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Abstract. The resistance of cryptographic implementations to side-
channel analysis is a matter of considerable interest to those concerned
with information security. It is particularly desirable to identify the at-
tack methodology (e.g. di�erential power analysis using correlation or
distance-of-means as the distinguisher) able to produce the best results.
Such attempts are complicated by the many and varied factors contribut-
ing to attack success: the device power consumption characteristics, an
attacker's power model, the distinguisher by which measurements and
model predictions are compared, the quality of the estimations, and so
on. Previous work has delivered partial answers for certain restricted sce-
narios. In this paper we assess the e�ectiveness of mutual information-
based di�erential power analysis within a generic and comprehensive
evaluation framework. Complementary to existing work, we present sev-
eral notions/characterisations of attack success with direct implications
for the amount of data required. We are thus able to identify scenarios
in which mutual information o�ers performance advantages over other
distinguishers. Furthermore we observe an interesting feature�unique
to the mutual information based distinguisher�resembling a type of
stochastic resonance, which could potentially enhance the e�ectiveness
of such attacks over other methods in certain noisy scenarios.
Keywords: side channel analysis, mutual information

1 Introduction

Side-channel analysis (SCA) refers to a collection of cryptanalytic techniques for
extracting secret information from the physical leakage of a device as it executes a
cryptographic algorithm. Of the various types, one of the most popularly studied
is di�erential power analysis (DPA); it involves applying some type of statistic
(the distinguisher) to identify a correct hypothesis about (part of) the secret
key from the set of all possible hypotheses about this key. Popular distinguisher
choices are the Pearson correlation coe�cient and the distance-of-means test.
Mutual information (MI) measures the total dependency between two random
variables, and was �rst proposed for use in DPA at CHES 2008 ([6]). A priori
it was expected to display certain advantages over other distinguishers, loosely
summarized by three (informal) conjectures:



1. By comprehensively exploiting all of the information contained within trace
measurements it could have an e�ciency advantage over existing side-channel
distinguishers such as correlation (which measures linear dependencies only).

2. By capturing total dependency between the true device leakage and the
modeled leakage it could prove e�ective in scenarios where an accurate model
for the data-dependent leakage of the device is not known, thereby serving
as a `generic' distinguisher.

3. By natural extension to multivariate statistics it might be adapted to the
context of higher-order attacks against (for example) protected implementa-
tions. Existing distinguishers operate on univariate data only and therefore
require trace data to be pre-processed, resulting in loss of information.

Subsequent investigations such as [1,17,20,23] have found little evidence of
the �rst two expectations being met in practice (there is rather more support for
the third�see, for example, [1,5,17]). However, the literature has not been com-
prehensive in explaining why this might be. We must bear in mind that many
factors in�uence DPA outcomes: not only the choice of distinguisher, but also the
target intermediate function, the form of the data-dependent device leakage and
how well this can be modeled, and the precision with which the distinguishing
vector can be estimated using the resources and capabilities available. It is often
unclear whether the observed underperformance of MI-based DPA is an inher-
ent theoretical weakness of the distinguisher, a result of sub-optimal estimation
procedures, or simply a failure to identify scenarios (i.e. combinations of target
functions and power consumption patterns) where it o�ers a useful advantage:
see Batina et al. [1] for an overview of these issues.

In this paper we introduce a framework for assessing and comparing DPA
attacks in any given scenario on a theoretical basis, abstracting away from the
problem of practical estimation. We use this to gain fresh insight into the �ndings
of the existing literature and to clarify when and in what sense the a priori
intuition regarding MI-based DPA does hold. Moreover, we are able to identify
and describe attack scenarios in which MI-based DPA is theoretically successful
whilst other distinguishers fail, or in which it displays a theoretic advantage large
enough to potentially translate to a practical advantage. Further, we demonstrate
that the (standardised) MI-based distinguishing vector exhibits the property of
stochastic resonance as the noise levels in the power consumption vary. This
feature, which is not shared by correlation-based DPA, could potentially be
exploited to enhance MI-based attacks via noise injection.

In what follows, we �rst give the relevant preliminary information on DPA
attacks, including details of particular distinguishers and a discussion of previous
work in Sect. 2. In Sect. 3 we describe our methodology, whilst Sect. 4 reports
on our �ndings as they relate to various attack scenarios. We conclude in Sect. 5.

2 DPA Attacks

We consider a `standard DPA attack' scenario such as de�ned in [13]: The power
consumption L of the target device depends on some internal value (or state)



fk∗(x): a function of some part of the plaintext x ∈ X , as well as some part
of the secret key k∗ ∈ K. Hence, we have that L = L ◦ fk∗(x) + ε, where L is
some function which describes the data-dependent component and ε comprises
the remaining power consumption which can be modeled as independent random
noise. The attacker has N power measurements corresponding to encryptions of
N known plaintexts xi ∈ X , i = 1, . . . , N and wishes to recover the secret key
k∗. The attacker can accurately compute the internal values as they would be
under each key hypothesis {fk(xi)}Ni=1, k ∈ K and uses whatever information he
possesses about the true leakage function L to construct a model M .

DPA exploits the fact that the modeled power traces corresponding to the
correct key hypothesis should bear more resemblance to the true power traces
than do the modeled traces corresponding to incorrect hypotheses. An attacker is
thus concerned with quantifying and comparing the degree of similarity between
the true and modeled traces for each key hypothesis. A range of comparison
tools�`distinguishers'�are available, of which mutual information and Pear-
son's correlation coe�cient are popular examples. We introduce these formally
and examine them in more detail in the remaining parts of this section. We use
the shorthands CPA and MIA to refer (respectively) to correlation-based and
MI-based DPA attacks.

2.1 Reasoning about the Success and E�ciency of DPA Attacks

Previous work has made some progress towards providing meaningful and prac-
tically relevant de�nitions for the `success' and `e�ciency' of DPA attacks. Stan-
daert's work [21] formalised the notion of key-recovery success (and, correspond-
ingly, success rate), which we adopt for our purposes here: The theoretic attack
distinguisher isD = {D(k)}k∈K = {D(L◦fk∗(X)+ε,M ◦fk(X))}k∈K, where the
plaintext input X takes values in X according to some known distribution (usu-
ally uniform). We say the attack is theoretically successful if D(k∗) > D(k)∀k 6=
k∗. We say it is o-th order theoretically successful if #{k ∈ K : D(k∗) ≤ D(k)} <
o.

However, in practice D must be estimated. Suppose we have observations
corresponding to the vector of inputs x = {xi}Ni=1, and write e = {ei}Ni=1 to
be the observed noise (i.e. drawn from the distribution of ε). Then the size #K
estimated vector is D̂N = {D̂N (k)}k∈K = {D̂N (L ◦ fk∗(x) + e,M ◦ fk(x))}k∈K.
We then say the attack is successful if D̂N (k∗) > D̂N (k) ∀k 6= k∗ and o-th order
successful if #{k ∈ K : D̂N (k∗) ≤ D̂N (k)} < o.

Since we are particularly interested in the impact of L on attack outcomes, it
is desirable to abstract away from the impact of noise, as well as from the estima-
tion process. We de�ne a distinguisher as ideally successful if it is theoretically
successful in a noise-free scenario.

Ideal success thus depends on the target intermediate function, the form
of the data-dependent device leakage L, the set X ′ ⊆ X of plaintexts being
encrypted, and the choice of power model and distinguisher. Theoretic success
is further determined by the size and distribution of the noise ε whilst practical
success depends additionally on the choice of estimator for the distinguisher and



the number of trace measurementsN . That is, given an attack which theoretically
distinguishes the correct key (by a margin of a certain size), the practical outcome
will be determined by whether or not an attacker has adequate resources to
estimate D̂ with su�cient precision to detect a di�erence of that size.

2.2 Distinguishers for DPA Attacks

Standaert et al. [20] provide a good overview of the many distinguishers that
have been employed in the literature since DPA was �rst introduced in the late
1990s [9]. In this paper, we focus on mutual information and compare it with
one other distinguisher of interest: Pearson's correlation coe�cient.

In recent work, Mangard et al. [13] have shown that in the scenario of stan-
dard DPA attacks, the three most popular distinguishers, Pearson correlation,
distance of means, and Bayes, are equally successful. Under additional, strong
assumptions such that the MI can be estimated parametrically as a Gaussian
mixture, they are even able to demonstrate a mapping between a correlation-
based and an MI-based distinguisher. Our work relates to rather more general
distributional assumptions.

Mutual Information Mutual information measures, in bits, the total infor-
mation shared between two random variables X and Y . It is most intuitively
expressed in terms of entropies via Shannon's formula: I(X;Y ) = H(X) −
H(X|Y ).1

Mutual information is a functional of probability distributions, and estima-
tion is a much studied problem with no simple answers ([3,8,14,19,22]). All es-
timators are biased, and further no `ideal' estimator exists; di�erent estimators
perform di�erently depending on the underlying structure of the data.

The usual approach is to �rst estimate the underlying marginal and condi-
tional densities and then to substitute these into Shannon's formula via a `plug-
in' estimator for discrete entropy. There are many di�erent ways to estimate
densities and the quality of the resulting estimator for MI is very sensitive to
the methods and parameters chosen. If we have a good understanding of the un-
derlying distributions we can �t a parametric model such as a Gaussian mixture
(see Veyrat-Charvillon et al. [23]). However, since MIA has been proposed for
use in scenarios where our usual assumptions do not hold we are generally more
interested in nonparametric methods, which are somewhat sensitive to user ap-
proach and known to incur an overhead in terms of estimation costs. In practice,
due to the large sample space and small datasets we usually estimate the densi-
ties via an m-bin regularisation of the space. By an important data processing
inequality2 this means we are always estimating a lower bound on the mutual

1 The original (but equivalent) de�nition is I(X;Y ) =∑
y∈Y

∑
x∈X pX,Y (x, y) log2

(
pX,Y (x,y)

pX (x) pY (y)

)
, where pX,Y is the joint probability

density of X and Y and pX , pY are the marginal densities.
2 I(S(X);T (Y )) ≤ I(X;Y ) for any random variables X and Y and any functions S
and T on the range of X and Y .



information�as the binning or mesh becomes �ner the estimate approaches the
true mutual information monotonically from below [14].

In security evaluations we often would like to be able to talk about the
number of traces needed for an attack to be successful. This requires knowing
the sampling distribution for the distinguisher under reasonable assumptions.
Unfortunately, estimators for MI do not `behave nicely' as do other statistics
(such as the correlation coe�cient�see below); in fact, there are no universal
rates of convergence [14], so that whatever estimator we pick, we can always �nd
a distribution for which the error vanishes arbitrarily slowly.

The relationship between the ideal MI and the theoretic MI in the presence
of noise is complex (see, for example, [11]). In particular, whilst I(X + ε;Y ) ≤
I(X;Y ) (X, ε independent), nonetheless I(X;Y )−I(X+ε;Y ) 6= I(X;Z)−I(X+
ε;Z). Thus, the elements of the theoretic MIA vector are di�erentially a�ected
so that ideal outcomes do not directly generalise to theoretic outcomes in the
presence of noise.

Pearson's Correlation Coe�cient Pearson's correlation coe�cient measures
the total linear dependency between two random variables X and Y . It is de-

�ned as ρ(X,Y ) = cov(X,Y )
σXσY

. It takes values from -1 to 1 and, as with mutual
information, is zero whenever X and Y are independent. However, the converse
is not true; namely, X and Y may be (non-linearly) dependent with a (linear)
correlation of 0.

It is estimated from samples {xi}Ni=1, {yi}Ni=1 via the sample correlation co-

e�cient: r(X,Y ) =
∑N
i=1(xi−x̄)(yi−ȳ)√∑N

i=1(xi−x̄)2
√∑N

i=1(yi−ȳ)2
. This is a consistent estimator

for ρ(X,Y ) and, moreover, is asymptotically unbiased and e�cient if X and
Y have a joint Normal distribution. Under the same assumptions, we can even
approximate the sampling distribution which leads to `nice' results such as the
number of trace measurements required for attacks to be successful (see Chap.
6.4 of [12]).

The relationship between the ideal correlation and the theoretic correlation
in the presence of noise is straightforward. In fact, as derived in Chap. 6.3 of

[12], ρ(L+ ε,Mk) = ρ(L,Mk)√
1+

σ2ε
Var(L)

. Thus, the larger the noise, the more diminished

are the correlations. But�crucially�the denominator does not depend on the
key hypothesis; the theoretic distinguisher vector is thus scaled in such a way
that the rankings and other relative features are preserved. This does not at all
imply that practical CPA attacks are immune to noise: As the sample variance
of the estimator increases, the number of traces required to reach a su�cient
level of precision also increases (see Chap. 4 of [12])).

3 A Comprehensive Evaluation Framework

We compute and examine ideal/theoretic CPA and MIA vectors for a broad
spectrum of possible leakage scenarios in unpro�led attacks where the true leak-



age L is unknown and modeled via the Hamming weight (HW) or the raw value
(ID) of the target function output. For CPA, this is the same as assuming that
the leakage is proportional to the HW or ID of the target, whereas for MIA this
is the same as allowing the leakage to be di�erent for each distinct HW or ID
value, without any restriction on the nature of that dependency (for example,
it needn't be a monotonic relationship). These vectors provide insight into the
relative strengths and weaknesses of the distinguishers. We are particularly in-
terested in �nding scenarios where MIA has an ideal/theoretic advantage over
CPA because we hope that a su�ciently large theoretic advantage would trans-
late into a practical advantage. To do this we need to formulate an appropriate
notion of �advantage�.

An extremely desirable metric for security evaluation is the number of traces
needed for an attack to be successful. We can compute this for a given estimator
using the techniques of statistical power analysis [10], provided the sampling
distribution can be approximated�but this is not achievable in general (see Sect.
2.2), besides which we are seeking to avoid estimator-speci�c comparisons. Our
solution is to choose measures based on those characteristics of the theoretic
vectors which have the greatest bearing on the trace e�ciency of a practical
attack:

1. Correct key ranking : The position of the correct key when ranked by distin-
guisher value. If the correct key is ranked joint �rst the ranking order is the
number of keys sharing position 1, so that an attack with a ranking order of
o is oth-order theoretically successful as de�ned in Sect. 2.1. The relationship
with practical e�ciency is obvious: attacks which are not �rst-order success-
ful will not be able to uniquely extract the correct key from any number of
trace measurements (except by random chance).

2. Average distinguishing score: The number of standard deviations above (or
below) the mean for the distinguisher value corresponding to the correct key.
This matches the �DPA signal-to-noise ratio� described by [7] and indicates
the sensitivity of the attack in isolating the correct key: A very sensitive at-
tack may be able to succeed in practice with only a few trace measurements,
as even imprecise estimates will detect a large di�erence. A theoretically
`unsuccessful' attack may still be able to return a small candidate subset
containing the correct key if the average distinguishing power is high.

3. Nearest-rival distinguishing score: The distance from the `nearest rival' (i.e.
the di�erence between the correct key distinguisher value and the value for
the highest ranked alternative), normalised by the standard deviation. This
represents, more directly than the average distinguishing power, the margin
to be detected by a practical attack.

By computing the above measures for uniformly drawn plaintexts X
unif.←

X , we are able to compare theoretic behaviour of attacks when provided with
full information. We propose to explore the sensitivity of attacks to restricted
information by inspecting ideal/theoretic attack vectors for reduced subsets of
the plaintext space. These vectors depend not only on the size but also on the



composition of the input set; we cannot perform the computation exhaustively
over the entire space of possible subsets (it is too large), but by repeated random
draws of increasing size we can estimate the average support size needed for
attack success. Thus we add the following measures as further clues to the �how
many traces� problem:

5. Average minimum support : On average, the required support size of the
input distribution for the attack to achieve oth-order success (where o is the
ranking order).

6. Support required for x% success rate: The support size for which the rate of
success (of the appropriate order) is at least x per cent.

Our criteria are best viewed in conjunction with one another rather than in
isolation, and trade-o�s between them will interplay di�erently with practical
considerations. For instance, a methodology which achieves only oth-order suc-
cess (where o > 1) might be preferable to one achieving 1st-order success if the
distinguisher vector can be estimated more precisely and/or e�ciently. Likewise,
nearest-rival distinguishability may be more important than average minimum
support in the presence of high noise.

In some parts of this study it is more desirable to measure the average be-
haviour of an attack in a class of scenarios than to describe results under a speci�c
scenario. This is relevant, for example, when considering functions of su�cient
arbitrariness that we cannot detail each case exhaustively. In such cases, as with
the analysis of restricted input support, we estimate average behaviour by using
randomly sampled examples (note that the distinguishing vectors themselves are
still computed, not estimated).

We acknowledge that data complexity is not the only measure of cost and that
considerations such as computational complexity also play a role in determining
the practicality of an attack. A formal study is outside the scope of this paper,
but we do try to comment where appropriate.

Ideal/Theoretic vs. Practical Attacks. Recall that we de�ne theoretic (as well as
ideal, i.e. noise-free) attacks to abstract away from the impact of the estimation
process (and from noise). As such, theoretic outcomes depend on the target in-
termediate function, the device leakage (including how much noise is present),
the set of plaintexts used as inputs, the attackers choice/knowledge about the
power model, and the theoretical distinguisher (which is in this case the es-
timand). Practical outcomes depend on an additional, crucial factor, namely
the estimator�the quality of which, and the sensitivity to the underlying pop-
ulation parameters and noise, will ultimately determine whether an observed
ideal/theoretical advantage is translated into a real advantage in a practical
attack.

We consider several outcome measures to allow for a nuanced analysis of
the distinguisher qualities contributing to practical outcomes. For example, the
notion of ranking order is needed in addition to correct key ranking because,
whilst ties are highly unlikely in the estimated vectors arising from practical



attacks, the underlying theoretic values may well rank keys equally. The ap-
proach of studying the distinguishing quality of the estimands separately from
the qualities of the estimators is new and, as we will demonstrate in latter parts
of the paper, provides fresh insight into the strengths and weaknesses of di�erent
distinguishers in practice.

4 Results

We now evaluate MIA and CPA distinguishers using the framework and con-
siderations w.r.t. leakage models as spelled out before. For the sake of clarity
and conciseness, we �rst show one detailed example (Hamming-weight leakage
of a device implementing the DES algorithm), and then brie�y report outcomes
for some other leakage models. The choice for our focus is motivated by pre-
vious practical work which has focused on DES implementations [1], and the
fact that DES is still used as predominant algorithm in the banking world. Note
though that our framework could be used in the same way in a di�erent context,
and that the results of our evaluation of MI as a distinguisher are not strongly
dependent on our speci�c choice.

4.1 Hamming-Weight Leakage

We begin with an ideal evaluation of MIA relative to CPA in the simplest and
most popularly studied scenario: the �rst S-Box in a DES implementation (short:
DESS1) with a Hamming-weight (HW) leakage. As attacker power models we
consider HW and the identity (ID) power model. For the sake of simplicity we
use the following abbreviations: CPA(HW) as short-hand for correlation-based
DPA with a HW power model, MIA(HW)/MIA(ID) as short-hand for MI-based
DPA with a HW/ID power model, and MMIA for multivariate MI-based DPA.
Using the notation as introduced before we �rst evaluate

CPA(M) : {ρ(L ◦DESS1(x, k∗),M ◦DESS1(x, k))}k∈K, (1)

MIA(M) : {I(L ◦DESS1(x, k∗);M ◦DESS1(x, k))}k∈K (2)

assuming that both the attacker's power model, as well as the device's power
model is the Hamming weight, i.e. L = M = HW .

This is a scenario in which we expect CPA(HW) to perform well: the use of the
true power model enables perfect prediction of the data-dependent leakage under
the correct key hypothesis, whilst the choice of the S-Box as target ensures that
the alternative hypotheses will each give rise to substantially di�erent predictions
(see [16]).

Figure 1 shows the ideal distinguisher values for a CPA(HW) and an MIA(HW)
attack. Since the target function has the Equal Images under di�erent Subkeys
(EIS) property [18] and the plaintexts are assumed uniformly distributed, at-
tack outcomes are key independent [13]: the correct hypothesis yields the same
distinguisher value under any key, and only the arrangement of the remaining
vector entries changes.



It is evident that both attacks are �rst-order successful by a clear margin,
but that MIA(HW) has a substantial ideal advantage, with a nearest-rival dis-
tinguishability score of 5.61 compared with just 2.14 for CPA(HW). This simple
result con�rms that it must instead be a combination of the impact of noise and
the relative e�ciency of estimating the correlation coe�cient which enables CPA
to consistently outperform MIA in practical attacks with a good power model.
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Fig. 1: Ideal distinguishing vectors using the HW power model against the output
of the �rst DES S-Box.

As a partial insight into the quantity of data needed we next look at the
minimum input support size required for the distinguishers to approach their
full ideal potential. The space of possible plaintext combinations is too large
to explore exhaustively, so we look at the average behaviour of the attacks in
repeated random draws from the plaintext space. We �nd that CPA is able to
identify the correct key from a far smaller support than MIA, requiring just
6 inputs on average, and achieving 100% success with just 12, compared with
an average of 8 and threshold of 14 for MIA. Note as well that even once a
high ideal success rate is achieved, it may be that a broader support is required
before MIA regains the distinguishing advantage it displays with respect to the
full distribution.

We next investigate the enhancement of MIA via the incorporation of an ad-
ditional data point in a multivariate attack on AddRoundKey (short: DESARK)
and the �rst S-Box jointly. Figure 2 plots the ideal outcome3. First observe that
the distinguisher values are greater in size (by a factor of about two) than that
of the single point attack�that is, we are capturing a larger amount of informa-
tion. However, the increase applies across the range of key hypotheses so does not

3 Note that what we are proposing here is to use the mutual information between two
bivariate variables; since joint entropy is well-de�ned this is entirely consistent with
the formulation of MI described in Section 2.2. However, there are other notions of
`multivariate mutual information' which become more interesting and relevant in the
context of higher-order attacks against protected implementations�see [1] for a full
discussion.



automatically raise the distinguishing power. In fact the true key is less strongly
distinguished than in the attack against the S-Box alone: the nearest-rival distin-
guishability is reduced from 5.61 to 3.66. Moreover, the attack requires a larger
input support�13 on average compared with 8 for MIA(HW).
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Fig. 2: Ideal MIA vector against the DES AddRoundKey and the �rst S-Box
jointly.

Table 1 summarises outcomes for a wider selection of attacks, including
MIA(ID): the proposed `generic' attack of [6]. Unsurprisingly, in this �rst ex-
ample where the leakage is proportional to the HW, MIA(ID) displays a disad-
vantage relative to MIA(HW). The generic capabilities of MIA will be of more
relevance in leakage scenarios where the attacker is not able to correctly model
the true leakage.

The attacks against AddRoundKey well illustrate the role of the target func-
tion: distinguishing power is greatly reduced in the case that incorrect key hy-
potheses give rise to outputs closely resembling the correct key outputs. Greater
precision (and therefore a greater number of measured traces) will be required
in order to detect a di�erence of this size in a practical attack, and moreover in
the case of MIA there will remain an ambiguity between the true key k∗ and its
bitwise complement k̄∗.

Stochastic Resonance We conclude this section by brie�y considering the
impact of (Gaussian) noise on theoretic outcomes. Figure 3 plots distinguishing

scores against an increasing signal-to-noise ratio (SNR, de�ned as var(L◦fk∗ (X))
var(ε) ),

con�rming that (standardised) MIA outcomes are not constant. Moreover, the
relationships are not monotonic: in each case there seems to be an optimal SNR
at which the distinguishing scores reach a maximum, after which they diminish
to that of the ideal (as depicted by the dashed lines). Such a phenomenon is a
type of stochastic resonance [2], which can (in principle) occur in any nonlinear
measurement system. Perhaps surprisingly, the required support sizes for both
MIA(HW) and MIA(ID) match the ideal requirements and remain constant�
though in general, such measures could also be subject to similar e�ects.



Table 1: Ideal strength of CPA and MIA attacks against DES with Hamming
weight leakage.

AddRoundKey First S-Box Multivariate

DES with a HW leakage CPA MIA CPA MIA MIA MMIA
(HW) (HW) (HW) (HW) (ID) (HW)

Correct key ranking (order) 1 (1) 1 (2) 1 (1) 1 (1) 1 (1) 1 (1)
Average score 2.45 4.48 3.61 6.59 6.35 6.04
Nearest-rival score 0.82 0.00 2.14 5.61 5.08 3.66
Average minimum support 6 9 6 8 16 13
Support required for 90% SR 8 11 8 11 19 15
Support required for 100% SR 11 15 12 14 22 21

Recall, from Sect. 2.2, that by the properties of correlation, (standardised)
CPA outcomes are una�ected by the level of noise. Hence the opportunity to
enhance MIA (at least theoretically) by varying the noise is not available in the
context of CPA.
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Fig. 3: The e�ect of Gaussian noise on HW and ID attacks against HW leakage
of the �rst DES S-Box.

4.2 Hamming-Distance Leakage

Whilst the Hamming weight model is very popular in the literature, Hamming
distance leakage can be widely observed in practical devices using CMOS logic.
Broadly speaking there are three scenarios which may be encountered. Firstly,
the previous state is known to the attacker, in which case the attacks are equiv-
alent to Hamming weight attacks. Secondly, the previous state is unknown to
the attacker but �xed. Thirdly, the previous state is unknown to the attacker
and can vary. The latter two scenarios are the focus of the following discussion.



Constant Reference State Now let us suppose, as in [4], that the reference
state is a constant but unknown machine word R. The device no longer leaks
L(fk∗(X)) but rather L(R⊕ fk∗(X)).

First observe that no attack against a linear target function such as Ad-
dRoundKey can achieve �rst-order success, because the `true key' values are
perfectly replicated under an incorrect key hypothesis, namely k∗ ⊕ R. The
power consumption for a plaintext X will be proportional to HD((k∗⊕X), R) =
HW((k∗⊕X)⊕R) = HW((k∗⊕R)⊕X), so that when our hypothesis is k = k∗⊕R
we get maximum correlation/MI (for both HW and ID models) and in fact the
theoretical distinguishing vector is identical to that of a successful attack against
HW leakage with a key of k∗ ⊕R.

Targeting the S-Box avoids this predicament thanks to the high nonlinearity
of the S-Box. In particular, there is no R′ such that S-Box(k∗ ⊕ X) ⊕ R =
S-Box((k∗ ⊕ R′) ⊕ X) ∀X ∈ X , so no incorrect key will produce the correct
predictions. It remains to be seen whether the resemblance between the imperfect
predictions (with naive power models) and the true power consumption remains
strong enough for the correct key and weak enough for the alternative hypotheses
for any sort of attack to be successful.

Ideal CPA(HW) succeeds precisely in those scenarios where the HW of the
reference is 1 (or 0) and fails whenever it is 2 (see Table 2). Further, were we to
use the absolute value of the correlation to distinguish (denoting this strategy as
|CPA(HW)|) the resulting ideal attack would succeed whenever the HW of the
reference state is 3 or 4; however, there is a substantial reduction in theoretic
strength when the HW is 1 or 3, and for some reference states |CPA(HW)|
requires almost the entire plaintext set to determine the correct key.

MIA(HW) succeeds in all scenarios and gains a considerable advantage both
in terms of the ideal distinguishing scores with full information (nearest-rival
scores are in the range of 3.6 to 4.5 for MIA(HW) but just 0.5-2.7 for |CPA(HW)|)
and also in terms of the minimum input support required for success (on average,
14 to 15 for MIA(HW) compared with 17 to 18 for |CPA(HW)|). We can take
advantage of the non-injectivity of the DES S-Box to launch generic MIA(ID)
attacks. As the authors of [6] observed, these are essentially una�ected by a
constant reference state so that the nearest-rival distinguishing score is always
around 5 for MIA(ID) and average support requirement around 16. This means
that when R ∈ {0000(2), 1111(2)} (i.e. L is the HW function) the generic attacks
are less e�ective than the equivalent methods combined with a HW power model,
but in all other reference state scenarios they gain an advantage. The consistency
and ideal strength of these attacks might be su�cient to translate into a practical
advantage�a possibility which we will investigate in a latter section.

We have thus shown that MIA applied with little consideration for or knowl-
edge about the true leakage can be e�ective even when that leakage actually
depends on an unknown reference state. CPA, applied equally blindly, is far
less likely to yield a successful attack. However, Brier et al. ([4]) showed how
to adapt it in order to determine R as an unknown of the problem in addition
to fk∗(X)⊕R, which together reveals the secret key k∗. Whilst this simultane-



Table 2: Theoretical strength of CPA and MIA attacks against DES with Ham-
ming distance leakage from a constant reference state.

4 LSBs of reference state CPA |CPA| MIA MIA

(HW) (HW) (HW) (ID)

Hamming weight 1
Correct key ranking 1 1 1 1
Average score 2.04-4.05 2.56-4.94 5.48-5.97 5.81-6.46
Nearest-rival score 0.38-2.28 0.53-2.65 3.60-4.47 4.57-5.20
Average minimum support 17-25 20-34 14-15 16-17
Support required for 90% SR 31-49 33-53 20-22 19-20
Support required for 100% SR 40-59 44-61 28-32 21-24

Hamming weight 2
Correct key ranking 27-32 54-63 1 1
Average score 0.00 -1.94-0.00 5.06-5.53 5.98-6.43
Nearest-rival score -2.31-0.00 -5.62-0.00 3.05-3.16 4.49-5.42
Average minimum support - - 17-18 16-16
Support required for 90% SR - - 26-29 19-20
Support required for 100% SR - - 33-36 22

Hamming weight 3
Correct key ranking 64 1 1 1
Average score -2.44-0.00 2.56-4.94 5.48-5.97 5.81-6.46
Nearest-rival score -4.58-0.00 0.53-2.65 3.60-4.47 4.57-5.20
Average minimum support - 20-34 14-15 16-17
Support required for 90% SR - 33-53 20-22 19-20
Support required for 100% SR - 44-61 28-32 21-24

Hamming weight 4
Correct key ranking 64 1 1 1
Average score 0.00 5.14 6.59 6.35
Nearest-rival score 0.00 3.56 5.61 5.08
Average minimum support - 6 8 16
Support required for 90% SR - 8 11 19
Support required for 100% SR - 12 14 22



ous search process is more computationally costly than a standard CPA(HW)
attack, MIA with an ID power model can itself be computationally costly in ad-
dition to the likely data complexity overheads. Further work (and broader cost
considerations) would be required to establish which of the two methods is most
practical.

A Note on DRP logic. We observe an important and useful parallel between HD
leakage and the expected behaviour of DPA-resistant dual-rail precharge (DRP)
logic. In fact, an imperfect realisation of the logic style can be shown to exhibit
data-dependent power consumption of a similar form to the HD from a constant
reference state, enabling us to clarify its vulnerability to the `generic' MIA(ID)
attack described by Gierlichs et al. in [6].

DRP logic attempts to eradicate the data-dependency of the power con-
sumption by making it equal in each clock cycle. This is achieved insofar as the
capacitances of the complementary output wires in each logic gate can be bal-
anced, a di�cult feat in practice ([15]). Suppose the ith bit of an m-bit word x
is carried by a DRP logic gate driving two di�erential outputs with imperfectly
balanced capacities (αi, βi), so that αi = βi + γi. The power consumption of
such a circuit can be shown to be equivalent to leakage scenarios with which we
are more familiar, enabling us to comment on theoretical attack capabilities.

Let us initially consider the simpli�ed case that both capacitances are the
same throughout the circuit: βi = β, αi = β + γ, ∀i ∈ {0, . . . ,m− 1}. Then the
data-dependent leakage is proportional to:

HW(x)α+ HW(x̄)β = HW(x)(β + γ) + HW(x̄)β

= (HW(x) + HW(x̄))β + HW(x)γ

= mβ + HW(x)γ

The constant mβ is absorbed into the non-data-dependent component and we
thus obtain the result that the leakage is proportional to the Hamming weight.
Both CPA(HW) and MIA(HW) will be theoretically capable of returning the
correct key; practical success will depend on ability and resources to estimate
the distinguishing vectors with su�cient precision, in which case CPA(HW) is
likely to have an advantage, as we have already seen.

Now suppose that the capacitances are the same throughout the circuit but
that the order changes, i.e. so that some gates have capacitances (α, β) and others
(β, α), where α = β+γ. We can express this by introducing R = (r0, . . . , rm−1) ∈
{0, 1}m such that gate i is (β, α) if ri = 1 and (α, β) otherwise. Then the data-
dependent leakage is:

HW(x⊕R)α+ HW(x⊕ R̄)β = HW(x⊕R)(β + γ) + HW(x⊕ R̄)β

= (HW(x⊕R) + HW(x⊕ R̄))β + HW(x⊕R)γ

= mβ + HW(x⊕R)γ

That is, the data-dependent leakage is proportional to the Hamming distance
from R, which equates to the scenario of a more conventional logic style (such



as CMOS) consuming power proportional to the number of transitions from a
constant, unknown reference state. We have already shown that MIA(ID) re-
mains ideally successful against such leakage, whilst CPA(HW) is (depending on
the state) either unsuccessful or greatly reduced in distinguishing power. This
con�rms that DRP logic gives rise to leakage scenarios under which �rst-order
MIA(ID) could be useful, in particular, shedding light on the experimental result
of [6].

In the most general case, the size of the capacitances and not just the di-
rection of the di�erences may vary over the circuit. Suppose the gates cor-
responding to bits i = 1, . . . ,m have capacitances (αi, βi) such that αi =
βi + γi where γi can be positive or negative. Letting x = (x1, . . . , xm) and
α = (α1, . . . , αm), β = (β1, . . . , βm), γ = (γ1, . . . , γm) we get a leakage function
of x · α + (x ⊕ 1) · β = (x + x ⊕ 1) · β + x · γ = 1 · β + x · γ, so that the data-
dependent power consumption is proportional to a weighted combination of the
bits of x, where the weights can take negative values. Further investigation is
needed to establish the expected behaviour of our distinguishers as the relative
weights become increasingly disproportionate.

Data-Dependent Reference State We next investigate ideal performance
against Hamming distance leakage allowing for R to take two or more di�erent
values depending on the plaintext, unknown to the attacker, but restricting it to
be constant in repeated runs. In practice this could happen due to an incorrect
implementation of a masking scheme.

In the (commonly studied) case of an 8-bit micro-controller, the reference
states (or masks) take values in {0, 1}8 = {0, . . . , 255}. Since our attacks on
the �rst DES S-Box target 6-bit key portions, our plaintext inputs are drawn
from {0, 1}6 = {0, . . . , 63}�there could be up to 64 di�erent input-dependent
reference states. The number of possible ways that r reference states could be
associated with the 64 input values is given by the Stirling number of the second
kind:

{
64
r

}
= 1

r!

∑r
j=0(−1)r−j

(
r
j

)
j64, so it is no longer possible to exhaustively

explore every scenario. Instead, we calculate the success rates in 1,000 random
experiments for increasing numbers of di�erent reference states, randomly as-
signed to approximately equal-sized subsets of the input space (see Figure 4).
4

We �nd that MIA is much better able to succeed than |CPA|, particularly
when provided with an ID power model�although even then it does not achieve
100% success for attacks with more than 2 di�erent states and for more than
6 states success rates drop to below 50%. The success of |CPA(HW)| degrades
rapidly; for attacks with about 20 di�erent states it is no better than a random

4 When the reference state is constant, only the 4 bits which are replaced by the
S-Box output contribute to the data-dependent leakage whilst the contribution of
the remaining bits is absorbed into the static component of the power consumption.
However, when the state depends on the data in the manner described here, the
contribution of the remaining bits does need to be taken into consideration as it
becomes part of the data-dependent power consumption.



guess, whilst MIA(ID) and even MIA(HW) appear to retain some advantage
over guessing.

Thus, when very little is known about the leakage an attacker may well
be able to recover a great deal of information just by applying a `blind' MIA�
though even ideal success will be partially determined by chance, and the number
of traces required for adequate estimation may be prohibitive. Such an approach
may not be the best way of exploiting the available data: where resources permit,
it may prove more e�ective or e�cient to re�ne a CPA based approach (or
similar), investing greater e�ort in understanding the leakage to begin with,
perhaps through pro�ling.
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Fig. 4: Ideal success against the �rst DES S-Box in the presence of data-
dependent reference states of length 8 bits, as the number of di�erent states
increases.

4.3 Theoretical vs. Practical Success

We now return to a scenario which was identi�ed as a candidate for MIA to hold
an advantage over CPA in practice: Hamming-distance leakage from a reference
state unknown to the attacker (taken to be 0100(2) for the purposes of our ex-
ample). We wish to investigate whether the observed ideal advantages generalise
(theoretically) in the presence of noise and hence whether they can be translated
into practical advantages. Figure 5 shows the impact of Gaussian noise on theo-
retic attack e�ectiveness, both in terms of nearest-rival distinguishability and in
terms of the minimum support size required for �rst-order success. MIA(HW)
distinguishability is not very robust to the addition of noise, even falling be-
low that of CPA(HW). Moreover, there is a hefty penalty in terms of required
support size. By contrast, MIA(ID) distinguishability is more robust and even
exhibits some evidence of stochastic resonance-type behaviour, whilst required
support size remains constant in the tested range.

Our simulated attacks use histogram-based estimators where bin counts are
chosen equal to the cardinality of the power model domain, according to the
heuristic which has emerged from the literature (see, for example, [1]). In a
pure-signal scenario (see the dashed lines in Figure 6) the 5-bin estimator for
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Fig. 5: Nearest-rival distinguishability and required support size of theoretic at-
tacks against Hamming distance leakage (with a reference state of 0100(2)) for
varying levels of Gaussian noise.

MIA(HW) requires fewer traces than CPA(HW) to identify the correct key, but
the introduction of even the smallest amount of noise incurs a burden so that
across the tested range it is substantially less e�cient. By contrast, the 16-bin
estimator for MIA(ID) approaches the e�ciency achieved in the pure-signal sce-
nario as the SNR increases, and moreover substantially outperforms CPA(HW)
once the SNR is at least 1. We have thus con�rmed that�in this instance at
least�ideal MIA advantages can be translated into practical advantages.
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Fig. 6: Average number of traces required for key recovery in simulated practical
attacks against Hamming-distance leakage (with a reference state of 0100(2)), for
varying levels of Gaussian noise.

5 Conclusions

In this paper we have presented a framework for evaluating and comparing DPA
methodologies on a like-for-like, ideal/theoretic basis. Our outcome measures
allow for a nuanced assessment of the relative strengths and weaknesses of par-
ticular distinguishers as employed under di�erent leakage scenarios. We have



thus been able to compare MIA and CPA as abstracted away from the con-
founding problem of estimation, gaining valuable insight into the empirical re-
sults of existing literature which tends to focus on practical instantiations of
the attacks. We have identi�ed scenarios in which MIA o�ers a substantial the-
oretic advantage over CPA, and demonstrated that such theoretic advantages
can be translated into practical advantages. Particular candidate scenarios for
MIA to be useful arise when the leakage takes the form of the Hamming dis-
tance from an unknown reference state or in implementations using dual-rail
precharge logic�and, in fact, we are able to demonstrate a relationship between
these two cases. The generic capabilities of MIA are found to be an advantage as
the HW model degrades relative to the true leakage, but multivariate extensions
do not exhibit much if any advantage over univariate attacks in the �rst-order
`unprotected' setting. Lastly, we observe for the �rst time (to our knowledge) the
noise-sensitivity of the (standardised) MIA distinguishing vector, which exhibits
an e�ect which can be likened to stochastic resonance and which could possibly
be exploited in certain noisy scenarios to enhance the distinguishing ability of
MIA attacks. This is a question for further research. Another open problem�
persistently arising in the context of MIA�is that of �nding estimators which
most e�ectively translate theoretical advantages into practical ones.
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