P̂0, . . . , P̂` at arbitrary positions apos0, . . . , apos`, all 6= pos,
when executing the scheme from Fig. 1 the verifiers accept with probability at
most ε. We then write PVε for such a protocol.

In order to be more realistic, we must take into consideration physical limita-
tions of the equipment used, such as measurement errors, computation durations,
etc. Those allow a dishonest prover which resides arbitrarily close to P to ap-
pear as if she resides at pos. Thus, we assume that all the adversaries are at least
∆-distanced from pos, where ∆ is determined by those imperfections. For sake
of simplicity, this ∆ is implicit in the continuation of the paper.

4 Instantaneous Nonlocal Quantum Computation

In order to analyze the (in)security of position-verification schemes, we first ad-
dress a more general task, which is interesting in its own right: instantaneous
nonlocal quantum computation5. Consider the following problem, involving two
parties Alice and Bob. Alice holds A and Bob holds B of a tripartite system
ABE that is in some unknown state |ψ〉. The goal is to apply a known unitary
transformation U to AB, but without using any communication, just by local
operations. In general, such a task is clearly impossible, as it violates the non-
signalling principle. The goal of instantaneous nonlocal quantum computation is
to achieve almost the above but without violating non-signalling. Specifically, the
goal is for Alice and Bob to compute, without communication, a state |ϕ′〉 that
coincides with |ϕ〉 = (U ⊗ I)|ψ〉 up to local and qubit-wise operations on A and

5 This is an extension of the task of “instantaneous measurement of nonlocal variables”
introduced by Vaidman [11].
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B, where I denotes the identity on E. Furthermore, these local and qubit-wise
operations are determined by classical information that Alice and Bob obtain as
part of their actions. In particular, if Alice and Bob share their classical informa-
tion, which can be done with one round of simultaneous mutual communication,
then they can transform |ϕ′〉 into |ϕ〉 = U |ψ〉 by local qubit-wise operations.
Following ideas by Vaidman [11], we show below that instantaneous nonlocal
quantum computation, as described above, is possible if Alice and Bob share
sufficiently many EPR pairs.

In the following, let HA, HB and HE be Hilbert spaces where the former
two consist of nA and nB qubits respectively, i.e., HA = (C2)⊗nA and HB =
(C2)⊗nB . Furthermore, let U be a unitary matrix acting on HA ⊗ HB . Alice
holds system A and Bob holds system B of an arbitrary and unknown state
|ψ〉 ∈ HABE = HA ⊗HB ⊗HE . Additionally, Alice and Bob share an arbitrary
but finite number of EPR pairs.

Theorem 1. For every unitary U and for every ε > 0, given sufficiently many
shared EPR pairs, there exist local operations A and B, acting on Alice’s and
Bob’s respective sides, with the following property. For any initial state |ψ〉 ∈
HABE, the joint execution A⊗B transforms |ψ〉 into |ϕ′〉 and provides classical
outputs k to Alice and ` to Bob, such that the following holds except with prob-
ability ε. The state |ϕ′〉 coincides with |ϕ〉 = (U ⊗ I)|ψ〉 up to local qubit-wise
operations on A and B that are determined by k and `.

We stress that A acts on A as well as on Alice’s shares of the EPR pairs, and
the corresponding holds for B. Furthermore, being equal up to local qubit-wise
operations on A and B means that |ϕ〉 = (V Ak,` ⊗ V Bk,` ⊗ I)|ϕ′〉, where {V Ak,`}k,`
and {V Bk,`}k,` are fixed families of unitaries which act qubit-wise on HA and

HB , respectively. In our construction, the V Ak,` and V Bk,`’s will actually be tensor
products of one-qubit Pauli operators.

As an immediate consequence of Theorem 1, we get the following.

Corollary 1. For every unitary U and for every ε > 0, given sufficiently many
shared EPR pairs, there exists a nonlocal operation AB for Alice and Bob which
consists of local operations and one round of mutual communication, such that for
any initial state |ψ〉 ∈ HABE of the tripartite system ABE, the joint execution
of AB transforms |ψ〉 into |ϕ〉 = (U ⊗ I)|ψ〉, except with probability ε.

For technical reasons, we will actually prove the following extension of Theo-
rem 1, which is easily seen equivalent. The difference to Theorem 1 is that Alice
and Bob are additionally given classical inputs: x to Alice and y to Bob, and
the unitary U that is to be applied to the quantum input depends on x and y.
In the statement below, x ranges over some arbitrary but fixed finite set X , and
y ranges over some arbitrary but fixed finite set Y.

Theorem 2. For every family {Ux,y} of unitaries and for every ε > 0, given
sufficiently many shared EPR pairs, there exist families {Ax} and {By} of lo-
cal operations, acting on Alice’s and Bob’s respective sides, with the following
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property. For any initial state |ψ〉 ∈ HABE and for every x ∈ X and y ∈ Y, the
joint execution Ax ⊗By transforms the state |ψ〉 into |ϕ′〉 and provides classical
outputs k to Alice and ` to Bob, such that the following holds except with prob-
ability ε. The state |ϕ′〉 coincides with |ϕ〉 = (Ux,y ⊗ I)|ψ〉 up to local qubit-wise
operations on A and B that are determined by k and `.

The solution works by teleporting states back and forth in a clever way [11], but
without communicating the classical outcomes of the Bell measurements, so that
only local operations are performed. Thus, in the formal proof below, whenever
we say that a state is teleported, this should be understood in this sense, i.e., the
sender makes a Bell measurement resulting in some classical information, and
the receiver takes his shares of the EPR pairs as the received state, but does/can
not (yet) correct it.

Proof. To simplify notation, we assume that the joint state of A and B is pure,
and thus we may ignore system E. However, all our arguments also hold in case
the state of A and B is entangled with E.

Next, we observe that it is sufficient to prove Theorem 2 for the case where
B is “empty”, i.e., dimHB = 1 and thus nB = 0. Indeed, if this is not the
case, then Alice and Bob can do the following. Bob first teleports B to Alice.
Now, Alice holds A′ = AB with nA′ = nA+nB , and Bob’s system has collapsed
and thus Bob holds no quantum state anymore, only classical information. Then,
they do the nonlocal computation, and in the end Alice teleports B back to Bob.
The modification to the state of B introduced by teleporting it to Alice can be
taken care of by modifying the set of unitaries {Ux,y} accordingly (and making it
dependent on Bob’s measurement outcome, thereby extending the set Y). Also,
the modification to the state of B introduced by teleporting it back to Bob does
not harm the requirement of the joint state being equal to |ϕ〉 = Ux,y|ψ〉 up to
local qubit-wise operations.

Hence, from now on, we may assume that B is “empty”, and we write n
for nA. Next, we describe the core of how the local operations Ax and By work.
To simplify notation, we assume that X = {1, . . . ,m}. Recall that Alice and Bob
share (many) EPR pairs. We may assume that the EPR pairs are grouped into
groups of size n; each such group we call a teleportation channel. Furthermore, we
may assume that m of these teleportation channels are labeled by the numbers
1 up to m, and that another m of these teleportation channels are labeled by
the numbers m+ 1 up to 2m.

1. Alice teleports |ψ〉 to Bob, using the teleportation channel that is labeled by
her input x. Let us denote her measurement outcome by k◦ ∈ {0, 1, 2, 3}n.

2. For every i ∈ {1, . . . ,m}, Bob does the following. He applies the unitary
Ui,y to the n qubits that make up his share of the EPR pairs given by the
teleportation channel labeled by i. Then, he teleports the resulting state
to Alice using the teleportation channel labeled by m + i. We denote the
corresponding measurement outcome by `◦,i.

3. Alice specifies the n qubits that make up her share of the EPR pairs given
by the teleportation channel labeled by m+ x to be the state |ϕ′〉.
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Let us analyze the above. With probability 1/4n, namely if k◦ = 0 · · · 0,
teleporting |ψ〉 to Bob leaves the state unchanged. In this case, it is easy to see
that the resulting state |ϕ′〉 satisfies the required property of being identical to
|ϕ〉 = Ux,y|ψ〉 up to local qubit-wise operations determined by `◦,x, and thus
determined by x and `◦ = (`◦,1, . . . , `◦,m). This proves the claim for the case
where ε ≥ 1− 1/4n.

We now show how to reduce ε. The crucial observation is that if in the above
procedure k◦ 6= 0 · · · 0, and thus |ϕ′〉 is not necessarily identical to |ϕ〉 up to local
qubit-wise operations, then

|ϕ′〉 = V`◦,xUx,yVk◦ |ψ〉 = V`◦,xUx,yVk◦U
†
x,y|ϕ〉 ,

where V`◦,x and Vk◦ are tensor products of Pauli matrices. Thus, setting |ψ′〉 :=
|ϕ′〉, x′ := (x, k◦) and y′ := (y, `◦), and U ′x′,y′ := Ux,yVk◦U

†
x,yV`◦,x , the state |ϕ〉

can be written as |ϕ〉 = U ′x′,y′ |ψ′〉. This means, we are back to the original
problem of applying a unitary, U ′x′,y′ , to a state, |ψ′〉, held by Alice, where the
unitary depends on classical information x′ and y′, known by Alice and Bob,
respectively. Thus, we can re-apply the above procedure to the new problem
instance. Note that in the new problem instance, the classical inputs x′ and y′

come from larger sets than the original inputs x and y, but the new quantum
input, |ψ′〉, has the same qubit size, n. Therefore, re-applying the procedure will
succeed with the same probability 1/4n.

As there is a constant probability of success in each round, re-applying the
above procedure sufficiently many times to the resulting new problem instances
guarantees that except with arbitrary small probability, the state |ϕ′〉 will be
of the required form at some point (when Alice gets k◦ = 0 · · · 0). Say, this is
the case at the end of the j-th iteration. Then, Alice stops with her part of the
procedure at this point, keeps the state |ϕ′〉, and specifies k to consist of j and
of her classical input into the j-th iteration (which consists of x and of the k◦’s
from the prior j − 1 iterations). Since Bob does not learn whether an iteration
is successful or not, he has to keep on re-iterating up to some bound, and in
the end he specifies ` to consist of the `◦’s collected over all the iterations. The
state |ϕ′〉 then equals |ϕ〉 = Ux,y|ψ〉 up to local qubit-wise operations that are
determined by k and `. ut

Doing the maths shows that the number of EPR pairs needed by Alice and
Bob in the scheme described in the proof is double exponential in nA + nB , the
qubit size of the joint quantum system.

In recent subsequent work [20], Beigi and König have used a different kind of
quantum teleportation by Ishizaka and Hiroshima [21, 22] to reduce the amount
of entanglement needed to to perform instantaneous nonlocal quantum compu-
tation to exponential in the qubit size of the joint quantum system. It remains
an interesting open question whether such an exponentially large amount of
entanglement is necessary.
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5 Impossibility of Unconditional Position Verification

For simplicity, we consider the one-dimensional case, with two verifiers V0 and V1,
but the attack can be generalized to higher dimensions and more verifiers.

We consider an arbitrary position-verification scheme in our model (as spec-
ified in Sect. 3.1). We recall that in this model, the verifiers must base their
decision solely on what the prover replies and how long it takes him to reply, and
the honest prover has no advantage over a coalition of dishonest provers beyond
being at the claimed position6. Such a position-verification scheme may be of
the form as specified in Fig. 1, but may also be made up of several, possibly
interleaved, rounds of interaction between the prover and the verifiers.

For the honest prover P , such a general scheme consists of steps that look as
follows. P holds a local quantum register R, which is set to some default value
at the beginning of the scheme. In each step, P obtains a system A from V0 and
a system B from V1, and V0 and V1 jointly keep some system E. Let |ψ〉 be the
state of the four-partite system ABRE; it is determined by the scheme and by
the step within the scheme we are focussing on. P then has to apply a fixed7

known unitary transformation U to ABR, and send the (transformed) systems
A and B back to V0 and V1 (and keep R). Note that after the transformation, the
state of ABRE is given by |ϕ〉 = (U⊗I)|ψ〉, where I is the identity acting on HE .
For technical reasons, as in Sect. 4, it will be convenient to distinguish between
classical and quantum inputs, and therefore, we let the unitary U depend on
classical information x and y, where x has been sent by V0 along with A, and y
has been sent by V1 along with B.

We now show that a coalition of two dishonest provers P̂0 and P̂1, where
P̂0 is located in between V0 and P and P̂1 is located in between V1 and P ,
can perfectly simulate the actions of the honest prover P , and therefore it is
impossible for the verifiers to distinguish between an honest prover at position
pos and a coalition of dishonest provers at positions different from pos. The
simulation of the dishonest provers perfectly imitates the computation as well
as the timing of an honest P . Since in our model this information is what the
verifiers have to base their decision on, the general impossibility of position-
verification in our model follows.

Consider a step in the scheme as described above, but now from the point of
view of P̂0 and P̂1. Since P̂0 is closer to V0, he will first receive A and x; similarly,
P̂1 will first receive B and y. We specify that P̂1 takes care of and maintains
the local register R. If the step we consider here is the first step in the scheme,
then the state of ABRE equals |ψ〉, as in the case of an honest P . In order to
have an invariant that holds for all the steps, we actually relax this statement
and merely observe that the state of ABRE, say |ψ′〉, equals |ψ〉 up to local and
qubit-wise operations on the subsystem R, determined by classical information

6 In particular, the prover does not share any secret information with the verifiers,
differentiating our setting from models as described for example in [18].

7 U is fixed for a fixed scheme and for a fixed step within the scheme, but of course
may vary for different schemes and for different steps within a scheme.
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x◦ and y◦, where P̂0 holds x◦ and P̂1 holds y◦. This invariant clearly holds for
the first step in the scheme, when R is in some default state, and we will show
that it also holds for the other steps.

By Theorem 2, it follows that without communication, just by instantaneous
local operations, P̂0 and P̂1 can transform the state |ψ′〉 into a state |ϕ′〉 that
coincides with |ϕ〉 = (Ux,y⊗ I)|ψ〉 up to local and qubit-wise transformations on

A, B and R, determined by classical information k (known to P̂0) and ` (known
to P̂1). Note that the initial state is not |ψ〉, but rather a state of the form
|ψ′〉 = (Vx◦,y◦ ⊗ I)|ψ〉, where x◦ is known to P̂0 and y◦ to P̂1. Thus, Theorem 2
is actually applied to the unitary U ′x′,y′ = Ux,yV

†
x◦,y◦ , where x′ = (x◦, x) and

y′ = (y◦, y). Given |ϕ′〉 and k and `, P̂0 and P̂1 can now exchange k and ` using
one mutual round of communication and transform |ϕ′〉 into |ϕ′′〉 that coincides
with |ϕ〉 up to qubit-wise operations only on R, and send A to V0 and B to
V1. It follows that the state of ABE and the time it took P̂0 and P̂1 for the
computation and communication is identical to that of an honest P , i.e., P̂0 and
P̂1 have perfectly simulated this step of the scheme.

Finally, we see that the invariant is satisfied, when moving on to the next step
in the scheme, where P̂0 and P̂1 receive new A and B (along with new classical
x and y) from V0 and V1, respectively. Even if this new round interleaves with
the previous round in that the new A and B etc. arrive before P̂0 and P̂1 have
finished exchanging (the old) k and `, it still holds that the state of ABRE is as
in the case of honest P up to qubit-wise operations on the subsystem R. This
implies that the above procedure works for all the steps and thus that P̂0 and P̂1

can indeed perfectly simulate honest P ’s actions throughout the whole scheme.

6 Secure Position-Verification in the No-PE model

In this section we show the possibility of secure position-verification in the No-
PE model. We consider the following basic 1-round position-verification scheme
in the No-PE model, given in Fig. 2. It is based on the BB84 encoding.

0. V0 chooses two random bits x, θ ∈ {0, 1} and privately sends them to V1.

1. V0 prepares the qubit Hθ|x〉 and sends it to P , and V1 sends the bit θ to P ,
so that Hθ|x〉 and θ arrive at the same time at P .

2. When Hθ|x〉 and θ arrive, P measures Hθ|x〉 in basis θ to observe x′ ∈ {0, 1},
and sends x′ to V0 and V1.

3. V0 and V1 accept if on both sides x′ arrives in time and x′ = x.

Fig. 2.Position-verification scheme PVεBB84 based on the BB84 encoding.

We implicitly specify that parties abort if they receive any message that is
inconsistent with the protocol, for instance (classical) messages with a wrong
length, or different number of received qubits than expected, etc.
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Theorem 3. The 1-round position-verification scheme PVεBB84 from Fig. 2 is
ε-sound with ε = 1− h−1( 1

2 ), in the No-PE model.

The function h : [0, 1] → [0, 1] denotes the binary entropy function defined as
h(p) = −p log(p) − (1 − p) log(1 − p) for 0 < p < 1 and as h(p) = 0 for p = 0
or 1, and h−1 : [0, 1] → [0, 12 ] denotes its inverse on the branch 0 ≤ p ≤ 1

2 . A
numerical calculation shows that h−1( 1

2 ) ≥ 0.11 and thus ε ≤ 0.89. A particular
attack for a dishonest prover P̂ , sitting in-between V0 and P , is to measure
the qubit Hθ|x〉 in the Breidbart basis, resulting in an acceptance probability of
cos(π/8)2 ≈ 0.85. This shows that our analysis is pretty tight.

Proof. The proof uses several concepts of quantum information theory which
are explained in more detail in the full version of this paper [25]. A key idea in
this proof is the use of the complementary information trade-off (CIT) [24] (see
also [27] for a generalization). In a form useful for us, CIT states that for any
tri-partite state |ψAEF 〉 ∈ HA ⊗ HE ⊗ HF with HA = (C2)⊗n, the following
holds. If Θ is uniformly distributed in {0, 1}n and X is the result of measuring
A in basis Θ, then H(X|ΘE) + H(X|ΘF ) ≥ n, where H is the (conditional) von
Neumann entropy.

In order to analyze the position-verification scheme it is convenient to con-
sider an equivalent purified version, given in Fig. 3. The only difference between
the original and the purified scheme is the preparation of the bit Hθ|x〉. In the
purified version, it is done by preparing |ΦAB〉 = (|0〉|0〉 + |1〉|1〉)/

√
2 and mea-

suring A in basis θ. This changes the point in time when V0 measures A, and
the point in time when V1 learns x. This, however, has no influence on the view
of the (dishonest or honest) prover, nor on the joint distribution of θ, x and x′,
and thus neither on the probability that V0 and V1 accept. It therefore suffices
to analyze the purified version.

0. V0 and V1 privately agree on a random bit θ ∈ {0, 1}.
1. V0 prepares an EPR pair |ΦAB〉 ∈ HA⊗HB , keeps qubit A and sends B to P ,

and V1 sends the bit θ to P , so that B and θ arrive at the same time at P .

2. When B and θ arrive, P measures B in basis θ to observe x′ ∈ {0, 1}, and
sends x′ to V0 and V1.

3. Only now, when x′ arrives, V0 measures A in basis θ to observe x, and privately
sends x to V1. V0 and V1 accept if on both sides x′ arrives in time and x′ = x.

Fig. 3. EPR version of PVεBB84.

We first consider security against two dishonest provers P̂0 and P̂1, where P̂0

is between V0 and P and P̂1 is between V1 and P . In the end we will argue that
a similar argument holds for multiple dishonest provers on either side.

Since V0 and V1 do not accept if x′ does not arrive in time and dishonest
provers do not use pre-shared entanglement in the No-PE-model, any potentially
successful strategy of P̂0 and P̂1 must look as follows. As soon as P̂1 receives
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the bit θ from V1, she forwards (a copy of) it to P̂0. Also, as soon as P̂0 receives
the qubit A, she applies an arbitrary quantum operation to the received qubit A
(and maybe some ancillary system she possesses) that maps it into a bipartite
state E0E1 (with arbitrary state space HE0 ⊗HE1), and P̂0 keeps E0 and sends
E1 to P̂1. Then, as soon as P̂0 receives θ, she applies some measurement (which
may depend on θ) to E0 to obtain x̂0, and as soon as P̂1 receives E1, she applies
some measurement (which may depend on θ) to E1 to obtain x̂1, and both send
x̂0 and x̂1 immediately to V0 and V1, respectively. We will now argue that the
probability that x̂0 = x and x̂1 = x is upper bounded by ε as claimed.

Let |ψAE0E1
〉 ∈ HA⊗HE0

⊗HE1
be the state of the tri-partite system AE0E1

after P̂0 has applied the quantum operation to the qubit B. It is important to
realize that the state |ψAE0E1

〉 is independent of θ. This is because P̂0 has to
apply the quantum operation to B before learning θ.8 Recall that x is obtained
by measuring A in either the computational (if θ = 0) or the Hadamard (if θ = 1)
basis. Writing x, θ, etc. as random variables X, Θ, etc., it follows from CIT that
H(X|ΘE0) + H(X|ΘE1) ≥ 1. Let Y0 and Y1 denote the classical information
obtained by P̂0 and P̂1 as a result of measuring E0 and E1, respectively, with
bases that may depend on Θ. By the well-known Holevo bound, it follows from
the above that

H(X|ΘY0) + H(X|ΘY1) ≥ 1 ,

therefore H(X|ΘYi) ≥ 1
2 for at least one i ∈ {0, 1}. By Fano’s inequality, we

can conclude that the corresponding error probability qi = P [X̂i 6=X] satisfies
h(qi) ≥ 1

2 . It thus follows that the failure probability

q = P [X̂0 6=X ∨ X̂1 6=X] ≥ max {q0, q1} ≥ h−1(
1

2
) ,

and the probability of V0 and V1 accepting, P [X̂0 =X ∧ X̂1 =X] = 1− q, is in-
deed upper bounded by ε as claimed. See full details in [25].

It remains to argue that more than two dishonest provers in the No-PE model
cannot do any better. The reasoning is the same as above. Namely, in order to
respond in time, the dishonest provers that are closer to V0 than P must map
the qubit A—possibly jointly—into a bipartite state E0E1 without knowing θ,
and jointly keep E0 and send E1 to the dishonest provers that are “on the other
side” of P (i.e., closer to V1). Then, the reply for V0 needs to be computed from
E0 and θ (possibly jointly by the dishonest provers that are closer to V0), and
the response for V1 from E1 and θ. Thus, it can be argued as above that the
success probability is bounded by ε as claimed. ut

The soundness error can be further reduced by sequentially repeating the
scheme, assuming that the adversaries do not share entanglement at the be-
ginning of each round. Also, the scheme can easily be extended to arbitrary
dimension d. The idea is to involve additional verifiers V2, . . . , Vd and have the
basis θ secret-shared among V1, V2, . . . , Vd.

8 We stress that this independency breaks down if P̂0 and P̂1 may start off with an
entangled state, because then P̂1 can act on his part of the entangled state in a
θ-dependent way, which makes the overall state dependent of θ.
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7 Other Position-based Cryptographic Tasks

In the full version of this paper [25], we show the following additional results.
Using a generic position-verification scheme, we construct a position-based au-
thentication scheme, which ensures that a communicated message m originates
from an entity P that is at some specific location. In combination with an off-the-
shelf quantum-key-distribution (QKD) scheme, this results in a position-based
key-distribution scheme, which enables the verifiers to exchange a cryptographic
key K with the prover, with the guarantee that only the honest prover at location
pos obtains K, but any adversary (or coalition of adversaries) not at location pos
learns no information on K. Using our position-verification scheme in the No-PE
model as underlying scheme, we obtain secure position-based authentication and
position-based key-distribution schemes in the No-PE model.

8 Conclusion and Open Questions

We have proven a general impossibility result for position-based quantum cryp-
tography, thereby showing the insecurity of several recently proposed schemes [13–
17]. Our no-go result has already sparked subsequent work [20] about the amount
of entanglement needed to break general position-verification schemes.

On the positive side, we have shown the existence of secure position-based
quantum cryptographic schemes under the (strong) assumption that adversaries
do not share any entanglement (prior to each round). An interesting open ques-
tion is the existence of secure schemes under more relaxed and realistic assump-
tions, like in the bounded-quantum-storage model [28], where adversaries are
limited in the number of qubits they can store reliably?
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