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Abstract. In recent work, Ishai, Prabhakaran and Sahai (CRYPTO
2008) presented a new compiler (hereafter the IPS compiler) for con-
structing protocols that are secure in the presence of malicious adver-
saries without an honest majority, from protocols that are only secure
in the presence of semi-honest adversaries. The IPS compiler has many
important properties: it provides a radically different way of obtaining
security in the presence of malicious adversaries with no honest major-
ity, it is black-box in the underlying semi-honest protocol, and it has
excellent asymptotic efficiency.

In this paper, we study the IPS compiler from a number of different an-
gles. We present an efficiency improvement of the “watchlist setup phase”
of the compiler that also facilitates a simpler and tighter analysis of the
cheating probability. In addition, we present a conceptually simpler vari-
ant that uses protocols that are secure in the presence of covert adver-
saries as its basic building block. This variant can be used to achieve more
efficient asymptotic security, as we show regarding black-box construc-
tions of malicious oblivious transfer from semi-honest oblivious transfer.
Finally, we analyze the IPS compiler from a concrete efficiency perspec-
tive and demonstrate that in some cases it can be competitive with the
best efficient protocols currently known.

1 Introduction

In the setting of secure multiparty computation, a set of parties wish to jointly
compute some function of their inputs while preserving security properties such
as privacy, correctness, independence of inputs, and more. These properties must
be preserved in the face of adversarial behavior. In this paper, we consider se-
curity in the presence of three types of adversaries. The two classic adversary
models are those of semi-honest adversaries that follow the protocol specification
exactly but attempt to learn more than they should, and malicious adversaries
that can behave as they wish and as such can arbitrarily deviate from the proto-
col specification. A more recent model, called security in the presence of covert
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adversaries, guarantees that if a malicious adversary behaves in a way that en-
ables it to break the protocol in some way, then it will be caught cheating by
the honest parties with some probability ε [1].

There are two rather distinct settings for studying the problem of secure
multiparty computation. In the first, it is assumed that a majority of the par-
ties are honest. In such a case, it is possible to securely compute any efficient
functionality with information-theoretic security [3, 4] assuming private channels
(and broadcast, for the case of n/3 ≤ t < n/2 corrupted parties). In the second
setting, any number of the parties may be corrupted; this case includes the im-
portant two-party setting where one party may be corrupted. In this case of no
guaranteed honest majority, information-theoretic security cannot be achieved.
Nevertheless, assuming the existence of oblivious transfer, which can be con-
structed from enhanced trapdoor permutations and homomorphic encryption, it
has been shown that any efficient functionality can be securely computed without
an honest majority [24, 12].

Beyond proving an important theorem stating that any functionality can be
securely computed without an honest majority, the construction of [12] shows
how to compile any protocol that is secure in the presence of semi-honest adver-
saries into a protocol that is secure in the presence of malicious adversaries, using
one-way functions alone. This result is therefore often referred to as the GMW
compiler. Recently, a new compiler was presented by Ishai, Prabhakaran and Sa-
hai (IPS) [16]. This compiler works in a completely different way to that of the
GMW compiler. First, unlike GMW, it does not compile an m-party protocol for
securely computing a functionality f in the presence of semi-honest adversaries
into an m-party protocol for securely computing the same f in the presence
of malicious adversaries. Rather, the IPS compiler uses m-party protocols that
securely compute some basic operations (like addition and multiplication in a
finite field) in the presence of semi-honest adversaries with no honest majority,
in order to transform a multiparty protocol that securely computes f in the pres-
ence of malicious adversaries with an honest majority, to an m-party protocol
that securely computes f in the presence of malicious adversaries with no honest
majority. As a specific example, note that by setting m = 2 the IPS compiler
can generate a two-party protocol for computing f that is secure against mali-
cious adversaries, from two-party protocols for computing basic functionalities
(secure against semi-honest adversaries), and a multiparty protocol for comput-
ing f (secure against malicious adversaries which can corrupt only a minority
of the parties). Intriguingly, the IPS compiler utilizes the world of information-
theoretic secure computation in order to achieve security in the setting of no
honest majority, since the basic protocol computing f , to which the compiler is
applied, can be defined in an information-theoretic setting.

The IPS compiler has a number of important properties. First, it is black
box in the underlying constructions; see [13] for why this is important. Second,
it provides a uniform approach to both the two-party and multiparty settings,
like the GMW compiler. Third, in some settings, it has excellent asymptotic
efficiency. This is due to the fact that in some cases (e.g., when an arithmetic



circuit computing f is significantly smaller than a Boolean circuit computing f),
information-theoretic protocols for the setting of an honest majority are much
more efficient than computational protocols for the setting of no honest majority.
The compiler can be applied to these more efficient protocols. This property has
already been utilized to present protocols that have excellent theoretical, asymp-
totic efficiency [17]. Despite the above, it is unclear as to whether this approach
can be used to achieve concrete efficiency for functionalities of interest [14].

1.1 The IPS Compiler

The compiler of [16] utilizes the following components in order to achieve the
secure m-party computation of a functionality f , with no honest majority:

– A multiparty information-theoretic protocol π computing f with m clients
who provide input and n = O(m2k) servers who carry out the computation
(where k is a security parameter analyzed in our work), which is secure in
the presence of a malicious adversary corrupting a minority of the servers.
This is called the outer protocol by [16].

– m-party subprotocols and local client instructions for simulation of the server
computation in π, that are secure as long as the adversary behaves in a
semi-honest manner. Given the known techniques for information-theoretic
secure multiparty computation, it suffices for example to use m-party sub-
protocols for securely computing additive shares of the product of shares (all
other steps can be carried using local client instruction for generating shares,
adding shares, and so on). We stress that these subprotocols need only be
secure in the presence of semi-honest adversaries. These are called the inner
protocols by [16].

The way that the compiler works is for the m real parties to run the information-
theoretic protocol π by emulating the operations of the n servers in π. This
emulation is carried out using the secure m-party subprotocols, run between
the m real parties (clients), to compute the next step of all parties in π. Thus,
the n servers running π are virtual and are emulated by the m real parties
running the protocol. Observe that if the real adversary were to behave in a
semi-honest manner in each subprotocol, then the overall computation would
clearly be secure. This is due to the fact that the emulation of the n parties in
π is carried out using a protocol that is secure in the presence of semi-honest
adversaries. Thus, f is securely computed, as guaranteed by π. However, the
adversary here may be malicious.

The magic in the IPS compiler is how to leverage the semi-honest security
of the subprotocols in order to achieve security in the presence of malicious ad-
versaries. The central observation is that in order for a malicious adversary to
cheat, it must cheat in at least n/2 of the subprotocols. This is due to the fact
that π is secure unless a majority of the servers, namely at least n/2 of them,
behave maliciously. In order to prevent such cheating, the IPS compiler sets up
watchlists, which enable the honest parties to verify that malicious parties are
not cheating. These watchlists are generated as follows. Each real party (client)



chooses the randomness that it will use when running the semi-honest subpro-
tocol for each virtual server. Then, using oblivious transfer, each other client
obtains k of the random strings of all other clients. Now, given the randomness
that a party is supposed to use in the semi-honest subprotocol, it is possible to
check that it is indeed behaving honestly. Furthermore, since oblivious transfer
is used to obtain these strings, no client can know which semi-honest executions
are being “watched”. It is important to note, however, that it is not possible to
raise the number of watchlists too high, because each time the randomness of
a client (used with respect to some server) is watched, the internal state of the
server is seen and that server is corrupted. It is shown in [16] that n = O(k2m)
servers are required in order to obtain security with a probability of cheating that
is negligible in k. This number is important because it determines the number
of servers in the information-theoretic protocol and thus its complexity.

In our presentation, we assume some familiarity with the IPS compiler. See
the IPS papers for a description [16, 17], or the brief tutorial of the construction
in the full version of our paper.

1.2 Optimizations of the IPS Compiler

As will become clear in our concrete analysis of the efficiency of the compiler,
see Sections 1.4 and 4, the number of servers n can become very large for some
choices of parameters. This can have a severe effect on the efficiency of the
protocol in a number of ways, one of these being the watchlist setup phase
where m2n executions of Rabin oblivious transfers must be carried out (each
of these costing log n regular oblivious transfers; see Section 2 for a detailed
explanation). This can therefore quickly become the bottleneck of the protocol.
We therefore first devise a method for reducing the required number of servers
to n = O(mk) rather than n = O(m2k), and second for setting up the watchlists
in a way that costs an equivalent of O(mn) regular oblivious transfers (rather
than O(m2n log n) oblivious transfers). These optimizations are significant since
they enable a better choice of parameters for the outer information-theoretic
protocol. (Specifically, the best efficiency is obtained by using a protocol with
many servers and a small fraction of corrupted parties; this enables the heavy use
of the packed or multi-secret sharing methodology of [10].) Using our method,
a smaller number of virtual servers can be corrupted and so a more efficient
protocol can be used. We stress that when measuring concrete complexity, our
new watchlist setup protocol is substantially more efficient, even for the two-
party case where m = 2. An additional optimization is described in Section 2.3.

1.3 Variants of the IPS Compiler for Covert Adversaries

A simple compiler from covert to malicious security. We present an
analog of the IPS compiler that uses subprotocols that are secure in the presence
of covert adversaries instead of protocols that are secure in the presence of semi-
honest adversaries. Recall that a protocol is secure in the presence of covert
adversaries, with a deterrent parameter ε, if any cheating by an adversary is
detected by the honest parties with probability at least ε [1]. (For our purposes,



it is convenient to assume that ε = 1/2.) The use of subprotocols with this level
of security fits naturally with the IPS paradigm: the information-theoretic outer
protocol is emulated using protocols that are secure in the presence of covert
adversaries with deterrent ε = 1/2. Then, if the adversary tries to cheat in k
of the subprotocol executions, it will be caught except with probability 2−k.
Observe that there is no need for any watchlists. In addition, the analysis and
proof of security of this compiler are extraordinarily straightforward, since the
cheating probability can be measured exactly with ease.

Beyond being a significant conceptual simplification, the usage of covert
protocols also enables us to use an information theoretic protocol with just
n = m + 2k parties (tolerating up to k corruptions), rather than O(mk) par-
ties when using semi-honest security. Relying on the fact that protocols that
are secure in the presence of covert adversaries with deterrent ε = 1/2 are only
about 2–3 times the cost of semi-honest protocols, this results in an asymptotic
efficiency improvement over the original compiler (we stress, though, that by our
concrete analysis, the original compiler of [16] will typically be more efficient for
concrete parameters since the use of watchlists means that local computation by
a party can be checked directly and need not be distributed).

An IPS compiler from semi-honest to covert security. We observe that
the IPS compiler with some minor modifications can be used to obtain security in
the presence of covert adversaries from protocols that are secure in the presence
of semi-honest adversaries, via a black-box reduction. We show that it suffices
to use O(m) watchlists and an oblivious transfer protocol that is secure in the
presence of covert adversaries to set up those watchlists. (We also show that
covert oblivious transfer can be constructed at the cost of only a constant number
of semi-honest oblivious transfers.) This answers a major open question left by
the work of [6].

IPS compilation and covert adversaries. Based on the above, we have that
the IPS paradigm significantly contributes to our understanding of security in
the presence of covert adversaries, and enables us to position covert adversaries
in their natural place between semi-honest and malicious adversaries with re-
spect to protocol constructions. In addition, as we show, it is possible to obtain
quantitative improvements using this methodology. Specifically, we obtain a fully
black-box reduction from semi-honest OT and one-way functions to malicious
OT, at the cost of just a linear number of semi-honest OT invocations (the previ-
ous reduction of this type requires a quadratic number of semi-honest OTs [13]).

1.4 The Concrete Efficiency of the IPS Protocol

On an abstract level, the IPS compiler provides an elegant and conceptually
simple way of constructing protocols that are secure in the presence of mali-
cious adversaries. However, the actual instantiation of a protocol using the IPS
approach depends on many different parameters and choices, all having a sig-
nificant effect on the concrete efficiency of the result. To start with, appropriate
inner and outer protocols must be chosen, and these choices are interdependent.



This is due to the fact that the most efficient information-theoretic outer protocol
may require more invocations of the inner protocol for computing multiplications
(which may be more expensive than other operations) than a less efficient proto-
col, when judging efficiency in the standard information-theoretic setting. Thus,
the cost of running the inner multiplication protocol must be traded off with the
cost of other operations in the outer protocol. In addition, there may be outer
protocols that can utilize different inner protocols and obtain higher efficiency.

Another parameter that must be chosen is the exact number of servers n =
O(mk). Observe that each corrupted client has effectively corrupted k servers,
since the watchlists it obtains from the honest parties reveal the internal state
of these servers. In addition, some additional servers may be corrupted by the
client cheating in the inner protocols emulating these servers, and hoping that
it does not get caught. Based on this, it is clear that n > 2mk since m − 1
corrupted parties have already effectively corrupted (m − 1)k servers, from the
watchlists of the honest parties that they observe. However, how large should n
be? A naive approach, which is to take n to be the smallest possible function of
k, actually may have the opposite effect. For example, if m = 2 and n = 4k then
the corrupted party, who corrupts k servers through its watchlists, needs to cheat
in k inner protocols in order to cheat in the outer In order to be concrete, let the
number of clients m equal 2, and consider an outer protocol that tolerates any
t < n/2 corruptions. We briefly analyze the difference between setting n = 4k
and n = 3k, where k is the number of watchlists viewed. In the case of n = 4k, the
adversary needs to corrupt an additional k servers in order to have a dishonest
majority of 2k servers, and this requires cheating in the simulation of at least
k servers in the inner semi-honest protocols. The honest party does not detect
this if its watchlists all fall in the other 3k (out of 4k) servers. A rough analysis
gives that the probability that the adversary succeeds in this case is (3/4)k. In
contrast, if n = 3k then the adversary needs to corrupt an addition k/2 servers
and so it successfully cheats with probability only (2.5/3)k = (5/6)k. Setting a
fixed error of 2−40, we have that when n = 4k we need to set k = 97 and so
n = 388, and when n = 3k we need to set k = 152 and so n = 456. We therefore
conclude that it is better to take n = 4k than n = 3k since this results in a lower
number of servers n relative to the same cheating probability of 2−40.

The above analysis relates to an outer protocol that tolerates any t < n/2
corruptions. However, the best protocols for this setting [7] use the packed secret
sharing methodology of [10]. This methodology enables the effective multiplica-
tion of an entire block of shares using a single multiplication protocol as well
as other efficiency improvements. Thus, large blocks can significantly lower the
complexity of the protocol. However, the outer protocol must have the property
that the number of corrupted parties that can be tolerated is upper bounded
by the difference between the secret sharing threshold (which for [7] must be
less than n/4) and the block size. This demonstrate the complexity of choosing
good parameters since they are all interdependent. Observe that in our concrete
analysis, we use k as the number of watchlists and not an independent security
parameter; in the above asymptotic treatment these were the same.



2 Optimizations of the IPS Compiler

2.1 Efficient Watchlist Setup

As we have mentioned, the first step in the IPS compiler involves the setup of
watchlists. Recall that the number of real parties is m and the number of virtual
servers is n. Denote the real parties by P1, . . . , Pm. Technically, each party Pi
chooses n random strings r1i , . . . , r

n
i (say, of length the security parameter k) and

runs a two-party protocol with every other party Pj in which Pj receives k of the
strings without Pi knowing which. The value r`i is the random tape used by Pi
in the semi-honest protocol simulating the `th server. Thus, any party knowing
rji can verify that Pi is running the protocol honestly.
The IPS setup. The method proposed in [16] is for each pair of parties Pi, Pj
to run n executions of Rabin oblivious transfer [22]; in the `th execution the
sender Pi inputs r`i and the receiver Pj obtains this string with probability k/n,
and obtains nothing otherwise. The result of this procedure is that the expected
number of strings obtained by the receiver is n·k/n = k, as required. As described
in [16] it is possible to construct a single Rabin oblivious transfer with receipt
probability k/n by running a single 1-out-of-n oblivious transfer, which in turn
can be constructed using log n regular 1-out-of-2 oblivious transfers [19]. Thus,
the cost of this setup phase is n log n oblivious transfers for Pi as sender and each
Pj as receiver, with an overall of m(m− 1)n log n oblivious transfers between all
parties. With n = O(m2k) as stated in [16] we have that the cost is approximately
O(m4k log(m2k)) oblivious transfers.

Concretely, this step can be carried out in two ways; one is to use the efficient
extending of oblivious transfers of [15]. However, in the case of malicious oblivious
transfer the oblivious transfer extension is not so efficient since it is based on the
cut-and-choose methodology; in addition, it requires the use of the less standard
assumption of correlation-robust hash functions. Alternatively, one can use a
highly efficient OT protocol with O(1) exponentiations per transfer [21] (the
cost here is 11 exponentiations per transfer, with UC and stand-alone variants
at essentially the same cost).
A new watchlist setup. We propose a new watchlist setup with the following
properties. First, the method guarantees that each malicious party views the
same k server watchlists for every honest party. This means that an adversary
can examine the computation of k, rather than (m−1)k, servers. As we will see,
this means that it suffices to set n = O(mk) instead of O(m2k). Second, it guar-
antees that each party views exactly k watchlists; this enables a tighter and more
straightforward analysis of the probability that an adversary can cheat. Finally,
we present a concrete protocol that gives a considerable efficiency improvement
over the IPS setup, for both aforementioned implementation options.

Recall that the aim of the watchlist setup procedure is for each party to
obtain k watchlists that it can view. Rather than achieving this by having each
pair of parties run a separate procedure, we have the parties run a protocol for
what we call multi-sender k-out-of-n oblivious transfer. This m-party functionality
enables a receiver Pm to obtain k-out-of-n strings from m − 1 different senders



P1, . . . , Pm−1 (each with a set of n strings). The functionality is formally defined
in Figure 1.

Figure 1 (Multi-Sender k-out-of-n Oblivious Transfer Fk
n)

Inputs: For every j = 1, . . . , n − 1, party Pj inputs a vector of n strings
(xj1, . . . , x

j
n). The receiver Pm inputs a set of indices I ⊂ [n] of size exactly k.

Outputs: If |I| 6= k then all parties receive ⊥ as output. Otherwise, for every
j = 1, . . . ,m − 1, party Pm receives the set {(i, xji )}i∈I of k strings. Parties
P1, . . . , Pm−1 receive no output.

We stress that the receiver is forced to use the same index set I for all sender
parties. In the context of the IPS compiler, this means that each party can choose
k servers for which it watches all parties. Now, let t be the number of corrupted
real parties in the protocol. Then, the parties can together view t · k servers,
which is equivalent to these servers being corrupted. In addition, the probability
that the corrupted real parties can cheat in the semi-honest subprotocols for
more than L servers equals the probability that none of the honest parties have
any of these servers in their watchlists. A single honest party chooses k out of
n watchlists and so the probability that it does not detect such cheating equals(
n− L
k

)
/

(
n
k

)
.

Let m = 2 and let n = 4k. We have that the corrupted real party views k of
the servers in its watchlist and needs to cheat in L = k more in order to have
corrupted at least half of the servers. The probability that it can do this without

being detected is therefore
(
3k
k

)
/
(
4k
k

)
< (3/4)k. Now consider the general case

of m real parties and n = 4mk. We first analyze the case that m− 1 parties are
corrupted. Then, the adversary can view (m−1)k different servers, and needs to
corrupt (m+1)k additional servers in order to have corrupted half of the servers.

Thus, the probability that it goes undetected is
(
(3m− 1)k

k

)
/
(
4mk
k

)
< (3/4)k.

Thus, we conclude that it suffices to use n = 4mk virtual servers rather
than O(m2k). In addition, as is evident, the proof of this fact is straightforward.
(We stress that as shown in Section 4, this is not necessarily the best way to
choose the parameters for concrete efficiency. However, here we are dealing with
asymptotic efficiency.)

We conclude with the following somewhat informal claim; it’s proof follows
from the analysis above and the proof of security of [16].

Claim 2 The IPS compiler with the watchlist setup phase using the multi-sender
k-out-of-n oblivious transfer functionality is secure with n = O(mk) servers.

2.2 Securely Realizing Multi-Sender k-out-of-n Oblivious Transfer

A general protocol from oblivious transfer. It is possible to securely realize
the multi-sender k-out-of-n oblivious transfer functionality in a straightforward
way using committed oblivious transfer, which in turn can be constructed in a



black-box way from any 1-out-of-2 oblivious transfer [5]. This construction has
the advantage of preserving the IPS general structure of working under gen-
eral assumptions and using any oblivious transfer protocol that is secure in the
presence of malicious adversaries. Thus, we obtain the efficiency improvement
regarding the number of servers and the simpler analysis, while remaining within
the same framework. We note, however, that this strategy will not yield a con-
cretely efficient watchlist setup.

A concrete protocol with greater efficiency. One of the aims in this paper,
which is dealt with in detail in Section 4, is to consider the concrete efficiency of
the IPS compiler. As such, in this section we present a highly-efficient protocol for
securely computing the multi-sender k-out-of-n oblivious transfer functionality
in the presence of malicious adversaries. The security of the protocol is based on
the DDH assumption and requires just O(n) exponentiations. Below, we compare
the concrete efficiency of our watchlist setup method based on this protocol to
the best-known concrete instantiations of the original IPS watchlist setup, and
show that the efficiency improvement is dramatic. As we will see, the use of this
protocol enables the use of significantly more servers than otherwise (in Section 4
it will become apparent why this is so important).

The protocol uses ideas from the cut-and-choose oblivious transfer protocol
of [18]. The idea is for the receiver Pm to choose n pairs of group elements
(ai, bi) so that relative to two fixed group elements g, h it holds that at most k
out of the n tuples (g, h, ai, bi) are Diffie-Hellman tuples (and all the others are
non-DH tuples). The receiver then broadcasts all of these pairs to the sending
parties P1, . . . , Pm−1 and proves that at most k are DH tuples, as required.
Following this, all of the sending parties send values with the property that Pm
can obtain the ith string if and only if (g, h, ai, bi) is a DH tuple. This ensures
that Pm receives k-out-of-n of the strings and no more. Furthermore, since the
pairs are broadcast to all P1, . . . , Pm−1, it is guaranteed that Pm receives the ith
string from every P1, . . . , Pm−1 if and only if (g, h, ai, bi) is a DH tuple. Thus,
intuitively, the protocol securely computes the multi-sender k-out-of-n oblivious
transfer functionality. See the full version of our paper for a full description and
proof of security. The overall number of exponentiations in that protocol is 4n+
(11n+k)(m−1). (For large m, this is approximately 11mn+km exponentiations.
For the special case of m = 2 this comes to 15n+ k.)

A comparison of concrete efficiency. We now compare the concrete cost of
running our watchlist setup protocol to the method of [16]. Recall that the IPS
setup requires m(m− 1)n log n oblivious transfers and this can be implemented
using [21] at the cost of 11·m(m−1)n log n exponentiations, or using the method
of extending oblivious transfers of [15]. In contrast, our protocol requires 4n +
(11n+ k)(m− 1) exponentiations. (All exponentiations here are in any group in
which the DDH assumption holds.)

For the sake of comparison and simplicity, assume that the same level of
security is obtained using both setups and so the same values of k and n can be
used. We compare this for two sets of concrete parameters given in Section 4.3,
optimizing the performance of the inner protocol for the case of m = 2 parties.



For the AES-type circuit, we have k = 207 and n = 1752. Then, the cost of the
original IPS setup is m(m−1)n log n = 2×1752×11 = 38544 oblivious transfers.
This can be implemented using [21] at a cost of 11 exponentiations per oblivious
transfer, resulting in 423, 984 exponentiations. Alternatively, using the method
of extending oblivious transfers of [15], the cost is about 6, 000 oblivious transfers
(requiring 66, 000 exponentiations) and approximately 2, 500, 000 hash function
computations.1 In contrast, our new setup costs 15n+k = 15·1752+207 = 26, 487
exponentiations, which is much less (even than the solution using [15]). An even
more illustrative example relates to the two settings of parameters given for the
case of a circuit of size 30, 000 in Section 4.3; for this we just directly use the
extending oblivious transfer alternative. With the first choice of parameters, n =
19554 and k = 729, we have that the IPS setup costs 66, 000 exponentiations and
38, 700, 000 hash operations, versus 294, 039 exponentiations for our protocol.
The other choice of parameters, of n = 3362 and k = 292, requires 66, 000
exponentiations and 5, 300, 000 hash operations, versus 50, 772 exponentiations
for our protocol. Thus, using our setup protocol, it is still feasible to choose
either of the optimal choices of parameters and tradeoff the cost for the rest of
the protocol. In contrast, using the IPS setup, only the latter setting of k and n
can be reasonably used.

2.3 Flexibility of the Outer Protocol

In the original analysis carried out by [16] and that discussed above, the outer
protocol chosen is secure in the presence of a malicious adversary that can adap-
tively corrupt up to t servers, for an appropriately chosen t. However, the cor-
ruptions of the servers are actually of two distinct types. The up to (m − 1)k
corruptions that are due to the fact that the adversary sees the watchlists of the
honest parties, are actually semi-honest corruptions, meaning that the adversary
sees the internal state of these servers but does not cause them to deviate from
the protocol specification. In contrast, the corruptions that are due to the cor-
rupted real parties cheating in the semi-honest server simulation (without being
caught) are malicious corruptions. Thus, it is possible to use an outer protocol
that provides hybrid security in the presence of t1 malicious corruptions and t2
semi-honest corruptions, for appropriate t1 and t2. This model has been studied,
and it has been demonstrated that better resilience can be achieved [9].

In order to be concrete, we demonstrate this on the parameters discussed
above in Section 2.1. When m = 2 and n = 4k, we have that the corrupted
party views k of the servers and needs to actively corrupt k more. Thus, the
outer protocol needs to be secure in the presence of k malicious servers and k
semi-honest servers, rather than 2k malicious servers. This can significantly sim-
plify the outer protocol and yield higher efficiency. (For example, the simple and
efficient multiplication protocol of BGW [3] for the case of t < n/4 malicious cor-
ruptions can also be used in the case of t1 < n/6 malicious corruptions together

1 This calculation is based on a 128-bit seed, and setting the parameter σ of the
extending OT scheme to be of size 44 in order to obtain an error of 2−40 in the
oblivious transfer extension protocol; see [15, Figure 2].



with t2 < n/6 semi-honest corruptions. Thus, although the overall number of
corruptions is t < n/3, the simpler and more efficient multiplication protocol
can be used. This can be heavily utilized in the setting of IPS compilation.)

3 IPS Variants Using Covert Adversaries

In this section we present variants of the IPS compiler in order to obtain security
in the presence of malicious adversaries from security in the presence of covert
adversaries, and security in the presence of covert adversaries from security in
the presence of semi-honest adversaries. In addition, we show that this approach
has a quantitative advantage regarding the black-box construction of malicious
oblivious transfer from semi-honest oblivious transfer.

3.1 Secure Computation for Malicious from Covert Adversaries

We show an extraordinarily simple analog of the IPS compiler when the starting
point is a protocol for secure computation in the presence of covert adversaries.
As we have already discussed the idea behind our construction in Section 1, we
proceed directly to the construction. We construct a protocol for computing a
function f for m parties, where any number of them can be corrupt. The protocol
is secure against malicious adversaries. The security parameter is denoted by k.
The protocol uses the following tools.

Outer protocol: Let π be a multiparty (outer) protocol for m clients and n =
2k servers, which is secure for any number of corrupted clients and as long
as less than k servers are corrupted by an adaptive malicious adversary. π
computes the function f where parties P1, . . . , Pm provide input and receive
output. For simplicity, the protocol π is such that all messages are sent over
a broadcast channel, and every party broadcasts in every round

Server protocols: Let π1, . . . , πm+n be the instructions for the different parties
in π. That is, the clients P1, . . . , Pm run π1, . . . , πm and the ith server runs
πm+i. For the servers, namely for i = 1, . . . , n, let Fm+i be the reactive ideal
functionality computing πm+i. Loosely speaking, Fi is a functionality that
receives n + m − 1 inputs in each round and generates a single output; the
m+ n− 1 inputs are the values broadcast by all parties Pj for j 6= i in the
previous round and the output is the value that Pi should broadcast in this
round. The exact description of the functionality Fi is more involved. This
functionality is actually run by the m real parties. Thus, each party inputs
a vector of length m + n with the values broadcast in the previous round.
The functionality then verifies that all vectors input by the m clients are
identical. If not, it outputs ⊥. If yes, it computes the next message that Pi
would send and hands it to all the m clients.

Covert model functionality: We denote by Fεm+i the functionality Fm+i in
the covert model with deterrent ε. This means that we consider an ideal
functionality that computes Fi with the additional instructions of the trusted
party of the ideal model of the definition of covert adversaries; see [1].



Protocol 3 uses these tools to obtain security in the presence of a malicious
adversary controlling an arbitrary number of the m parties. The protocol is
defined in a hybrid model where the functionalities Fεm+1, . . . ,Fεm+n are executed
by a trusted party. Security is derived when these functionalities are instantiated
by real protocols via standard composition theorems.

Protocol 3 (Security for Malicious in the Covert Fεm+i-Hybrid Model)

Inputs: Real parties P1, . . . , Pm hold respective inputs x1, . . . , xm
The protocol: For every round of protocol π, the parties P1, . . . , Pm do:

1. Each party Pj (1 ≤ j ≤ m) broadcasts the message that π instructs
the client Pj to send in this round (using πj), based on the messages
from the last round.

2. For every i = 1, . . . , n, each party Pj (1 ≤ j ≤ m) sends to the ideal
functionality Fεm+i the vector of all messages broadcast in the previous
round. (In the first round, the vector contains m+ n empty values λ.)

3. For every i = 1, . . . , n, each party Pj (1 ≤ j ≤ m) receives an output
from Fεm+i. If the output is corrupted` or abort` (see [1]), then Pj halts
and outputs abort`. Otherwise, it records the output as the message
“broadcast” by server Pm+i in this round.

Output: Each party Pj (1 ≤ j ≤ m) outputs the value that π instructs client
Pj to output.

We now state the security of Protocol 3. The proof appears in the full ver-
sion of the paper; it is very straightforward, and this highlights the conceptual
advantage of this alternative IPS compiler.

Theorem 4 Let π be a protocol for m clients and n = 2k servers that securely
computes the m-party functionality f with abort, in the presence of an adaptive
malicious adversary corrupting any number of clients and less than k of the
servers, and let ε > 0 be any constant. Then, Protocol 3 securely computes f
with abort in the Fεm+1, . . . ,Fεm+n hybrid model, in the presence of an adaptive
malicious adversary corrupting any number of parties.

3.2 Secure Computation for Covert from Semi-Honest Adversaries
We describe a black-box transformation from semi-honest protocols to covert
protocols, using a covert oblivious transfer protocol. This result answers an open
question left by the work of [6], which showed a similar transformation in the
information-theoretic setting with an honest majority, but did not cover the case
of a majority of corrupted parties. The construction is similar to the original con-
struction of IPS [16] with two exceptions. First, only a small number of watchlists
are used. Second, it suffices for us to use an oblivious transfer protocol with secu-
rity for covert adversaries, rather than security for malicious adversaries, in order
to set up the watchlists. (Oblivious transfer protocols with security for covert
adversaries with constant ε can be constructed using O(1) black-box invocations
of semi-honest OT, as described in the full version of our paper.)

The protocol computes a function f for m parties, where any number of them
can be corrupt. The security parameter is denoted by k.



Tools:

– Let π be a multiparty protocol for m clients and n = 4m servers, which is se-
cure for any number of corrupted clients and less than n/2 corrupted servers.
As in Protocol 3, all messages of π are sent over a broadcast channel and
every party broadcasts in every round. Furthermore, the clients P1, . . . , Pm
are the only ones who provide input and receive output.

– Let π1, . . . , πm+n be the instructions for the parties in π, and let Fm+i

be the reactive ideal functionality computing πm+i, for i = 1, . . . , n. The
functionality is as defined for Protocol 3.

– Let ρm+1, . . . , ρm+n be m-party protocols such that ρm+i securely computes
Fm+i in the presence of semi-honest adversaries. Without loss of generality
we assume that the random-tape of each party in each ρi is of length exactly
k (a pseudorandom generator can be used if it is longer).

The compiler is described in Protocol 5.

Protocol 5 (Security for Covert from Semi-Honest)

Inputs: Real parties P1, . . . , Pm hold respective inputs x1, . . . , xm

The protocol:

1. Phase 1 – set up watchlists:
(a) For every j = 1, . . . ,m, party Pj chooses a vector of n = 4m random

seeds sj1, . . . , s
j
4m ∈ {0, 1}k. The parties all then run m multi-sender

1-out-of-n oblivious transfers that are secure in the presence of covert
adversaries, so that each party Pj receives {sirj

}mi=1 for m random in-
dices rj ∈R {1, . . . , n}.

(b) At the conclusion of this phase, each client Pj holds the following:
i. A vector sj = (sj1, . . . , s

j
n) of random seeds chosen by Pj

ii. A set of strings {sirj
}mi=1 received by Pj from others

2. Phase 2 – emulate π: For every round of the n = 4m-party protocol π, the
parties P1, . . . , Pm work as follows:
(a) Each party Pj (1 ≤ j ≤ m) broadcasts the message that π instructs

the client Pj to send in this round, based on the previous messages.
(b) For every i = 1, . . . , n, each party Pj (1 ≤ j ≤ m) runs ρm+i with

input the vector of all messages broadcast in the previous round, and
using random-tape sji .

(c) Each party Pj checks its watchlists for the executions run in the previ-
ous step. Specifically, for every ` = 1, . . . ,m (` 6= j), party Pj verifies
that party P` computed the next message according to ρm+rj using the

random tape s`rj
and the messages broadcast. If no, then Pj outputs

corrupted` (signifying that P` cheated) and halts.
(d) For every i = 1, . . . , n, each Pj (1 ≤ j ≤ m) receives from ρm+i an

output and records it as the message “broadcast” by Pi in this round.

Output: Each party Pj (1 ≤ j ≤ m) outputs the value that π instructs client
Pj to output.



Security is stated by the following theorem (proved in the full version).

Theorem 6 Let π be a protocol for m clients and n = 4m servers that securely
computes the m-party functionality f with abort, in the presence of an adaptive
malicious adversary corrupting any number of clients and a minority of servers.
Then, Protocol 5 securely computes f in the Fm+1, . . . ,Fm+n (semi-honest) hy-
brid model, where n = 4m, in the presence of an adaptive covert adversary
corrupting any number of corrupted parties, with ε-deterrence for ε > 1− e−0.25.

3.3 The Semi-Honest Cost of Malicious Oblivious Transfer

In the full version of this paper, we use our methodology of IPS compilation via
covert adversaries to prove the following theorem:

Theorem 7 There exists a black-box reduction from bit oblivious transfer that
is secure in the presence of malicious adversaries to one-way functions and O(k)
invocations of bit oblivious transfer that is secure for semi-honest adversaries.

Previously, the best known such reduction requiredO(k2) invocations of semi-
honest oblivious transfer [13].

4 The Concrete Efficiency of IPS

In this section, we describe our analysis of the concrete efficiency of the best
IPS-type protocols. Due to the high level of abstraction in the IPS construction,
its concrete complexity was completely unknown.

The protocol that we examined is based on sharing values using block secret
sharing as in [10], in which ` values are encoded in a single polynomial. Thus,
given blocks a = (a1, ..., a`), b = (b1, ..., b`) which are shared using two polyno-
mials of degree δ, addition results in a sharing of a polynomial of degree δ that
hides the block a+b = (a1+b1, ..., a`+b`), while multiplication results in sharing
a polynomial of degree 2δ which hides the block ab = (a1b1, ..., a`b`); as usual, a
protocol is used to reduce the degree of the polynomial to δ.

An in-depth analysis of the protocol, described in the full version of the
paper, reveals that the overall complexity of the protocol is dominated by the
number of multiplications and the number of OTs (both the communication
complexity and other computational operations are negligible in comparison to
these). Our efficiency analysis will therefore present those two factors. The OTs
are only needed for the inner semi-honest multiplication protocols,2 and so the
other building blocks will be analyzed only in terms of the number of multiplica-
tions. We emphasize that these OTs must only be secure against a semi-honest
adversary, and not a malicious one.
2 We remark that the OTs needed for setting up the watchlists (which must be secure

against malicious adversaries) are also a factor. However, they depend only on the
number of servers n and so can be considered at the end.



4.1 An Analysis of the Building Blocks
Secret sharing for blocks: This secret sharing scheme is a variant of Shamir’s
secret sharing [23], presented in [10]. Each polynomial encodes a block of ` values.
The cost of sharing w elements among n servers, using blocks of size ` and
polynomials of degree δ, is (w/`)(δ2 + nδ) multiplications.
Proving that shares lie on δ-degree polynomials: After sharing the secrets
it must be proved that the shares are indeed encoded by z polynomials, each
of degree δ (each polynomial is used to hide ` field elements; depending on the
number of inputs, multiple polynomials must be used for the sharing). A protocol
for such a proof is presented in [17]. It requires δ(z + n+ k) multiplications.
Proving a replication pattern of shared blocks: The protocol requires par-
ties to prove that certain shared blocks follow some replication pattern (namely
that a certain output value is used as an input value for the next layer). The
protocol we used is mentioned in the computation complexity analysis of [17].
The cost is (4δ)2 + 4δn+ 2((2δn+ (2δ)2)u+ (δn+ δ2)v) + 2(n+ k)(u+ v) mul-
tiplications, where v is the number of input blocks (represented by polynomials
of degree δ) and u is the number of output blocks (represented by polynomials
of degree 2δ).
Semi-honest inner multiplication: For multiplication gates the parties run a
semi-honest protocol for the functionality (x1, x2) 7→ (x1x2 − r, r) for a random
r ∈R F . Six different protocols are presented for this functionality in [17]. We
present the analysis for the most efficient protocols only (based on our concrete
analysis for all options). The first protocol is based on packed Reed-Solomon
encoding and is black-box in the field [17], and the second protocol is due to
Glboa [11] and makes nonblack-box usage of the field and assumes standard bit
representation of elements.

As is detailed in the full version of the paper, for a security parameter s = 40
giving error 2−40, the packed Reed-Solomon encoding protocol costs 2734 mul-
tiplications and 16 1-out-of-2 OTs per inner multiplication, while the protocol
of [11] uses 40 multiplications and 40 1-out-of-2 OTs. Namely, one protocol is
more efficient in terms of OTs and the other is more efficient in terms of multi-
plications. For concrete numbers this phenomenon might present implementers
with a real dilemma.

4.2 Instantiating the Parameters

In order to count concrete efficiency, the values of the different parameters must
be set. We do not claim to have found the absolute optimal parameters, as
the analysis of their effect on the overhead is very complex. We do present
for each parameter the different considerations affecting the choice of its value,
and eventually show that the protocol is comparable in its efficiency to other
protocols from the literature and may be competitive in some settings.

The four main parameters that must be set are the degree of the polynomials
δ, the block size `, the number of corrupted parties tolerated t, and the number
of servers n. Three out of the four different parameters, the degree, the block



size and the corruption threshold, are tightly interconnected in that setting any
two of them determines the third one. In addition, these three parameters are all
chosen as a function of the number of servers n, and given their descriptions the
actual concrete value of n is chosen (independently of the circuit). As we will see
below, the determination of the degree δ is a straightforward choice. We then
determine the block size based on the actual circuit being computed, thereby
essentially setting the threshold.
The degree δ: Due to the replication proof protocol, it must hold that δ < n/4.
Other than that δ should be maximized, and we therefore set δ = n/4 − 1 (for
simplicity of notation, from here on we write δ = n/4).
The block size `: The block size has to be strictly smaller than the degree δ,
but otherwise the larger the block size, the more efficient the outer protocol gets.
This is because more multiplications are carried out together (note that there is
no use in having a block size larger than the width of a layer in the circuit since
this already upper bounds the number of multiplications that can be carried out
together). However, the number of corrupted servers that the outer protocol can
tolerate is δ − `, thus the closer ` is to δ, the smaller the fraction of corrupt
servers that can be tolerated. As a result, more servers are required in order
to ensure that the probability of catching the adversary cheating in the server
simulation does not go down.
The corruption threshold t: As shown in [10], up to t < δ − ` corrupted
servers receive no information about the secret block when using block secret
sharing with degree δ and block size `. Thus t is set to δ − `− 1.
The number of servers n: Define τ = n/t, and so 1/τ is the ratio of servers
that the adversary needs to corrupt in order to successfully cheat. Denote n =
O(mk) = a ·mk for some parameter a which should be chosen to minimize n.
We have already observed in Section 1.4, however, that the naive approach of
minimizing a is not optimal. An analysis reveals that for the two-party case
the best choice is to take a = τ , and thus to use n = 2τk servers in the outer
protocol.

4.3 Setting Concrete Values

We now show the concrete cost of IPS based on the results of our analysis
regarding parameter instantiation. The choices of parameters are demonstrated
for two different circuits, which clarify the dilemmas that arise in practice. As
stated above the only parameter which we did not set independently of the
circuit, but rather want to optimize for the concrete circuit, is the block size. We
therefore calculated the number of operations required for a large range of block
sizes. Our calculations are based on a combination of an analytic and numerical
analysis of the parameters that yield a cheating probability of at most 2−40.

The first example uses circuit parameters similar to the AES circuit of [8],
assuming 2400 multiplication gates split over 100 layers. In this case minimal
values for the number of OTs and the number of multiplications occur for the
same block size of n/73. Remembering that δ = n/4, the threshold ratio is



τ = 1
(δ−`)/n ≈ 4.231. Setting a = τ as suggested above results in n = 4.231 · 2k.

In order to get a cheating probability of 2−40, each client must check k = 207
watchlists, and the number of servers is n ≈ 1752.3

The number of OTs and multiplications which are required in this setting de-
pends on the inner multiplication protocol that is used (based on Reed-Solomon
codes, or on the protocol of [11]). The first choice results in approximately 5.5·106

OTs and 5.5 · 109 multiplications, while the latter choice requires approximately
13.8 · 106 OTs and 4.5 · 109 multiplications. The choice of the inner protocol
is therefore not trivial, and depends on the properties of concrete implementa-
tions of the OT and multiplication primitives. Recall that multiplications are in
a finite field of size 240 and therefore elements fit in a single word of a mod-
ern 64-bit architecture, and can be done very efficiently. The OTs need only be
secure against semi-honest adversaries, and so can be efficiently implemented
using methods of extending OT as in [15]. Given these two observations, the run
time of the protocol seems reasonable in comparison to that of other protocols
providing security against malicious adversaries.

The second example is of a circuit of 30000 multiplication gates split over
10 layers, and results in another optimization dilemma. Setting the block size
` = n/5.7 results in the minimal number of OTs, but minimizing the number
of multiplications requires setting ` = n/13.1. The actual numbers of operations
are described below.

n k RS OT Gilboa OT RS mult Gilboa mult
` = n/5.7 19554 729 5.6 · 106 11.1 · 106 54 · 109 53 · 109

` = n/13.1 3362 292 12 · 106 31 · 106 13 · 109 11 · 109

The reason for this tradeoff is that the number of OTs is minimized when
the block size can accommodate an entire layer in a single block, but this setting
requires more servers (compared to a smaller block size), and so multi-point
evaluation and interpolation become more expensive (as they depend on the
number of servers), which results in an increased amount of multiplications.
Observe also that setting ` = n/5.7 results in a much larger number of servers
which in turn affects the cost of the watchlist setup protocol. Plugging in the cost
of our watchlist setup (15n + k exponentiations), we have that when ` = n/5.7
the setup cost is 294, 039 exponentiations, versus just 50, 722 when ` = n/13.1.
This cost may also weigh in as a factor.

We conclude that the IPS protocol may be competitive in some settings.
We are currently implementing the protocol in order to empirically verify our
analysis and conclusions.
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