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Abstract. At CHES 2010, the new block cipher PRINTcipher was
presented as a light-weight encryption solution for printable circuits [15].
The best attack to date is a differential attack [1] that breaks less than
half of the rounds. In this paper, we will present a new attack called
invariant subspace attack that breaks the full cipher for a significant
fraction of its keys. This attack can be seen as a weak-key variant of a
statistical saturation attack. For such weak keys, a chosen plaintext dis-
tinguishing attack can be mounted in unit time. In addition to breaking
PRINTcipher, the new attack also gives us new insights into other, more
well-established attacks. We derive a truncated differential characteris-
tic with a round-independent but highly key-dependent probability. In
addition, we also show that for weak keys, strongly biased linear approx-
imations exists for any number of rounds. In this sense, PRINTcipher
behaves very differently to what is usually – often implicitly – assumed.
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1 Introduction

Block ciphers are often said to be amongst the best understood subjects in the
area of symmetric cryptography. Compared to – for example – stream ciphers
and hash functions, the design of a secure block cipher is probably more straight-
forward. However, designing a secure block cipher that is at the same time very
efficient is still challenging.

Incidentally, most recent block cipher proposals aim for the area of light-
weight cryptography [3,5,13]. Light-weight cryptography provides building blocks
for secure communication on extremely constrained devices. The constraints
are mainly cost driven and result in highly limited computing power, chip area
and/or power supply. It is an ongoing competition to design the most efficient
block cipher for such devices. This competition resulted in more and more ag-
gressive designs that often show two characteristics: (1) Innovative techniques
are used to improve upon known ciphers, often leading to less standard and thus
less well-understood designs. (2) The security margins that block ciphers are



traditionally equipped with are reduced as much as possible in order to optimize
the cipher performance.

Unsurprisingly, this has led to a number of attacks against these newer de-
signs [4,7,11]. In addition to constituting a break of the light-weight cipher in
question, these attacks sometimes also have an additional quality: They improve
our understanding of block ciphers in general. Note that an attack that breaks
a light-weight cipher may be prevented by a conventional block cipher not by
design, but by accident: Even though the attack was not even known by the time
of designing the cipher, it may not pose a threat to the cipher simply because
of the security margin.

In the following, we will present such a new attack called invariant subspace
attack that breaks the block cipher PRINTcipher [15] proposed at CHES 2010.
The best currently known analysis of PRINTcipher is a differential-style attack
presented at FSE 2011 [1] that could be applied for less than half the rounds of
PRINTcipher, making use of the full code book. Apart from breaking PRINTci-

pher and providing us with a new tool for attacking block ciphers, the invariant
subspace attack also displays interesting relationships to other well-established
attack techniques that increase our understanding of block cipher cryptanalysis
in general.

1.1 Our Contribution

In this paper, detailed in Section 2.2, we present a new attack on PRINTcipher.
In a nutshell, the attack is based on the observation that for PRINTcipher there
exist cosets of subspaces of Fn2 that the round function maps to cosets of the
same subspace. The exact coset is determined by the round key only. Now, if the
round key is such that a coset gets mapped to itself, the fact that all round keys
are identical in PRINTcipher (almost) immediately leads to the conclusion that
for certain (weak) keys some affine subspaces are invariant under encryption.
The round constants, mainly introduced to avoid slide attacks, do not prevent
the attack as the round constants are included in the subspace. The principle of
the attack is described in Section 2.1.

More particular, using this new attack technique, which we call (for obvious
reasons) invariant subspace attack, we demonstrate the existence of 252 weak
keys (out of 280) for PRINTcipher-48 and 2102 weak keys (out of 2160) for
PRINTcipher-96. If a key is weak, our attack results in a distinguisher using
less than 5 chosen plain- or ciphertexts. That is, even in the case of RFID-tags,
where the amount of data available for a practical attack is strictly limited,
our attacks apply. In a known plain- or ciphertext scenario the data complexity
increases by a factor of 216 (PRINTcipher-48) resp. 232 (PRINTcipher-96).

Besides the low data complexity of the distinguisher, the attack technique
has interesting relations to more established attacks which we like to highlight.
Firstly, see Section 3, the invariant subspace attack implies a truncated differ-
ential attack, where the probability of the truncated differential characteristic is
highly key-dependent. For a weak key, this probability is 2−16, independent of



the number of rounds – while for a non-weak key the probability is zero for any
number of rounds greater or equal to two.

Secondly, the invariant subspace attack can be interpreted as a statistical
saturation attack [7,8]. Here a weak key, together with a special choice of the
fixed bits in a statistical saturation attack, leads to a maximal bias, independent
of the number of rounds. Taking into account the close relation of statistical
saturation attacks to multi-dimensional linear attacks, we show that the invariant
subspace attack implies the existence of strongly biased linear approximations
for weak keys, again independent of the number of rounds. Details can be found
in Section 4.

It follows in particular that PRINTcipher is an example of a non-toy cipher
where attacks do not behave as we usually expect them to. The probability of
truncated differential characteristics, the bias for statistical saturation attacks,
and the bias of linear hulls are extremely key-dependent. For a weak key, in-
creasing the number of rounds up to the full number of rounds does not increase
the security of the cipher with respect to these attacks.

1.2 Related Work

As already mentioned in the abstract, our attack can be seen as a weak key
variant of statistical saturation attacks [7,8]. As the statistical saturation attack
itself is a special case of partitioning cryptanalysis [12], so is our attack. Again,
the main difference is that we make use of weak keys and for those keys the bias
is maximal. More loosely our work is related to conditional cryptanalysis [2,14]
in the sense that the truncated differential characteristic described in Section 3
is conditioned to certain key and message bits. Moreover, our attack can also be
interpreted as an extreme case of a dynamic cube attack [11]. Here, the algebraic
normal form of certain ciphertext bits becomes a constant when a weak key is
used and certain message bits are fixed correctly.

2 The Invariant Subspace Attack

2.1 General Idea

Consider an n-bit block cipher with a round function Ek consisting of a key
addition and an SP-layer

E : Fn2 → Fn2 ,

that is Ek is defined by Ek(x) = E(x + k). Assume that the SP-layer E is
such that there exists a subspace U ⊆ Fn2 and two constants c, d ∈ Fn2 with the
property:

E(U + c) = U + d.

Then, given a (round) key k = u+ c+ d with u ∈ U , the following holds:

Ek(U + d) = E((U + d) + (u+ c+ d)) = E(U + c) = U + d,



i.e. the round function maps the affine subspace U + d onto itself. If all round
keys are in k ∈ U + (c + d) (in particular if a constant round key is used),
then this property is iterative over an arbitrary number of rounds. This yields
a very efficient distinguisher for a fraction of the keys. U should be as large as
possible to increase this fraction. We call this new attack technique an invariant
subspace attack. In the next section we show an example of how to apply it to
the light-weight block cipher PRINTcipher.

2.2 Attack against PRINTcipher

Description of PRINTcipher PRINTcipher is a block cipher proposed by
Knudsen et al. at CHES 2010 [15]. It is a class of two SP-networks with a block
size of n = 48 (resp. n = 96) bits, a key size of l = 80 (resp. l = 160) bit, and 48
(resp. 96) rounds. One round of PRINTcipher-48 is shown in Figure 1.
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Fig. 1. One round of PRINTcipher-48 illustrating the bit-mapping between the 16
3-bit S-boxes from one round to the next. sk1 denotes the xor key, p the permutation
key, and RCi the round counter.

PRINTcipher uses the same key for all rounds. It is split into two parts:
The first n bits are used as an xor key, the remaining l − n bits control the
permutations p. In order to introduce differences between the rounds, a round
counter RCi is used which is generated by an LFSR (for details, see [15]). The
other elements of the round function are defined as follows.

The linear layer consists of a bit permutation, where bit i of the current
state is moved to bit position P (i) where

P (i) =

{
3i mod n− 1 for 0 ≤ i ≤ n− 2,
n− 1 for i = n− 1,

where n ∈ {48, 96} is the block size.
Then the state bits are arranged in 16 (resp. 32) blocks of 3 bits each, which

are permuted individually in the permutation layer. Out of 6 possible permu-
tations on 3 bits, only four are valid permutations for PRINTcipher. Specifically,



the three input bits c2||c1||c0 are permuted to give the following output bits ac-
cording to two key bits a1||a0.

nr. a1||a0 p
0 00 c2||c1||c0
1 01 c1||c2||c0
2 10 c2||c0||c1
3 11 c0||c1||c2

Finally, in the non-linear layer, each 3-bit block is processed by the same
s-box, which is shown in the following table.

x 0 1 2 3 4 5 6 7

S[x] 0 1 3 6 7 4 5 2

An Attack on PRINTcipher One interesting property of the PRINTcipher

s-box is that a one bit difference in the input causes a one bit difference in the
same bit in the output with probability 2/8. That is, there exists exactly one
pair for each one bit input difference resulting in a one bit output difference (at
the same position). More precisely, denoting by ∗ an arbitrary value in F2, the
following holds for the PRINTcipher s-box:

S(000) = 000
S(001) = 001

⇔ S(00*) = 00*

S(100) = 111
S(110) = 101

⇔ S(1*0) = 1*1

S(011) = 110
S(111) = 010

⇔ S(*11) = *10

In addition, there exists a subset of s-boxes such that (1) two output bits of
those s-boxes map onto two input bits of the same s-boxes in the next round
and (2) the round-dependent RCi is not involved (see Figure 2).
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Fig. 2. A subset of PRINTcipher-48 s-boxes mapping onto itself.

Now consider an xor-key sk1 of the form



Xor key = 01* *11 *** *** 01* *11 *** *** 01* *11 *** *** 01* *11 *** ***,

and a permutation key with the following restrictions:

Perm. key = 0* 11 ** ** 10 01 ** ** 11 *0 ** ** *0 11 ** **,

where again ∗ denotes an arbitrary value in F2. For those keys the following
structural iterative one round property holds:

Start 00* *10 *** *** 00* *10 *** *** 00* *10 *** *** 00* *10 *** ***
Key xoring 01* *01 *** *** 01* *01 *** *** 01* *01 *** *** 01* *01 *** ***
Lin. layer 00* 11* *** *** 0*0 1*1 *** *** *00 *11 *** *** 00* 11* *** ***
RC 00* 11* *** *** 0*0 1*1 *** *** *00 *11 *** *** 00* 11* *** ***
Perm. layer 00* *11 *** *** 00* *11 *** *** 00* *11 *** *** 00* *11 *** ***
S-box layer 00* *10 *** *** 00* *10 *** *** 00* *10 *** *** 00* *10 *** ***

This property holds with probability one if both keys are of the above form.
The fraction of those keys is (1/2)16 for the XOR key and (1/2)13 for the per-
mutation key, meaning that the property is met for a fraction of (1/2)29 of all
keys. In other words, there exist 251 weak keys of this form.

Thus, one can very efficiently check if a key of the above form is used by
encrypting a few texts of the above form and check if the ciphertext is again
of the same form. Given that the probability for false positives is ≈ 2−16, trial
encrypting just a handful of selected plaintexts will uniquely identify such a weak
key. If such a key is found, we do of course immediately have a distinguisher on
PRINTcipher.

Invariant Subspace Description: Let us briefly rephrase the attack in terms
of an invariant subspace attack. For this we fix a permutation key of the above
form. Remember that the inner state at the beginning and the end of each round
was

Start = 00* *10 *** *** 00* *10 *** *** 00* *10 *** *** 00* *10 *** ***.

This means that the relevant subspace U ⊂ F48
2 is defined by

U = {00* *00 *** *** 00* *00 *** *** 00* *00 *** *** 00* *00 *** ***},
(1)

and that the affine subspace is defined by any fixed vector d of the form

d = 00* *10 *** *** 00* *10 *** *** 00* *10 *** *** 00* *10 *** ***. (2)

Then for any fixed vector c of the form

c = 01* *01 *** *** 01* *01 *** *** 01* *01 *** *** 01* *01 *** ***, (3)

and any xor-key k ∈ (U + c+d), the round function does indeed map U +d onto
itself.



2.3 Other Attack Profiles

In the following we describe other sets of weak keys for PRINTcipher-48 and
similar ones for PRINTcipher-96.

Other weak keys for PRINTcipher-48 As it turns out, there are some more
invariant subspaces that also can be used for PRINTcipher-48. They are all of
the form

00* XXX *** 1*1 00* *10 *** *** 00* XXX *** 1*1 00* *10 *** ***,

where an ’X’ marks a bit position where the attacker has to make an arbitrary
assignment. Note that each position can be filled independently of the others.
Thus, we have 26 possible plaintexts that we can work with, each of which targets
another class of weak keys.

For each such assignment, the cipher behaves as follows:

Start (1) 00* XXX *** 1*1 00* *10 *** *** 00* XXX *** 1*1 00* *10 *** ***
Key xoring (2) 0X* X01 *** X*1 01* *0X *** *** 0X* 001 *** X*X 01* *0X *** ***
Lin. layer (3) 00* XXX *** X*X 0*0 1*1 *** *** *00 XXX *** 10* 00* 11* *** ***
RC (4) 00* XXX *** X*X 0*0 1*1 *** *** *00 XXX *** 10* 00* 11* *** ***
Perm. layer (5) 00* XXX *** 1*0 00* *11 *** *** 00* XXX *** 1*0 00* *11 *** ***
S-box layer (6) 00* XXX *** 1*1 00* *10 *** *** 00* XXX *** 1*1 00* *10 *** ***

The behaviour is best understood by traversing the cipher in the inverse
direction, i.e. by starting from the end and then finding the key bits that ensure
that all fixed bits in line (1) match their counterparts in line (6).

Let us start with the output of the s-box, i.e. line (6), and let the bit positions
marked by ’X’ be arbitrarily and independently fixed to either 0 or 1. Then going
backwards through the s-box uniquely determines the bits in line (5). We then
use a permutation key of the form

Perm. Key = 0* ** ** (00 or 11) 10 01 ** ** 11 ** ** 10 0* 11 ** **

to obtain line (4), noting that 2−13 of all permutation keys meet this property.
We then apply round counter and linear layer to obtain line (2). Now note that
line (2) contains 22 bits that are fixed and that have to match the corresponding
bits in line (1). Thus, 22 key bits of the xoring key are determined, meaning that
2−22 of all xoring keys are suitable for the attack.

Summing up, for each of the 26 possible assignments to the bits marked by
’X’ in line (1) or (6), a fraction of exactly 2−35 keys are weak, meaning that in
total, we have found another fraction of 2−29 weak keys that can be attacked by
the above technique.

Analysis of PRINTcipher-96 As it turns out, the same attack can also be
applied to PRINTcipher-96. Again, there are two types of weak keys. The first
type is based on 32 active bits and is met by a fraction of 2−59 of all keys. The
second type is based on 44 active bits and has an additional 12 freely chosable
input bits. Each of the resulting 212 inputs targets a fraction of 2−71 keys,
meaning that this group, too, contains a fraction of 2−59 weak keys in total. The
active bits for these weak keys are given in Table 1.



Subset 1 Active input bits for linear layer:
(0 1) (4 5) (12 13) (16 17) (24 25) (28 29) (36 37) (40 41)
(48 49) (52 53) (60 61) (64 65) (72 73) (76 77) (84 85) (88 89)
Active output bits for linear layer:
(0 2) (3 5) (12 13) (15 16) (25 26) (28 29) (36 38) (39 41)
(48 49) (51 52) (61 62) (64 65) (72 74) (75 77) (84 85) (87 88)

Subset 2 Active input bits for linear layer:
(0 1) (3 4 5) (9 11) (12 13) (16 17) (24 25) (27 28 29)
(33 35) (36 37) (40 41) (48 49) (51 52 53) (57 59) (60 61)
(64 65) (72 73) (75 76 77) (81 83) (84 85) (88 89)
Active output bits for linear layer:
(0 2) (3 4 5) (9 10) (12 13) (15 16) (25 26) (27 28 29)
(33 35) (36 38) (39 41) (48 49) (51 52 53) (58 59) (61 62)
(64 65) (72 74) (75 76 77) (81 82) (84 85) (87 88)

Table 1. Subsets of active bits for PRINTcipher-96, grouped according to s-boxes

2.4 Protecting Against the Attack

The above attack against PRINTcipher is a special case of the general attack
described in the beginning of the section, since the subspace is described by
simply fixing some of its bits. In theory, describing the subspace by a set of linear
equations is possible, opening for a wide range of attacks. The full potential of
this generalized attack is yet to be determined.

As for the special case used against PRINTcipher, it is relatively easy to
protect the design against the attack. Note that the list of attack profiles by
fixing bits given here is complete, and that all attack profiles fix two of the bits
39-41 (PRINTcipher-48) resp. 87-89 (PRINTcipher-96). Thus, it would suffice
to spread the round counter over the last three s-boxes, e.g. by assigning two
counter bits to each s-box. This would destroy the only attack profiles available,
at no extra hardware cost.

We also analysed the block cipher NOEKEON, which was proposed by Dae-
men et al. in 2000 [9]. NOEKEON is a 16-round block cipher with a constant
round key, making it a particularly tempting target for the attack. However,
as it turns out, the linear mixing layer of NOEKEON is much more resistant
against the above type of attack. Here, the stronger round function (necessary
for a cipher with only 16 rounds) works to the advantage of the cipher. As it
turns out, even if there was no round counter involved in NOEKEON, the sim-
ple attack described above – i.e. where the subspace is defined by fixing certain
bits – could not be applied. Whether or not the generalized attack has a better
chance of succeeding remains yet to be determined.

3 Truncated Differential Attacks

As pointed out by Murphy in [18] the attack complexity for linear attacks is
often wrongly stated in the literature. One of the reasons is that it is often easy



to compute the average squared bias ε2 when averaging over all keys. However, it
is often stated that the average attack complexity is γ

ε2 for some small γ, which,
in general, is wrong. In particular, the average complexity is formally infinite as
soon as there exists a single key with no bias, while γ

ε2 is finite as soon as there
exists a single key with a bias.

Now, to some extent the same is true for (truncated) differential attacks. A
truncated differential characteristic on an n-bit block cipher can be, in general,
described by a set of input and output differences. For 0 ≤ i ≤ r let Ui ⊂ Fn2
and

Ui
Ei→ Ui+1

be a set of differential characteristics with probability pi.

Assuming independent round keys the average probability, taken over all
keys, of the truncated r-round differential characteristic

U0
E0→ U1

E1→ · · · Er−1→ Ur

is p =
∏
i pi. One normally assumes (cf. the hypothesis of stochastic equivalence

in [16]) that for (almost) all keys it holds that pk ≈ p. Here pk denotes the
probability of the truncated differential characteristic for a fixed key k.

However, this may be highly incorrect. Indeed PRINTcipher is an example of
the extreme opposite. We will show below that for PRINTcipher, the attack dis-
cussed in Section 2 implies the existence of a truncated differential characteristic
such that

pk ∈ {2−16, 0},

for any number of rounds r ≥ 2. Since a fraction of 2−29 of all keys is weak, the
average probability over all keys is

pav = 2−16 · 2−29 = 2−45,

again noting that this holds for any number r ≥ 2 of rounds. After introducing
the invariant subspace attack, the existence of such truncated differential charac-
teristics might not be so surprising, as one basically pays the price for following
the characteristic only once. That is to say that pairs that follow the charac-
teristic for two rounds automatically follow the characteristic for any number of
rounds.

However, this disproves the naive assumption where multiplying the proba-
bilities for the individual rounds yields an average attack complexity that tends
to zero for an increasing number of rounds. Thus, not only is the assumption
that all keys behave more or less similar wrong. Also, the assumption that the
round keys are independent leads to a very wrong conclusion. Concluding this
part, studying the average complexity does not reveal the actual behavior of
PRINTcipher. On the contrary, PRINTcipher behaves completely opposite to
what is usually assumed.



3.1 Rephrasing the Attack in Terms of Truncated Differentials

In this section, we will prove the above claims. To make the description easier,
consider a PRINTcipher-48 version where we fix the permutation key to

00 11 00 00 10 01 00 00 11 00 00 00 00 11 00 00

One round of PRINTcipher with this key is given in Figure 3. Other weak
permutation keys behave similarly.

xor sk1

xor RCi

S S S S S S S S S S S S S S S S

Fig. 3. One round of PRINTcipher with fixed permutation key. Only the bits that
matter for the differential characteristic are shown in the linear layer

Now, consider an r-round truncated differential characteristic1 of the form

α
Ek→ U ′

Ek→ U . . . U
Ek→ U, (4)

where α is given by

α = 000 100 011 101 000 100 001 100 000 000 001 110 001 000 101 110,

and U ′ contains all vectors of the form

U ′ = {001 100 **1 1** 001 100 **1 1** 001 100 **1 1** 001 100 **1 1**}.

Finally, as in Section 2, U is defined by

U = {00* *00 *** *** 00* *00 *** *** 00* *00 *** *** 00* *00 *** ***}.

Note that α ∈ U ′ ⊂ U . Given these definitions, we can prove the following
theorem:

1 We emphasize that we deal with truncated differential characteristics and not with
truncated differentials. In particular, for the characteristic we are using, for the
corresponding differential one can expect a probability of 2−16 even for a random
round function.



Theorem 1. For a fixed (xor)-key k , denote the probability of the truncated
differential characteristic given by Equation (4) by pk. It holds that

pk =

{
2−16 if k is weak

0 if k is not weak

Here a (xor)-key k is weak if and only if it is of the form

k = 01* *11 *** *** 01* *11 *** *** 01* *11 *** *** 01* *11 *** ***.

The idea behind this theorem is similar to results from [10]. Before we prove
this result, we have to introduce some notation similar to that in [10]. Given a
round function E : Fn2 → Fn2 excluding the initial key addition and two subsets
A,B ⊆ Fn2 we denote by

F(A,B) = {x | E(x) + E(x+ α) = β, α ∈ A, β ∈ B}

the set of input pairs satisfying the truncated differential A
Ek→ B.

As observed in [10] in many cases F (A,B) is a coset of a subspace. This is
also the case here. More precisely, we have the following lemma.

Lemma 1. Let E be the round function of PRINTcipher excluding the inital
key addition, α, U ′ and U as defined above. Then

F({α},U ′) = F(U ′,U) = U + c,

where c is defined as in Equation (3).

Proof. This can be seen from Table 2, where it is shown how the differences
propagate through the round functions. ut

Input 1st Rnd. 000 100 011 101 000 100 001 100 000 000 001 110 001 000 101 110
After P-layer 001 001 001 100 010 010 001 100 100 100 001 100 001 001 001 100
After perm.key 001 100 001 100 001 100 001 100 001 100 001 100 001 100 001 100
S-box layer 001 100 **1 1** 001 100 **1 1** 001 100 **1 1** 001 100 **1 1**

Input 2st Rnd. 001 100 **1 1** 001 100 **1 1** 001 100 **1 1** 001 100 **1 1**
After P-layer 001 001 1** 1** 010 010 **1 **1 100 100 *1* *1* 001 001 1** 1**
After perm.key 001 100 1** 1** 001 100 **1 **1 001 100 *1* *1* 001 100 1** 1**
S-box layer 00* *00 *** *** 00* *00 *** *** 00* *00 *** *** 00* *00 *** ***

Input 3rd Rnd. 00* *00 *** *** 00* *00 *** *** 00* *00 *** *** 00* *00 *** ***
After P-layer 00* 00* *** *** 0*0 0*0 *** *** *00 *00 *** *** 00* 00* *** ***
After perm.key 00* *00 *** *** 00* *00 *** *** 00* *00 *** *** 00* *00 *** ***
S-box layer 00* *00 *** *** 00* *00 *** *** 00* *00 *** *** 00* *00 *** ***

Table 2. This table shows how the differences of the truncated differential characteristic from Section
3 propagate through the round functions. The underlined values are the only positions where the
difference propagation has a probability not equal to 1. That is, only those positions pose restrictions
on the pairs satisfying the characteristic.

Now to prove Theorem 1, from the invariant subspace attack on PRINTci-

pher, as discussed in Section 2.2, we know that E(U + c) = U + d. It follows
that for the good pairs for

α
Ek→ U ′

Ek→ U



the inputs to the second round are given by

(U + d+ k) ∩ (U + c) =

{
U + c if k ∈ U + d+ c
∅ if k 6= U + d+ c

This already proves that for a non-weak key the probability of the truncated
differential characteristic given in the above theorem is 0. For a weak key it
holds that Ek(U + d) = U + d and therefore, for any x in Fa,b + k = U + d the
pair (x, x+α) fullfils the whole r round truncated differential characteristic. ut

4 Statistical Saturation Attacks and Multidimensional
Linear Attacks

The attack on PRINTcipher discussed in Section 2.2 is clearly strongly related
to statistical saturation attacks as described in [7]. In this section, after briefly
recalling some of the principles of statistical saturation attacks, we elaborate on
the details of this relation. Maybe the most interesting finding here is that for
PRINTcipher there exist strongly biased linear approximations for any num-
ber of rounds, if the key is weak in the sense of the invariant subspace attack.
This result follows using a link between statistical saturation attacks and multi-
dimensional linear attacks (see [17]). Understanding these strongly biased linear
approximations by studying the linear hulls directly is an interesting problem
that we leave open for further investigation.

4.1 Necessary Background Information

Notations The canonical inner product on Fn2 is denoted by 〈·, ·〉, i.e.

〈(a0, . . . , an−1), (b0, . . . , bn−1)〉 :=

n−1∑
i=0

aibi.

We note that all linear forms, i.e. all linear functions l : Fn2 → F2, can be
described as `(x) = 〈a, x〉 for a suitable a ∈ Fn2 . Given a (vectorial Boolean)
function F : Fn2 → Fm2 the Fourier coefficient of F at the pair (a, b) ∈ Fn2 ×Fm2
is defined by

F̂ (a, b) =
∑
x∈Fn

2

(−1)〈b,F (x)〉+〈a,x〉.

The bias εF (a, b) of the linear approximation 〈a, x〉 of 〈b, F (x)〉 is defined as

εF (a, b) :=
|{x | 〈b, F (x)〉+ 〈a, x〉 = 0}|

2n
− 1

2
.

The fundamental relation between the Fourier transformation of F and the bias
of a linear approximation is given by

εF (a, b) =
F̂ (a, b)

2n+1
(5)



Given F : Fn2 → Fm2 , the value used to determine the complexity of both mul-
tidimensional linear attacks and statistical saturation attacks is the capacity of
F given by

Cap(F ) =
∑
z∈Fm

2

(2−n · |{x ∈ Fn2 | F (x) = z}| − 2−m)
2

2−m
.

Statistical Saturation Attacks Let us first briefly recall some concepts from
statistical saturation attacks. We refer to [7] for details. Given an encryption
function

e : Fn2 → Fn2 ,

statistical saturation attacks study the distribution of e when some of its input
bits are fixed. Up to a fixed bijective linear transformation before and after the
cipher, we can restrict ourselves without loss of generality to the case where
one fixes the first r bits in the inputs and considers only the first t bits of the
output2. Thus we write

e : Fr2×Fs2 → Ft2×Fu2
e(y, x) =

(
e(1)(y, x), e(2)(y, x)

)
,

where r + s = t+ u = n and e(1)(y, x) ∈ Ft2, e(2)(y, x) ∈ Fu2 . For convenience we
denote by hy the restriction of e by fixing the first r bits to y and considering
only the first t bits of the output, that is

hy : Fs2 → Ft2
hy(x) = e(1)(y, x).

In a statistical saturation attack one considers the capacity of hy, and the attack
complexity is usually a constant times 1/Cap(hy). Computing this capacity
is difficult in general. However, when averaging over all possible fixings y the
following has been proven in [17]:

Theorem 2. The average capacity in statistical saturation attacks where the
average is taken over all possible fixations y is given by

Cap(hy) = 2−r
∑
y∈Fr

2

Cap(hy) = 2−2n
∑

a∈Fr2 ×{0}
b∈Ft2 ×{0},b 6=0

(ê(a, b))
2

(6)

4.2 On the Choice of the Values of the Fixed Bits

We now focus on the case where r = t, that is the number of fixed bits is the
same as the number of bits considered at the output.

2 This differs slightly from the notation in [17]



Assume a cipher is vulnerable to an invariant subspace attack. As for statis-
tical saturation attacks, up to a fixed bijective linear transformation before and
after the cipher, we can assume that, for a weak key, the affine subspace of the
form {d} × Fs2 is mapped to an affine subspace of the form {d} × Fs2. It then
follows immediately that (for a weak key) the function of the restriction hy for
y = d is a constant, more precisely

hd(x) = e(1)(d, x) = d.

For the special choice of the values of the fixed bits the capacity is maximal.
Hence for a weak key this special fixing of the bits leads to an optimal statistical
saturation attack. Note that Theorem 2 does not reveal the existence of such
extreme cases, as it only considers the average capacity of the restrictions.

While in an invariant subspace attack, given the subspace, the choice of the
coset is crucial, for statistical saturation attacks the fixed bits are usually as-
signed with random values. As the invariant subspace attack on PRINTcipher

does not imply that PRINTcipher is in general vulnerable to a statistical sat-
uration attack, it does not come as a surprise that the experiments in [15] did
not reveal any weakness of PRINTcipher with respect to those attacks.

4.3 On the Existence of Highly Biased Approximations

Theorem 2 was used to compute the average capacity using the Fourier coeffi-
cients. However, for us, the reciprocal is of interest as it implies the following
corollary.

Corollary 1. Assume an n-bit block cipher Ek is vulnerable to an invariant
subspace attack, that is there exist a subspace U , a constant d and keys k such
that

Ek(U + d) = U + d.

Then, for those keys, there exist linear approximations with a bias ε such that

ε ≥ 2dim(U)−n−1 − 22(dim(U)−n)−1.

Proof. With the notation as in Section 4.2, hd is a constant function. Thus
Cap(hd) = 2r − 1 and furthermore∑

y∈Fr
2

Cap(hy) ≥ Cap(hd) = 2r − 1.

Considering Equation (6) it follows that∑
a∈Fr2 ×{0}

b∈Ft2 ×{0},b 6=0

(ê(a, b))
2 ≥ 22n(1− 2−r)



Lower bounding the maximal value by the average (and recalling that r = t),
we compute

max
a,b6=0

(ê(a, b))
2 ≥ 2−2r

∑
a∈Fr2 ×{0}

b∈Ft2 ×{0},b 6=0

(ê(a, b))
2 ≥ 22n−2r(1− 2−r)

Thus there exists at least one Fourier coefficient such that

|ê(a, b)| ≥ 2n−r
√

1− 2−r ≥ 2n−r − 2n−2r

Applying identity (5) and remembering that r = n−dimU , the theorem follows.
ut

Clearly, this Theorem is only interesting for the case where dim(U) > n/2 as
the existence of the stated approximations otherwise is trivial. For the case of
PRINTcipher-48 we summarize the findings below

Corollary 2. Given a weak key for any round r ≤ 48 there exists at least one
linear approximation for PRINTcipher-48 with bias at least 2−17 − 2−33.

5 Conclusions

We have presented a new attack against iterative block ciphers named invariant
subspace attack and demonstrated its validity by breaking PRINTcipher for a
significant fraction of its keys. The presented invariant subspace attack shows
that 252 keys (out of 280) for PRINTcipher-48 and 2102 keys (out of 2160) for
PRINTcipher-96 are weak. In addition, we have shown the relationship of the
invariant subspace attack to other classes of attacks such as truncated differ-
ential attack, multi-dimentional attack linear attack and statistical saturation
attack. In doing this, we could provide an example for a truncated differential
attack whose success probability is round-independent, disproving the common
implicit assumptions that the total success probability is the product of the in-
dividual round probabilities and that the overall success probability against a
cipher can be averaged over all keys. The probability of this truncated differential
characteristic is 2−16 for weak keys and zero for non-weak keys given that the
number of rounds is greater than or equal to two. Moreover, for PRINTcipher

there are strongly biased linear approximations for any number of rounds, if a
weak key is chosen. For example, there is at least one linear approximation for
PRINTcipher-48 with bias at least 2−17.

Open questions and future work: The attack presented against PRINTcipher is
a special case of the general invariant subspace attack. It should be evaluated
whether the generalised attack provides even better results against PRINTcipher

and other potentially vulnerable ciphers. Hence, the possibility of extending
the presented distinguishing attack on weak keys classes into a key recovery
attack is an open problem that needs to be further analysed. Understanding



the strongly biased linear approximations by studying the linear hulls directly
is another interesting open problem. We believe that it will increase our general
understanding of linear hulls and how (very simple) key scheduling algorithms
influence the distribution of biases.
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