
The PHOTON Family of Lightweight Hash
Functions

Jian Guo1, Thomas Peyrin?2, and Axel Poschmann?2

1 Institute for Infocomm Research, Singapore
2 Nanyang Technological University, Singapore

{ntu.guo,thomas.peyrin}@gmail.com, aposchmann@ntu.edu.sg

Abstract. RFID security is currently one of the major challenges cryp-
tography has to face, often solved by protocols assuming that an on-
tag hash function is available. In this article we present the PHOTON

lightweight hash-function family, available in many different flavors and
suitable for extremely constrained devices such as passive RFID tags.
Our proposal uses a sponge-like construction as domain extension algo-
rithm and an AES-like primitive as internal unkeyed permutation. This
allows us to obtain the most compact hash function known so far (about
1120 GE for 64-bit collision resistance security), reaching areas very close
to the theoretical optimum (derived from the minimal internal state
memory size). Moreover, the speed achieved by PHOTON also compares
quite favorably to its competitors. This is mostly due to the fact that
unlike for previously proposed schemes, our proposal is very simple to
analyze and one can derive tight AES-like bounds on the number of active
Sboxes. This kind of AES-like primitive is usually not well suited for ultra
constrained environments, but we describe in this paper a new method
for generating the column mixing layer in a serial way, lowering drasti-
cally the area required. Finally, we slightly extend the sponge framework
in order to offer interesting trade-offs between speed and preimage secu-
rity for small messages, the classical use-case in hardware.

Key words: lightweight, hash function, sponge function, AES.

1 Introduction

RFID tags are likely to be deployed widely in many different situations of ev-
eryday life and they represent a great business opportunity for various markets.
However, this rising technology also provides new security challenges that the
cryptography community has to handle. RFID tags can be used to fight product
counterfeiting by authenticating them and on the other hand, we would also like
to guarantee the privacy of the users.

? The authors were supported in part by the Singapore National Research Foundation
under Research Grant NRF-CRP2-2007-03.

These two security aspects have already been studied considerably and, inter-
estingly, in most of the privacy-preserving RFID protocols proposed [3, 20, 23] a
hash function is required. Informally, such a primitive is a function that takes an
arbitrary length input and outputs a fixed-size value. While no secret is involved
in the computation, one would like that finding collisions (two distinct messages
hashing to the same value) or (second)-preimages (a message input that hashes
to a given challenge output value) is computationally intractable for an attacker.
More precisely, for an n-bit ideal hash function we expect to perform 2n/2 and 2n

computations in order to find a collision and a (second)-preimage respectively.
While not as mature as block-ciphers, the research on hash functions saw a rapid
development lately, mainly due to the groundbreaking attacks on standardized
primitives [37, 35, 36]. At the present time, most of the attention of the symmet-
ric key cryptography academic community is focused on the SHA-3 competition
organized by NIST [28], which should provide a potential replacement of the
MD-SHA family.

In parallel, nice advances have also been made in the domain of lightweight
symmetric key primitives in the last years. Protocol designers now have at dis-
posal PRESENT3, a 64-bit block-cipher with 80-bit key whose security has already
been analyzed intensively and that can be as compact as 1075 GE [32]. Stream-
ciphers are not outcast with implementations [19] with 80-bit security requiring
about 1300 GE and 2600 GE reported for GRAIN and TRIVIUM respectively, two
candidates selected in the final eSTREAM hardware portfolio. However, the sit-
uation is not as bright in the case of hash functions.

As already pointed out in [18] and echoed in, the community lacks very com-
pact hash functions. Standardized primitives such as SHA-1 [26] or SHA-2 [27]
are much too large to fit in very constrained hardware (5527 GE [29] and 10868
GE [18] for 80 and 128-bit aimed security respectively) and even compact-
oriented proposals such as MAME require 8100 GE for 128-bit security. While
hardware is an important criteria in the selection process, one can not expect
the SHA-3 finalists to be much more compact. At the present time, all SHA-3
finalists require more than 12000 GE for 128-bit security (smaller versions of
KECCAK that have not been submitted to the competition provide for example
64-bit security with 5090 GE). Note that a basic RFID tag may have a total gate
count of anywhere from 1000-10000 gates, with only 200-2000 gates budgeted
for security [22].

This compactness problem in hash algorithms is partly due to the fact that
it widely depends on the memory registers required for the computation. Most
hash functions proposed so far are software-oriented and output at least 256
bits in order to be out of reach of any generic collision search in practice. While
such an output size makes sense where high level and long-term security are
needed, RFID use-cases could bear much smaller security parameters. This is
for example the path taken in, where the authors instantiate lightweight hash
functions using literature-based constructions [21, 31] with the compact block-

3 Due to space limit, we omitted the references for many designs, interested readers
are referred to [1] for an extended version of this article.

cipher PRESENT. With SQUASH, Shamir proposed a compact keyed hash function
inspired by the Rabin encryption scheme that processes short messages (at most
64-bit inputs) and that provides 64 bits of preimage security, without being col-
lision resistant. At CHES 2010, the lightweight hash-function family ARMADILLO
was proposed, but has recently been shown to present serious security weak-
nesses [11]. At the same conference, Aumasson et al. published the hash func-
tion QUARK, using sponge functions [4] as domain extension algorithm, and an
internal permutation inspired from the stream-cipher GRAIN and the block-cipher
KATAN [14]. Using sponge functions as operating mode is another step towards
compactness. Indeed, classical n-bit hash function constructions like the MD-SHA
family utilize a Merkle-Damg̊ard [24, 17] domain extension algorithm with a com-
pression function h built upon an n-bit block-cipher E in Davies-Meyer mode
(h(CV,M) = EM (CV) ⊕ CV), where CV stands for the chaining variable and
M for the current message block. Avoiding any feed-forward like for sponge con-
structions saves a lot of memory registers at the cost of an invertible iterative
process which induces a lower (second)-preimage security for the same internal
state size. All in all, designers have to deal with a trade-off between security and
memory requirements.

In this article, we describe a new hardware-oriented hash-function family:
PHOTON. We chose to use the sponge functions framework in order to keep the
internal memory size as low as possible. However, we extend this framework so as
to provide very interesting trade-offs in hardware between preimage security and
small messages hashing speed (small message scenario is a classical use-case and
can be problematic for sponge functions because of their squeezing process that
can be very slow in practice). The internal permutations of PHOTON can be seen
as AES-like primitives especially derived for hardware: our columns mixing layer
can be computed in a serial way while maintaining optimal diffusion properties.
Overall, as shown in Table 2 in Section 4.3, not only PHOTON is easily the smallest
hash function known so far, but it also achieves excellent area/throughput trade-
offs.

In terms of security, it is particularly interesting to use AES-like permutations
as we can fully leverage all the previous cryptanalysis performed on AES and on
AES-based hash functions (again due to space limit we refer the reader to [1]
for a detailed security analysis). Moreover, we can directly derive very simple
bounds on the number of active Sboxes for 4 rounds of the permutation. These
bounds being tight, we can confidently set an appropriate number of rounds that
ensures a comfortable security margin.

2 Design Choices

In tag-based applications, one typically does not require high security primitives,
such as a 512-bit output hash function. In contrary, 64 or 80-bit security is often
appropriate considering the value of objects an RFID tag is protecting and the
use cases. Moreover, a designer should use exactly the level that he expects from
his primitive, so as to avoid any waste of area or computing power. This is the

reason why we chose to precisely instantiate several security levels for PHOTON,
ranging from 64-bit preimage resistance security to 128-bit collision resistance
security.

2.1 Extended Sponge functions

Sponge functions have been introduced by Bertoni et al. [4] as a new way of
building hash functions from a fixed permutation (later more applications were
proposed [7]). The internal state S, composed of the c-bit capacity and the r-bit
bitrate, is first initialized with some fixed value. Then, after having appropriately
padded and split the message into r-bit chunks, one simply and iteratively pro-
cesses all r-bit message chunks by xoring them to the bitrate part of the internal
state and then applying the (c+ r)-bit permutation P . Once all message chunks
have been handled by this absorbing phase, one successively outputs r bits of
the final hash value by extracting r bits from the bitrate part of the internal
state and then applying the permutation P on it (squeezing process).

When the internal permutation P is modeled as a randomly chosen permu-
tation, a sponge function has been proven to be indifferentiable from a random
oracle [5] up to 2c/2 calls to P . More precisely, for an n-bit sponge hash func-
tion with capacity c and bitrate r, when the internal primitive is modeled as a
random permutation, one obtains min{2n/2, 2c/2} as collision resistance bound
and min{2n, 2c/2} as (second)-preimage bound. However, in the case of preim-
age, there exists a gap between this bound and the best known generic attack4.
Therefore, we expect the following complexities in the generic case:

• Collision: min{2n/2, 2c/2}
• Second-preimage: min{2n, 2c/2}
• Preimage: min{2n, 2c,max{2n−r, 2c/2}}

Moreover, sponge functions can be used as a Message Authentication Code
with MACK(M) = H(K||M), where K ∈ {0, 1}k stands for the key and M for
the message. It has been shown [8] that as long as the amount of message queries
is limited to 2a with a� c/2, then no attack better than exhaustive key search
exists if c ≥ k + a+ 1.

Sponge functions seem a natural choice in order to minimize the amount of
memory registers in hardware since they can offer speed/area/security trade-
offs. Indeed, the only memory required for the internal state is c+ r bits, while
for a classical Davies-Meyer construction using an m-bit block cipher with a
k-bit key input one needs to store 2m+ k bits, out of which m bits are required
for the feed-forward. For an equivalent ideal collision security level (thus setting
m = c = n) and by minimizing the area (r and k are very small), the sponge
function requires only about half of the memory. Note that if one looks for a
4 The 2n−r term for preimage comes from the fact that in order to invert the hash func-

tion, the attacker will have to invert the squeezing process. The best known generic
attack to solve this “multiblock constrained-input constrained-output problem” [6]
requires 2n−r computations.

perfectly (second)-preimage resistant hash function (up to the 2n ideal bound),
then it is required that c ≥ 2 · n (which implies that the n-bit hash function
built is indifferentiable from an n-bit random oracle anyway). In that particular
case the sponge functions are not better than the Davies-Meyer construction in
terms of area requirements and therefore in this work we will not focus on this
scenario. Instead, we will build hash functions that may have ideal resistance to
collision, but not for (second)-preimage. The typical shape will be a capacity c
equal to the hash output n and a very small bitrate r. This security/area trade-
off, already utilized by the QUARK designers, will allow us to aim at extremly low
area requirements, while maintaining security expectations very close to ideal.

In, the authors identify that in most RFID applications the user will not
hash a large amount of data, i.e. in general less than 256 bits. Consider for
example the electronic product code (EPC) number, which is a 96-bit string
that is meant to identify globally any tag/product. In this particular case of
small messages, sponge functions with a small bitrate r seem to be slow since
one needs to call (dn/re − 1) times the internal permutation to complete the
final squeezing process. This is for example the case with U-QUARK, that has a
throughput of 1.47 kbps for very long messages which drops to 0.63 kbps for 96-
bit inputs. On the other side, this “small messages” effect is reduced by the fact
that having a small bitrate will reduce the amount of padding actually hashed
(the padding simply consists in adding a “1” and as many “0” required to fill the
last message block). Note that lightweight proposals based on classical Davies-
Meyer construction that include the message length as suffix padding are also
slow for small messages: DM-PRESENT-80 has a throughput of 14.63 kbps for very
long messages which drops to 5.85 kbps for 96-bit inputs, because in the latter
case many of the compression function calls are spent in order to handle padding
blocks.

r bits

c bits

m0

P

m1

P

m2

P

m3

P

r′ bits

c′ bits

z0

P

z1

P

z2

absorbing squeezing

Fig. 1. The extended sponge framework, the domain extension algorithm used by the
PHOTON hash-function family.

In order to allow more flexibility about this issue, we propose to slightly
extend the sponge framework by allowing the number r′ of bits extracted during
each iteration of the squeezing process to be different from the bitrate r5 (see
5 A recent work from Andreeva et al. [2] also independently proposed such an extension

of the sponge model.

Figure 1). Increasing r′ will directly reduce the time spent in the squeezing
process, but might also reduce the preimage security. On the contrary, decreasing
r′ might improve the preimage bound at the cost of a speed drop for small
messages. As long as the preimage security remains in an acceptable bound, this
configuration can be interesting in many scenarios where only tiny inputs are to
be hashed. More precisely, in this new model, the best known generic attacks
require the following amount of computations:

• Collision: min{2n/2, 2c/2}
• Second-preimage: min{2n, 2c/2}
• Preimage: min{2n, 2c,max{2n−r′

, 2c/2}}

Finally, in most tag-based applications the collision resistance is not a re-
quirement, while only the one-wayness of the function must be ensured. How-
ever, as we previously explained, for lightweight scenarios the sponge construc-
tion does not maintain the (second)-preimage security at the full level of its
capacity c. This is due to the output process of the sponge operating mode. Of
course, performing a Davies-Meyer like feed-forward just after the final trunca-
tion would do the job, but that would also double the memory area required
(which is precisely what we are trying to avoid). The nice trick of squeezing in
the sponge functions framework permits to avoid any feed-forward while some-
how rendering the process non-invertible, up to some extend (see multiblock
constrained-input constrained-output problem in [6]). One solution to reach
the full capacity preimage security would be to add one more squeezing iter-
ation, thus increasing the output size of the hash by r′ bits.6 Then, the best
known generic preimage attack for this (n + r′)-bit hash function will run in
min{2n+r′

, 2c,max{2n, 2c/2}} ≥ 2n when c ≥ n and one has to note that this
hash output extension has no influence on the second-preimage resistance.

In this article, we will provide five sizes of internal permutations and one
PHOTON flavor for each of them. The four biggest versions fit the classical sponge
model and will ensure 2n/2 collision and second preimage resistance and 2n−r

concerning preimage. However, in order to illustrate the powerful trade-offs al-
lowed by our extended model, the smaller PHOTON variant will have different
input/output bitrates and an extended hash size. Using the five permutations
defined in the next Section, one can derive its own PHOTON flavor depending on
the collision / (second)-preimage / MAC security required, the maximal area
and the maximal hash output size allowed. Note that the area required will only
depend on the internal permutation chosen.

2.2 An AES-like internal permutation

We define an AES-like function to be a fixed key permutation P applied on an
internal state of d2 elements of s bits each, which can be represented as a (d×d)

6 This generalization has been independently utilized by the QUARK designers in a
revised version of their original article.

matrix. P is composed of Nr rounds, each containing four layers : AddConstants
(AC), SubCells (SC), ShiftRows (ShR), and MixColumnsSerial (MCS). Infor-
mally, AddConstants simply consists in adding fixed values to the cells of the
internal state, while SubCells applies an s-bit Sbox to each of them. ShiftRows
rotates the position of the cells in each of the rows and MixColumnsSerial linearly
mixes all the columns independently.

We chose to use AES-like permutations because they offer much confidence
in the design strategy as one can leverage previous cryptanalysis works done
on AES and on AES-like hash functions. Moreover, AES-like permutations allow
to derive very simple proofs on the number of active Sboxes over four rounds
of the primitive. More precisely, if the matrix underlying the MixColumnsSerial
layer is Maximum Distance Separable (MDS), then one can immediately show
that at least (d+ 1)2 Sboxes will be active for any 4-round differential path [16].
This bound is tight, and we already know differential paths with only (d +
1)2 active Sboxes for four rounds (we will use them later for security analysis
purposes). Moreover, note that the permutations we will design are fixed-key, so
we naturally get rid of related-key attacks or any issue that might arise from the
construction of a key-schedule [9, 10].

AddConstants

d cells

d cells

s bits

SubCells

S
S
S
S
S
S
S
S

S
S
S
S
S
S
S
S

S
S
S
S
S
S
S
S

S
S
S
S
S
S
S
S

S
S
S
S
S
S
S
S

S
S
S
S
S
S
S
S

S
S
S
S
S
S
S
S

S
S
S
S
S
S
S
S

ShiftRows MixColumnsSerial

Fig. 2. One round of a PHOTON permutation.

AddConstants. The constants have been chosen such that each of the Nr

round computations are different, and such that the classical symmetry between
columns in AES-like designs are destroyed (without the AddConstants layer, an
input with all columns equal would maintain this property through any number
of rounds). Also, the round constants can be generated by a combination of very
compact Linear Feedback Shift Registers. For performance reasons, only the first
column of the internal state is involved.

SubCells. Our choice of the Sboxes was mostly motivated by their hardware
quality. 4-bit Sboxes can be very compact in hardware while the acceptable
upper limit on the cell size is s = 8. We avoided to use an Sbox size s which is
odd, because this leads to odd message block size or capacity when d is also odd.
This leaves us with s = 4, 6, 8, but we also believe that reusing some already
trusted and well analyzed components increases the confidence in the security
of the scheme and saves a lot of time for cryptanalysts. Finally, we will use

two types of Sboxes: the 4-bit PRESENT Sbox SBOXPRE and the 8-bit AES Sbox
SBOXAES the latter being only utilized for high security levels (at least 128 bits
of collision resistance). Note also that s = 4, 8 allows simpler and faster software
implementations.

ShiftRows. The choice of the ShiftRows constants is very simple for PHOTON
since our internal state is always a square of cells. Therefore, row i will classically
be rotated by i positions to the left, i counts from 0.

MixColumnsSerial. The matrix underlying the AES MixColumns function is
a circulant matrix with low hamming weight coefficients. Even if those coeffi-
cients and the irreducible polynomial used to create the Galois field for the AES
MixColumns function have been chosen so as to improve the hardware footprint
of the cipher, it can not be implemented in an extremely compact way. One of
the main reason is that the byte-serial implementation of this function is not
compact. Said in other words, if we write the AES MixColumns matrix as the
composition of d operations each updating a single byte at a time in a serial
way, then the coefficients of these d matrices will be very bad for small area
implementations.

In order to solve this issue, we took the problem the other way round. LetA be
the matrix that updates the last cell of the column vector with a linear combina-
tion of all of the vector cells and then rotates the vector by one position towards
the top. Our new MixColumnsSerial layer will be composed of d applications of
this matrix to the input column vector. More formally, let X = (x0, . . . , xd−1)T

be an input column vector of MixColumnsSerial and Y = (y0, . . . , yd−1)T be the
corresponding output. Then, we have Y = Ad ×X, where A is a (d× d) matrix
of the form:

A =

0BBBBB@
0 1 0 0 · · · 0 0 0 0
0 0 1 0 · · · 0 0 0 0

...
...

0 0 0 0 · · · 0 0 0 1
Z0 Z1 Z2 Z3 · · · Zd−4 Zd−3 Zd−2 Zd−1

1CCCCCA

where coefficients (Z0, . . . , Zd−1) can be chosen freely. We denote by Serial(Z0,
. . ., Zd−1) such a matrix. Of course, we would like the final matrix Ad to be MDS,
so as to maintain as much diffusion as for the AES initial design strategy. For
each square size d we picked during the design of PHOTON, we used MAGMA [12]
to test all the possible values of Z0, . . . , Zd−1 and picked the most compact
candidate making Ad an MDS matrix. We also chose the irreducible polynomial
with compactness as main criterion.

For design strategy comparison purposes, we can take as an example the AES
case. By using our new mixing layer design method, we were able to find the
matrix A = Serial(1, 2, 1, 4) which gives the following MDS final matrix:

(A)4 =


0 1 0 0
0 0 1 0
0 0 0 1
1 2 1 4


4

=


1 2 1 4
4 9 6 17
17 38 24 66
66 149 100 11


The smallest AES hardware implementation requires 2400 GE [25], for which

263 GE are dedicated to MixColumns. It is possible to implement MixColumns
of AES in a byte-by-byte fashion, which requires only 81 GE to calculate one
byte of the output column. However, since AES uses a circulant matrix, at least
three additional 8-bit registers (144 GE), are required to hold the output, plus
additional control logic, which increases the area requirements significantly. That
is why [25] does not use a serial MixColumns, but rather processes one column
at a time.

Please note that in general the choice of non-zero constants for any d×d MDS
matrix on s-bit cells has only a minor impact of the area consumption, since a
multiplication by x consists of w XOR gates, where w denotes the Hamming
weight of the irreducible polynomial used. At the same time, (d − 1) · s XOR
gates are required to sum up the d individual terms of s bits each. It is no
surprise, that multiplying with the constants above accounts for only 21.3 GE
out of the 74 GE required. In fact, the efficiency of our approach lies in the
shifting property of A, since this allows to re-use the existing memory with
neither temporary storage nor additional control logic required.

All in all, using our approach would provide a tweaked AES cipher with the
very same diffusion properties as the original one (the matrix being MDS), but
that can fit in only 2210 GE, a total saving of around 8%. Moreover, for the
deciphering process, a slightly modified hardware can be used in order to unroll
the MixColumnsSerial, further reducing the area footprint of such a PHOTON-
based cipher. One might think that the software implementations will suffer from
this new layer. While our goal is to make a hardware-oriented primitive, we would
like to remark that most AES software implementations are precomputed tables-
based (applying both the Sbox and the MixColumns coefficients at the same
time) and the very same method can be applied to PHOTON. This is confirmed by
our first software implementations, whose benchmarks are given in Section 4.4.

3 The PHOTON Hash-Function Family

We describe in this section the PHOTON family of hash functions.7 Each variant
will be fully defined by its hash output size 64 ≤ n ≤ 256, its input and its output
bitrate r and r′ respectively. Therefore we denote each function PHOTON-n/r/r′.
The internal state size t = (c+ r) depends on the hash output size and can take
only 5 distinct values: 100, 144, 196, 256 and 288 bits. As a consequence, we
only have to define 5 internal permutations Pt, one for each internal state size.
7 An extended version of this paper including a more detailed description of PHOTON

and test vectors can be found at the PHOTON website [1].

In order to cover a wide spectrum of applications, we propose five different
flavors of PHOTON, one for each internal state size: PHOTON-80/20/16, PHOTON-
128/16/16, PHOTON-160/36/36, PHOTON-224/32/32 and PHOTON-256/32/32 will
use internal permutations P100, P144, P196, P256 and P288 respectively. Note
that the first proposal is special in the sense that it is designed for the specific
cases where 64-bit preimage security and 64-bit key MAC are considered to be
sufficient.8 In contrary, the last proposal provides a high security level of 128-bit
collision resistance, thus making it suitable for generic applications.

3.1 The domain extension algorithm

The message M to hash is first padded by appending a “1” bit and as many zeros
(possibly none) such that the total length is a multiple of the bitrate r and we
can finally obtain l message blocks m0, . . . ,ml−1 of r bits each. The t-bit internal
state S is initialized by setting it to the value S0 = IV = {0}t−24||n/4||r||r′,
where || denotes the concatenation and each value is coded on 8 bits. For imple-
mentation purposes, note that each byte is interpreted in big-endian form.

Then, as for the classical sponge strategy, at iteration i we absorb the message
block mi on leftmost part of the internal state Si and then apply the permutation
Pt, i.e. Si+1 = Pt(Si⊕(mi||{0}c)). Once all l message blocks have been absorbed,
we build the hash value by concatenating the successive r′-bit output blocks zi

until we reach the appropriate output size n: hash = z0|| . . . ||zl′−1, where l′

denotes the number of squeezing iterations, that is l′ = dn/r′e−1. More precisely,
zi is the r′ leftmost bits of the internal state Sl+i and we have Sl+i+1 = Pt(Sl+i)
for 0 ≤ i < l′. If the hash output size is not a multiple of r′, one just truncates
zl′−1 to n mod r′ bits.

3.2 The internal permutations

We define here the internal permutations Pt, where t ∈ {100, 144, 196, 256, 288}.
The internal state of the Nr-round permutation is viewed as a (d × d) matrix
of s-bit cells and the corresponding values depending of t are given in Table 1.
Note that we will always use a cell size of 4 bits, except for the largest version
for which we use 8-bit cells, and that the number of rounds is always Nr = 12,
whatever the value of t is. The internal state cell located at row i and column j
is denoted S[i, j] with 0 ≤ i, j < d.

One round is composed of four layers (see Figure 2): AddConstant (AC),
SubCell (SC), ShiftRows (ShR) and MixColumnsSerial (MCS).
8 By sponge keying and using the security bound from [8], PHOTON-80/20/16 provides

a secure 64-bit key MAC as long as the number of messages to be computed is lower
than 215. For a secure 64-bit key MAC handling more messages (up to 227), one can
for example go for a very similar PHOTON-80/8/8 version that also uses P100. This
version with capacity c = 92 would require the same area as PHOTON-80/20/16 but
would be slower.

Table 1. The parameters of the internal permutations Pt, together with the inter-
nal constants ICd, the irreductible polynomials and the Zi coefficients for the Mix-
ColumnsSerial computation.

t d s Nr ICd(·) irr. polynomial Zi coefficients

P100 100 5 4 12 [0, 1, 3, 6, 4] x4 + x + 1 (1, 2, 9, 9, 2)

P144 144 6 4 12 [0, 1, 3, 7, 6, 4] x4 + x + 1 (1, 2, 8, 5, 8, 2)

P196 196 7 4 12 [0, 1, 2, 5, 3, 6, 4] x4 + x + 1 (1, 4, 6, 1, 1, 6, 4)

P256 256 8 4 12 [0, 1, 3, 7, 15, 14, 12, 8] x4 + x + 1 (2, 4, 2, 11, 2, 8, 5, 6)

P288 288 6 8 12 [0, 1, 3, 7, 6, 4] x8 + x4 + x3 + x + 1 (2, 3, 1, 2, 1, 4)

AddConstant. At round number v (starting the counting from 1), we first
XOR a round constant RC(v) to each cell S[i, 0] of the first column of the internal
state. Then, we XOR distinct internal constants ICd(i) to each cell S[i, 0] of the
same first column. Overall, for round v we have S′[i, 0] = S[i, 0]⊕RC(v)⊕ICd(i)
for all 0 ≤ i < d. The round constants are

RC(v) = [1, 3, 7, 14, 13, 11, 6, 12, 9, 2, 5, 10].

The internal constants depend on the square size d and on the row position i.
They are given in Table 1.

SubCells. This layer simply applies an s-bit Sbox to each of the cells of the
internal state, i.e. S′[i, j] = SBOX(S[i, j]) for all 0 ≤ i, j < d. In the case of 4-bit
cells, we use the PRESENT Sbox SBOXPRE while for the 8-bit cells case we use the
AES Sbox SBOXAES [16].

ShiftRows. As for the AES, for each row i this layer rotates all cells to the left
by i column positions. Namely, S′[i, j] = S[i, (j + i) mod d] for all 0 ≤ i, j < d.

MixColumnsSerial. The final mixing layer is applied to each of the columns of
the internal state independently. For each column j input vector (S[0, j], . . . , S[d−
1, j])T , we apply d times the matrix At = Serial(Z0, . . . , Zd−1). That is, for all
0 ≤ j < d: (S′[0, j], . . . , S′[d − 1, j])T = Ad

t × (S[0, j], . . . , S[d − 1, j])T where
the coefficients Z0, . . . , Zd−1 are given in Table 1. In the case of 4-bit cells, the
irreducible polynomial we chose is x4 + x+ 1, while for the 8-bit case we chose
the AES one, i.e. x8 + x4 + x3 + x+ 1. Note that all Ad

t matrices are Maximum
Distance Separable.9

4 Performances and Comparison

Before we detail the hardware architectures and the optimizations done, we first
describe the tools used. Finally we compare our results to previous work.

9 One could wonder why we did not propose a version with d = 9 and s = 4. The
reason is that there is no matrix fulfilling the desired “serial MDS” properties for
those parameters, whatever the irreducible polynomial chosen.

4.1 Design flow

We used Mentor Graphics ModelSimXE 6.4b and Synopsys DesignCompiler A-
2007.12-SP1 for functional simulation and synthesis of the designs to the Virtual
Silicon (VST) standard cell library UMCL18G212T3 [34], which is based on the
UMC L180 0.18µm 1P6M logic process with a typical voltage of 1.8 V. We used
Synopsys Power Compiler version A-2007.12-SP1 to estimate the power con-
sumption of our ASIC implementations. For synthesis and for power estimation
we advised the compiler to keep the hierarchy and use a clock frequency of 100
KHz. Note that the wire-load model used, though it is the smallest available for
this library, still simulates the typical wire-load of a circuit with a size of around
10 000 GE.

4.2 Hardware architectures

To substantiate our claims on the hardware efficiency of our PHOTON family,
we have implemented the flavors specified in Section 3 in VHDL and simulated
their post-synthesis performance. We designed two architectures: one is fully
serialized, i.e. performing operations on one cell per clock cycle, and aims for
the smallest area possible; the second one is a d times parallelization of the first
architecture, thus performing operations on one row in one clock cycle, resulting
in a significant speed-up. As can be seen in Figure 3, our serialized design consists
of six modules: MCS, State, IO, AC, SC, and Controller.

IO allows to 1) initialize our implementation with an all ‘0’ vector, 2) input
the IV, 3) absorb message chunks, and 4) forward the output of the State module
to the AC module without further modification. Instead of using two Multiplexer
and an XOR gate, we used two NAND and one XOR gate thereby reducing the
gate count required from s · 7.33 to s · 4.67 GE.

State comprises a d · d array of flip-flop cells storing s bits each. Every row
constitutes a shift-register using the output of the last stage, i.e. column 0, as
the input to the first stage (column d − 1) of the same row and the next row.
Using this feedback functionality ShiftRows can be performed in d − 1 clock
cycles with no additional hardware costs. Further, since MixColumnsSerial is
performed on column 0, also a vertical shifting direction is required for this
column. Consequently, columns 0 and d − 1 consist of flip-flop cells with two
inputs (6 GE), while columns 1 to d − 2 consist of flip-flop cells with only one
input (4.67 GE). The overall gate count for this module is s·d·((d−2)·4.67+2·6)
GE and for all flavors it occupies the majority of the area required (between 65
and 77.5%).

MCS calculates the last row of At in one clock cycle. The result is stored in the
State module, that is in the last row of column 0, which has been shifted up-
wards at the same time. Consequently, after d clock cycles the MixColumnsSerial
operation is applied to an entire column. Then the whole state array is rotated by
one position to the left and the next column is processed. In total d ·(d+1) clock
cycles are required to perform MCS. As an example of the hardware efficiency
of MCS we depict A100 in the upper and its sub-components in the lower right

part of Figure 3. Using our library, for a multiplication by 2, 4 and 8, we need
2.67 GE, 4.67 GE, and 7 GE when using the irreducible polynomial x4 + x+ 1,
respectively. Therefore the choice of the coefficients has only a minor impact on
the overall gate count, as the majority is required to sum up the intermediate
results. For example, in the case of A100, 56 out of 75.33 GE are required for the
XOR sum. The gate counts for the other matrices are: 80 GE, 99 GE, 145 GE,
and 144 GE for A144, A196, A256, and A288, respectively.

AC performs the AddConstant operation by XORing the sum of the round
constant RC with the current internal constant IC. Furthermore, since AC is
only applied to the first column, the input to the XNOR gate is gated with a
NAND gate. Instead of using an AND gate in combination with an XOR gate,
our approach allows to reduce the area required from s · 6.67 to s · 6 GE.

SC performs the SubCells operation and consists of a single instantiation of
the corresponding Sbox. For s = 4 we used an optimized Boolean representation
of the PRESENT Sbox, which only requires 22.33 GE and for s = 8 we used
Canright’s representation of the AES Sbox [15] which requires 233 GE. It takes
d · d clock cycles to perform AddConstant and SubCells on the whole state.

Controller uses a Finite State Machine (FSM) to generate all control signals
required. Furthermore, also the round constants and the internal constants are
generated within this module, as their values are used for the transition condi-
tions of the FSM. The FSM consists of one idle state, one state for the combined
execution of AC and SC, d− 1 states for ShR and two states for MCS (one for
processing one column and another one to rotate the whole state to the left).
Naturally, its gate count varies depending on d: 197 GE, 210 GE, 235 GE, and
254 GE for d = 5, 6, 7, 8, respectively.

x2

x2 x8 x8 x2

x8

4

4 4 4 4 4

A100

Fig. 3. Serial hardware architecture of PHOTON (left). As an example for its component
At we also depict A100 with its sub-components (right).

4.3 Hardware results and comparison

We assume the message to be padded correctly and the IVs to be loaded at the
beginning of the operation. Then it requires d ·d+(d−1)+d ·(d+1) clock cycles

to perform one round of the permutation P , resulting in a total latency of 12 ·(2 ·
d·(d+1)−1) clock cycles. Table 2 compares our results to previous works, sorted
after preimage and collision resistance levels. Area requirements are provided in
GE, while the latency is given in clock cycles for only the internal permutation
P (or the internal block-cipher E), and the whole hash function H. Further
metrics are Throughput in kbps and a Figure of Merit (FOM) proposed by. In
order to have a comparison for a best case scenario and a real-world application,
we provide the latter two metrics for ‘long’ messages (omitting any padding
influences) and for 96-bit messages, where we do take padding into account. In
particular this means that a 96-bit message is padded with “1” and as many “0”s
as required. Furthermore Merkle-Damg̊ard constructions need additional 64 bits
to encode the message length. The parameters n, c, r and r′ stand for the hash
output size, the capacity, the input bitrate and the output bitrate respectively.
Finally, the column “Pre” gives the claimed preimage resistance security and
“Col” the claimed collision resistance security.

As can be seen, our proposals compete well in terms of area requirements,
since they are 18% to 75% smaller compared to previous proposals with a similar
preimage/collision resistance level. For a smaller area, the throughput of PHOTON
variants is comparable to the QUARK proposals10. Alternatively, for a similar area,
PHOTON variants are much faster than the QUARK proposals. This can be observed
in the Figure of Merit column of the results Table. One could argue that the
throughput of two proposals can not be compared because the security margin
is not taken in account. However, we would like to emphasize that the security
margin is very hard to measure as it greatly depends on the simplicity of the
scheme, the amount of work spent by the cryptanalysts, etc. Unlike most of
the lightweight hash functions proposed, in the case of PHOTON, we chose very
simple to analyse internal permutations, thus directly leveraging the extensive
analysis work already known for AES-like permutations. While 8 rounds over
12 of the internal permutations of PHOTON can be distinguished from a random
permutation, we provide strong arguments that this is very unlikely to be much
improved.

We did not include power figures in Table 2 for several reasons. First, the
power consumption strongly depends on the technology used and cannot be
compared between different technologies in a fair manner. Furthermore, simu-
lated power figures strongly depend on the simulation method used, and the
effort spent. Instead, we just briefly list the simulated power figures for our
proposals here: 1.59, 2.29, 2.74, 4.01, and 4.55µW for serialized implementation
of PHOTON-80/20/16, PHOTON-128/16/16, PHOTON-160/36/36, PHOTON-224/32/32,
and PHOTON-256/32/32, respectively. The d-parallel implementations require 2.7,

10 We synthesized the publicly available VHDL source code of U-QUARK using the same
tool chain and ASIC library as for our proposals. The post-synthesis figures for
U-QUARK are slightly higher than the previously published ones, i.e. 1400 GE instead
of 1379 GE, which indicates that PHOTONs smaller footprint is not caused by a dif-
ferent tool chain. However, for comparison we took the previously available figures,
which is in favour of QUARK.

Table 2. Overview of parameters, security level, and performance of several lightweight
hash functions. Throughput and FOM figures have been derived at a clock frequency
of 100 KHz. We marked by a * the preimage resistances of PHOTON-128/16/16, PHOTON-
160/36/36, PHOTON-224/32/32 and PHOTON-256/32/32 in order to indicate that these
PHOTON variants can achieve equal preimage resistance compared to its competitors by
simply adding one more squeezing round. This will increase the hash output size n by
r′ bits and slightly reduce the throughput for small messages, while the area and the
long message performances will remain the same.

Name Ref.

Parameters Security Performance

n c r r′ Pre Col
Area Latency Throughput FOM

[GE] [clk] [kbps] [nb/clk/GE2]

P/E H long 96-bit long 96-bit

64-bit preimage resistance

SQUASH [38] 64 x x x 64 0 2646 31800 31800 0.2 0.15 0.29 0.14

DM-PRESENT-80 64 64 80 x 64 32 1600 547 547 14.63 5.85 57.13 19.04

DM-PRESENT-80 64 64 80 x 64 32 2213 33 33 242.42 96.67 495.01 165.00

DM-PRESENT-128 64 64 128 x 64 32 1886 559 559 22.90 8.59 64.37 32.19

DM-PRESENT-128 64 64 128 x 64 32 2530 33 33 387.88 145.45 605.98 302.99

KECCAK-f[200] 64 128 72 72 64 32 2520 900 900 8.00 5.33 12.6 8.4

PHOTON-80/20/16 80 80 20 16 64 40 865 708 3540 2.82 1.51 37.73 20.12

PHOTON-80/20/16 80 80 20 16 64 40 1168 132 660 15.15 8.08 111.13 59.27

64-bit collision resistance

U-QUARK 136 128 8 8 128 64 1379 544 9248 1.47 0.61 7.73 3.20

U-QUARK 136 128 8 8 128 64 2392 68 1156 11.76 4.87 20.56 8.51

H-PRESENT-128 128 128 64 x 128 64 2330 559 559 11.45 5.72 21.09 10.54

H-PRESENT-128 128 128 64 x 128 64 4256 32 32 200.00 100.00 110.41 55.21

ARMADILLO2-B 128 128 64 x 128 64 4353 256 256 25.00 12.50 13.19 6.60

ARMADILLO2-B 128 128 64 x 128 64 6025 64 64 100.00 50.00 27.55 13.77

KECCAK-f[400] 128 256 144 144 128 64 5090 1000 1000 14.40 9.60 5.56 3.71

PHOTON-128/16/16 128 128 16 16 112* 64 1122 996 7968 1.61 0.69 12.78 5.48

PHOTON-128/16/16 128 128 16 16 112* 64 1708 156 1248 10.26 4.4 35.15 15.06

80-bit collision resistance

D-QUARK 176 160 16 16 160 80 1702 704 7744 2.27 0.80 7.85 2.77

D-QUARK 176 160 16 16 160 80 2819 88 968 18.18 6.42 22.88 8.08

ARMADILLO2-C 160 160 80 x 160 80 5406 320 320 25.00 10.00 8.55 3.42

ARMADILLO2-C 160 160 80 x 160 80 7492 80 80 100.00 40.00 17.82 7.13

SHA-1 [29] 160 160 512 x 160 80 5527 344 344 148.84 27.91 48.72 9.14

PHOTON-160/36/36 160 160 36 36 124* 80 1396 1332 6660 2.70 1.03 13.87 5.28

PHOTON-160/36/36 160 160 36 36 124* 80 2117 180 900 20 7.62 44.64 17.01

112-bit collision resistance

S-QUARK 256 224 32 32 224 112 2296 1024 8192 3.13 0.85 5.93 1.62

S-QUARK 256 224 32 32 224 112 4640 64 512 50.00 13.64 23.22 6.33

PHOTON-224/32/32 224 224 32 32 192* 112 1736 1716 12012 1.86 0.56 6.19 1.86

PHOTON-224/32/32 224 224 32 32 192* 112 2786 204 1428 15.69 4.71 20.21 6.06

128-bit collision resistance

ARMADILLO2-E 256 256 128 x 256 128 8653 512 512 25.00 9.38 3.34 1.25

ARMADILLO2-E 256 256 128 x 256 128 11914 128 128 100.00 37.50 7.05 2.64

SHA-2 [18] 256 256 512 x 256 128 10868 1128 1128 45.39 8.51 3.84 0.72

PHOTON-256/32/32 256 256 32 32 224* 128 2177 996 7968 3.21 0.88 6.78 1.85

PHOTON-256/32/32 256 256 32 32 224* 128 4362 156 1248 20.51 5.59 10.78 2.94

3.45, 4.35, 6.5, and 8.38µW, respectively. This let us conclude that all PHOTON
flavors seem to be suitable for ultra-constrained devices, such as passive RFID
tags, which was one of our initial design goals.

4.4 Software implementation

We give in Table 3 our software implementation performances for the PHOTON
variants. The processor used for the benchmarks is an Intel(R) Core(TM) i7 CPU
Q 720 clocked at 1.60GHz. For comparison purposes, we also benchmarked the
speed of an AES permutation (without the key schedule) and a modified version
of it with a serially computable MDS matrix instead (the 4× 4 matrix A given
in Section 2.2). As expected, the table-based implementations reach the same
speed for both versions. We also benchmarked other lightweight hash function
designs. QUARK reference code, very likely to be optimizable, runs at 8k, 30k
and 22k cycles per byte for U-QUARK, D-QUARK and S-QUARK, respectively. The
optimized PRESENT code runs at 90 cycles per byte, hence the estimate speed for
DM-PRESENT-80, DM-PRESENT-128 and H-PRESENT-128 are 72, 45 and 90 cycles
per byte, respectively.

Table 3. Software performances in cycles per byte of the PHOTON variants for long
messages.

PHOTON-80/20/16 PHOTON-128/16/16 PHOTON-160/36/36 PHOTON-224/32/32 PHOTON-256/32/32

95 c/B 156 c/B 116 c/B 227 c/B 157 c/B

5 Conclusion

We proposed PHOTON, the most lightweight hash-function family known so far,
very close to the theoretical optimum. Our proposal is based on the well known
AES design strategy, but we introduced a new mixing layer building method
that perfectly fits small area scenarios. This allows us to directly leverage the
extensive work done on AES and AES-like hash functions so as to provide good
confidence in the security of our scheme. Due to page restrictions we refer to
an extended version of this paper [1] for a detailed security analysis of PHOTON.
Finally, PHOTON is not only the smallest hash function, but it also achieves excel-
lent area/throughput trade-offs and we obtained very acceptable performances
with simple software implementations.

Acknowledgement

The authors would like to thank the anonymous referees for their helpful com-
ments. Also, we are very grateful to Dag Arne Osvik and AlpCode for providing
an optimized Boolean representation of the PRESENT Sbox, to Jean-Philippe Au-
masson for providing his cube testers source code and to Christina Boura for her
help with zero-sum distinguishers.

References

1. The PHOTON Family of Lightweight Hash Functions. http://sites.google.

com/site/photonhashfunction/.

2. E. Andreeva, B. Mennink, and B. Preneel. The Parazoa Family: Generalizing the
Sponge Hash Functions. Cryptology ePrint Archive, Report 2011/028, 2011.

3. G. Avoine and P. Oechslin. A Scalable and Provably Secure Hash-Based RFID
Protocol. In PerCom Workshops, pages 110–114. IEEE Computer Society, 2005.

4. G. Bertoni, J. Daemen, M. Peeters, and G. V. Assche. Sponge functions. Ecrypt
Hash Workshop 2007, May 2007.

5. G. Bertoni, J. Daemen, M. Peeters, and G. V. Assche. On the Indifferentiability
of the Sponge Construction. In Paterson [30], pages 181–197.

6. G. Bertoni, J. Daemen, M. Peeters, and G. V. Assche. Keccak specifications.
Submission to NIST (Round 2), 2009.

7. G. Bertoni, J. Daemen, M. Peeters, and G. V. Assche. Sponge-Based Pseudo-
Random Number Generators. In S. Mangard and F.-X. Standaert, editors, CHES,
volume 6225 of LNCS, pages 33–47. Springer, 2010.

8. G. Bertoni, J. Daemen, M. Peeters, and G. V. Assche. On the security of the keyed
sponge construction. In G. Leander and S. Thomsen, editors, SKEW, 2011.

9. A. Biryukov and D. Khovratovich. Related-Key Cryptanalysis of the Full AES-192
and AES-256. In M. Matsui, editor, ASIACRYPT, volume 5912 of LNCS, pages
1–18. Springer, 2009.

10. A. Biryukov, D. Khovratovich, and I. Nikolic. Distinguisher and Related-Key
Attack on the Full AES-256. In S. Halevi, editor, CRYPTO, volume 5677 of LNCS,
pages 231–249. Springer, 2009.

11. C. Blondeau, M. Naya-Plasencia, M. Videau, and E. Zenner. Cryptanalysis of
ARMADILLO2. Cryptology ePrint Archive, Report 2011/160, 2011.

12. W. Bosma, J. Cannon, and C. Playoust. The Magma algebra system. I. The user
language. J. Symbolic Comput., 24(3-4):235–265, 1997. Computational algebra
and number theory (London, 1993).

13. G. Brassard, editor. Advances in Cryptology - CRYPTO ’89, 9th Annual Inter-
national Cryptology Conference, Santa Barbara, California, USA, August 20-24,
1989, Proceedings, volume 435 of LNCS. Springer, 1990.

14. C. D. Cannière, O. Dunkelman, and M. Knezevic. KATAN and KTANTAN - A
Family of Small and Efficient Hardware-Oriented Block Ciphers. In C. Clavier and
K. Gaj, editors, CHES, volume 5747 of LNCS, pages 272–288. Springer, 2009.

15. D. Canright. A Very Compact S-Box for AES. In J. R. Rao and B. Sunar,
editors, CHES, volume 3659 of LNCS, pages 441–455. Springer, 2005. The HDL
specification is available at the author’s official webpage http://faculty.nps.

edu/drcanrig/pub/index.html.
16. J. Daemen and V. Rijmen. The Design of Rijndael: AES - The Advanced Encryp-

tion Standard. Springer, 2002.
17. I. Damg̊ard. A Design Principle for Hash Functions. In Brassard [13], pages 416–

427.
18. M. Feldhofer and C. Rechberger. A Case Against Currently Used Hash Func-

tions in RFID Protocols. In R. Meersman, Z. Tari, and P. Herrero, editors, OTM
Workshops (1), volume 4277 of LNCS, pages 372–381. Springer, 2006.

19. T. Good and M. Benaissa. ASIC Hardware Performance. In M. J. B. Robshaw and
O. Billet, editors, The eSTREAM Finalists, volume 4986 of LNCS, pages 267–293.
Springer, 2008.

20. D. Henrici, J. Götze, and P. Müller. A Hash-based Pseudonymization Infrastruc-
ture for RFID Systems. In SecPerU, pages 22–27. IEEE Computer Society, 2006.

21. S. Hirose. Some Plausible Constructions of Double-Block-Length Hash Functions.
In M. J. B. Robshaw, editor, FSE, volume 4047 of LNCS, pages 210–225. Springer,
2006.

22. A. Juels and S. A. Weis. Authenticating Pervasive Devices with Human Protocols.
In Shoup [33], pages 293–308.

23. S.-M. Lee, Y. J. Hwang, D. H. Lee, and J. I. Lim. Efficient Authentication for
Low-Cost RFID Systems. In O. Gervasi, M. L. Gavrilova, V. Kumar, A. Laganà,
H. P. Lee, Y. Mun, D. Taniar, and C. J. K. Tan, editors, ICCSA (1), volume 3480
of LNCS, pages 619–627. Springer, 2005.

24. R. C. Merkle. One Way Hash Functions and DES. In Brassard [13], pages 428–446.
25. A. Moradi, A. Poschmann, S. Ling, C. Paar, and H. Wang. Pushing the Limits: A

Very Compact and a Threshold Implementation of the AES. In Paterson [30].
26. National Institute of Standards and Technology. FIPS 180-1: Secure Hash Stan-

dard. http://csrc.nist.gov, April 1995.
27. National Institute of Standards and Technology. FIPS 180-2: Secure Hash Stan-

dard. http://csrc.nist.gov, August 2002.
28. National Institute of Standards and Technology. Announcing Request for Can-

didate Algorithm Nominations for a NewCryptographic Hash Algorithm (SHA-3)
Family. Federal Register, 27(212):62212–62220, November 2007. Available:http://
csrc.nist.gov/groups/ST/hash/documents/FR_Notice_Nov07.pdf(2008/10/17).

29. M. O’Neill. Low-Cost SHA-1 Hash Function Architecture for RFID Tags. In
S. Dominikus and M. Aigner, editors, RFIDSec, 2008. Available via http:

//events.iaik.tugraz.at/RFIDSec08/Papers/.
30. K. G. Paterson, editor. Advances in Cryptology - EUROCRYPT 2011 - 30th Annual

International Conference on the Theory and Applications of Cryptographic Tech-
niques, Tallinn, Estonia, May 15-19, 2011. Proceedings, volume 6632 of LNCS.
Springer, 2011.

31. T. Peyrin, H. Gilbert, F. Muller, and M. J. B. Robshaw. Combining Compression
Functions and Block Cipher-Based Hash Functions. In X. Lai and K. Chen, editors,
ASIACRYPT, volume 4284 of LNCS, pages 315–331. Springer, 2006.

32. C. Rolfes, A. Poschmann, G. Leander, and C. Paar. Ultra-Lightweight Implemen-
tations for Smart Devices - Security for 1000 Gate Equivalents. In G. Grimaud and
F.-X. Standaert, editors, CARDIS, volume 5189 of LNCS, pages 89–103. Springer,
2008.

33. V. Shoup, editor. Advances in Cryptology - CRYPTO 2005: 25th Annual Inter-
national Cryptology Conference, Santa Barbara, California, USA, August 14-18,
2005, Proceedings, volume 3621 of LNCS. Springer, 2005.

34. Virtual Silicon Inc. 0.18 µm VIP Standard Cell Library Tape Out Ready, Part
Number: UMCL18G212T3, Process: UMC Logic 0.18 µm Generic II Technology:
0.18µm, July 2004.

35. X. Wang, Y. L. Yin, and H. Yu. Finding Collisions in the Full SHA-1. In Shoup
[33], pages 17–36.

36. X. Wang and H. Yu. How to Break MD5 and Other Hash Functions. In EURO-
CRYPT, pages 19–35, 2005.

37. X. Wang, H. Yu, and Y. L. Yin. Efficient Collision Search Attacks on SHA-0. In
Shoup [33], pages 1–16.

38. S. Zhilyaev. Evaluating a new MAC for current and next genera-
tion RFID. Master’s thesis, University of Massachusetts Amherst, 2010,
available via http://scholarworks.umass.edu/cgi/viewcontent.cgi?article=

1477&context=theses.

