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Abstract. Rebound attacks are a state-of-the-art analysis method for
hash functions. These cryptanalysis methods are based on a well chosen
differential path and have been applied to several hash functions from the
SHA-3 competition, providing the best known analysis in these cases. In
this paper we study rebound attacks in detail and find for a large number
of cases that the complexities of existing attacks can be improved.

This is done by identifying problems that optimally adapt to the crypt-
analytic situation, and by using better algorithms to find solutions for
the differential path. Our improvements affect one particular operation
that appears in most rebound attacks and which is often the bottleneck
of the attacks. This operation, which varies depending on the attack, can
be roughly described as merging large lists. As a result, we introduce new
general purpose algorithms for enabling further rebound analysis to be
as performant as possible. We illustrate our new algorithms on real hash
functions.

Keywords: hash functions, SHA-3 competition, rebound attacks, algo-
rithms

1 Introduction

The rebound attack is a recent technique introduced in [13] by Mendel et al. Tt
was conceived to analyze AES-like hash functions (like Grgstl [7] in [14, 8, 16],
Echo [2] in [14,8,18], Whirlpool [1] in [11]). A rebound attack is composed of
two parts: the inbound phase and the outbound phase. The aim of the inbound
phase is to find, at a low cost, a large number of pairs of values that satisfy a part
of a differential path that would be very expensive to satisfy in a probabilistic
way. The outbound phase then uses these values to perform an attack.

This technique has been applied to other algorithms with inner permutations
which are not AES-like; for instance it has been applied to JH [21] (reduced to
22 rounds) in [17] and Luffa [4] (reduced to 7 rounds) in [10]; both of those hash
functions use Sboxes of size 4 x 4 and have a linear part in which the mixing is
done in a very different way than in the AES. The hash function LANE [9], which
includes several AES states, each treated by the AES round transformation, and
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a different transformation for mixing these states has also been analysed in [12,
22] using rebound attacks.

In these cryptanalysis results, the rebound attack technique needs to be re-

fined and adapted to each case, but all of them follow the same scheme: first find
a differential path, then find solutions verifying this differential path. This paper
focuses on optimizing the latter part. In all the previously mentioned cryptanal-
ysis, that part involves enumerating, from a very large set of possible candidates
represented as a cross product of lists, all those that verify a given relation. We
call this operation “merging” the lists. The merging problem can be described
more formally as follows.
Merging problem with respect to t: Let t be a Boolean function taking N k-bit
words as input, i.e. ¢t : ({0,1}*)¥ — {0,1}. Let Ly,...,Ly be N given lists
of k-bit words drawn uniformly and independently at random from {0, 1}*. We
assume that the probability over all N-tuples X in Ly x ... x Ly that ¢(X) =1
is P;. For any given function ¢ and any given N-tuple of lists (L1,...,Ly) the
merging problem consists in finding the list L4, of all X € Ly x ... X Ly sat-
isfying ¢t(X) = 1. We call this operation merging the lists Lq,..., Ly to obtain
£sol-

It is assumed that the image of a given input under ¢ can be easily computed.
In the following, the size of a list L is denoted by |L|. A brute force method for
solving this problem therefore consists in enumerating all the |Li|x...x|Ly| in-
puts, in computing ¢ on all of them and in keeping the ones verifying ¢ = 1. Note
that, in the lack of any additional information on ¢, it is theoretically impossible
to do better. However, in practice, the function ¢ often has a set of properties
which can be exploited to optimize this approach. We aim at reducing the num-
ber of candidates which have to be examined, in some cases by a preliminary
sieving similar to the one used in [5]. This paper presents such optimization
techniques, that, when applied to most of the rebound attacks published on
the SHA-3 candidates, yield significant improvements in the overall time and/or
memory complexities of the attack, as shown on Table 1. In this table we can
see that we have considered the best existing attacks against four hash functions
and the best rebound attack on a fifth (two of them are finalists and two are
second-round candidates of the SHA-3 competition), where by best attack we
denote the one on the highest number of rounds. We have been able to improve
their complexities by scrutinizing the original attack and finding a more efficient
algorithm for obtaining the solutions for the differential path. Most of the time
the improvement relies on a better merging of the lists, and sometimes it is due
to the use of more adequate conditions in the general algorithm. Let us recall
here that the aim is to find all the N-tuples that verify ¢ = 1 for a complex
function ¢, which is significantly different from finding just one (or few) of them
for a linear ¢ such as in [20, 19, 6, 3]. As in the previous rebound analysis, we will
work throughout the paper with average values in the probabilistic cases.

In Section 2, we define Problem 1 that corresponds to functions ¢ with a
particular form, and we propose three generic algorithms to solve it. These 3
algorithms have different optimal scenarios. Some examples of applications are



given. In Section 3 we define Problem 2 and propose the stop-in-the-middle al-
gorithms for solving it. We also present two concrete algorithms in this family
applied to the scenarios of ECHO and LANE. In Section 4 we show briefly how
applying these algorithms combined with an appropriate definition and decom-
position of the problem in each case, allows us to improve the complexities of
the best known rebound attacks on 5 SHA-3 candidates. Besides the results in

Table 1. Improvements on best known attacks. The highlighted values are the im-
proved complexities. For Luffa we consider the best known rebound attack where the
complexities presented in the second row have already been obtained in [10] by a ded-
icated algorithm similar to our general approach.

e . SHA3 . e Rounds Previous This paper

‘ Hash function Round ‘ Best Known Analysis / total | Time Memory Ref. ‘ Time Memory
JH Final semi-free-start coll. 16 /42 | 2'%° 2104 [17) 297 297
JH semi-free-start near coll. 22 /42 | 268 214870 17 296 296
Grgstl-256 (compr. function property) 10/10| 2'2 264 [16] 2182 264
Grostl-256 Final® | (internal permutation dist.) 10 /10| 2192 264 [16] 2178 264
Grostl-512 (compr. function property) 11 /14 | 2640 264 [16] 2630 204

| ECHO-256 | 2" | internal permutation dist. | 8/8] 2% 27 18] | 2™t 207 |
Luffa ond semi-free-start coll. 7/8| 2% 2688 [10] | 211%° 2688
(2194 (2102
LANE-256 15t semi-free-start coll. | 6+3 / 6+3 | 2% 288 [12] 280 266
LANE-512 semi-free-start coll. | 8+4 / 8+4 | 2%* 2128 [12] 2224 266

* The Grgstl analysis does not apply after the final round tweak.

Table 1, the main interest of this paper is to present a general framework for
improving rebound attacks. We introduce several new algorithms that consider-
ably improve the overall effectiveness when the attack needs to merge large lists.
We provide a formal definition of the field of application of those algorithms,
and describe them as a set of constraints on ¢, in hope that designers of rebound
attacks will be able to easily identify scenarios where one of these algorithms, or
variants, may be applied. This was motivated by our own research path, when
we realized that a generalization of the techniques leveraged in specific cases al-
lowed us to find similar improvements in almost all of the rebound attacks that
we have studied so far.

2  When t is Group-Wise

In some cases we can considerably reduce the complexity of the merging problem
by redefining it into a more concrete one. We consider here a very common case
that will appear in many rebound scenarios, as we will later show with the
examples. This case corresponds to a function ¢ that can be decomposed in
smaller functions. After introducing the general problem, we will illustrate it



with an example. Though we preferred to state the problem in full generality for
any possible IV, in the concrete rebound examples that we studied, the number
of lists IV was either 2, 4 or 6. Also, the elements of each list can be decomposed
in sets of small size s, where s is typically the size of the involved Sbox; and z
is the number of such sets involved ! in the function ¢.

Problem 1: Let Lq,...,Lx be N lists of size 2!t,..., 2" respectively, where
the elements are drawn uniformly and independently at random from {0, 1}*.
Let ¢t be a Boolean function, t : ({0,1}k)N — {0,1} for which there exists
N’ < N, an integer z and some triples of functions ¢; : {0,1}** — {0,1},
fi o ({0,13)N" — {0,1}* and f7 : ({0,1}F)N=ND — {0,1}* for j = 1,...,z
such that, V(x1,...,&n) € L1 X ... X Ly :

Vi=1,...,z,

_ tj(v,v5) =1
t(xe,...,zN)=1 & {withvj:fj(:cl,...,wm)

and v} :fjf(a:N/_H,...,acN)

Let P; be the probability that ¢ = 1 for a random input.
Problem 1 consists in merging these N lists to obtain the set L, of size
P2¥i li of all N-tuples of (L x ... x Ly) verifying t = 1.

Reduction from N to 2: For any N > 2 Problem 1 can be reduced to an equiv-
alent and simplified problem with N = 2, i.e. merging two lists L 4 and L g, which

consist of elements in ({0,1}*)* corresponding to x4 = v = (v1,...,v,) and
xp = v’ = (v},...,v.), with respect to the function za,xp — II7_;t;(v;,v}).
The reduction is performed as follows:

1. Build a table T7; of size 95y li storing each element eq = (x1,...,xN) of
Ly x...x Ly, indexed? by the value of (fi(ea),..., f-(€a)), i.e. (v1,...,v,).
Store the corresponding (v1,...,v,) in a list L 4. Note that several e 4 may
lead to the same value of (vq,...,v,).

2. Build a similar table Tj of size 95 i b storing each element ep =

(ZI:NI_H_, R 7(BJ\]) of LN/+1 X ... X LN, indexed by (fl(eB), ey fz(eB)),
i.e. (vq,...,v.). Store (v],...,v.) in a list Lp.

Merge L4 and Lp with respect to HjZ:ltj and obtain L.

4. Build £}, by iterating over each pair ((vi,...,v.),(v],...,v.)) of Lsa,

and adding the set of all (1,..., N/, ZN+1,-..,ZN) € T4 [(v1,...,0,)] X
TE [(vy,...,v,)]. £k, is the solution to the original problem.

@

Let 2Tmerse, 9Mmerse he the time and memory complexities of step 3. The total
’ N )
time complexity of solving Problem 1 is O(sz22ﬁv:1 li 4 5722 i=nr41li 4 9Tmerse 4
!Sometimes, elements are only partially involved in t.

2Here and in the following sections we can use standard hash tables for storage and
lookup in constant time, since the keys are integers.



PtQElel'i) where the last term comes from the fact that only the N-tuples
satisfying ¢ = 1 are examined at step 4 because of the sieve applied at step 3.
The proportion of such tuples is then P;. The memory complexity 3 is O((zs +
N’k)22£\’:,1 bt (2s+ (N - N’)l{:)QZiN/+1 b 4 9Muerse 4 P23 1 1) where the last
term appears only when the solutions must be stored.

Using the brute force approach, 27merse would be 2!4+5 where 24 (respec-
tively 2'2) denotes the size of Ly (Lp), and 2Mmerse would be negligible. We
present in the following sections some algorithms for solving Problem 1 consid-
ering N = 2 with L4 and Lp, that provide better complexities than the brute
force approach. Note that the roles of L4 and Lp are assigned by choice to ob-
tain the best overall complexity. Those algorithms can be applied for obtaining
a smaller 27merse when N > 2.

2.1 Basic Algorithm for Solving Problem 1: Instant Matching

As s is typically very small we can enumerate the solutions (v;, v}) of t;(v;, v}) =
1 and store them in tables T} of size < 2%¢, indexed by vé. This costs O(z - 2%%) in
time and memory. We propose in Fig. 1 a first algorithm for solving Problem 1,
which has lower complexity than the brute-force approach. Although being the
simplest algorithm presented in this paper, it has not been applied in critical
steps of some of the previously mentioned attacks, though it could yield signifi-
cant improvements.

Fig. 1 Instant matching algorithm.

Require: Two lists La, L and a Boolean function ¢ as described in Problem 1.
Ensure: The returned list Ls,; will contain all elements of L4 X Lp verifying ¢.
: for j from 1 to z do
for all (v;,v}) in {0,1}° x {0,1}° do
if t;(v;,v;) = 1, then add v; to Tj[v}].
: for each (vi,...,v.) € Lg do
Empty Loysz-
for j from 1 to z do
if T;[v}] is empty, then go to 4.
Add all tuples (v1,...,v.) verifying Vj v; € T;[v}] to Laue-
for each (vi,...,v.) in Lgy, do
10: if (v1,...,v.) € L4 then
11: Add (v1,...,v2,00, ..., 0%) to Lsor.
12: Return L.

PPN

©

Let 2777 be the probability over all pairs (v;,v}) that t;(v;,v}) = 1. The
relationship between ¢ and the (t;)i<j<. implies that >35_, p; = —logy(P;)
where P, is the probability that ¢ = 1.

3The first two terms, corresponding to the storage of T and T} could be avoided
if they were the bottleneck by slightly increasing the time complexity by a factor of 2.



Let us determine the average size of Lg,,. The average size of T [vﬁ over all v;-

is 2°7Pi. Then the average size of Ly, is 2757 25=1Pi = P,9%5 Tt follows that
the time complexity of the algorithm is O(22% + 2P;2'27%%) and is proportional
to the product of the size of L by the average size of * Lgy,. The memory
complexity is O(22% + 2!4 4 2!5 4 p2latis) In some cases, the last term can
disappear, namely if we do not need to store the list L., but just use each
solution as soon as it is obtained. The same way, the list L does not need to
be stored, if it can be given on the fly.

We now describe a concrete example of application of the instant-matching
algorithm in a case included in a particular rebound attack, improving its com-
plexity. In the extended version of this paper [15] two more examples are provided
in Appendix A, where it clearly appears that identifying and isolating the most
appropriate problem (or problems) to solve is of major importance. These two
last examples might help also to understand the role of f; and f;.

Example 1: Application of the Instant Matching Algorithm We use
here a case presented in the analysis of JH [17] which is the attack on 8 rounds
using one inbound when the dimension of a block of bits denoted by d is 4. Here
we improve step 3 of the attack, which is also the bottleneck in time complexity.
Two lists are given, L4 and Lp of size 224!® elements each. The aim of step 3 is
to merge those lists, i.e. find all pairs (v,v’) € L4 x Lp verifying 10 conditions
on groups of s = 4 bits of (v,v’).

In [17] this is solved by exhaustive search, i.e. all possible pairs are examined
and only the ones that verify the 10 conditions are kept, which has cost 24836,
We can improve this complexity by applying the instant-matching algorithm:
first, we notice that 6 out of these 10 conditions can be written as

tj(vj,v;-) = 1,V] € {1,...,6},

where variables v; and v; represent groups of differences of 4 bits. The functions
t; return 1 when the linear function of JH, L, applied to v; and vé» produces 4
bits out of 8 without difference in the wanted positions. Those functions ¢; can
be computed directly by using a precomputed table of size 28.

This is an instance of Problem 1 with the parameters: z = 6 (corresponding to the
number of relations t1, .. ., t5), and p; = 3.91 Vj. Hence P,2*° = 20-09°6 = 2054 ~
1.45. The instant-matching algorithm allows us to find all pairs satisfying these
6 conditions with a complexity of 227® in time and no additional memory. We
then obtain 2249 pairs of elements that pass the first 6 conditions. To complete
step 3 of the attack, we evaluate the 4 remaining conditions for each pair, for a
global complexity of 2249,

To summarize, we were able to resolve step 3 of the attack with a time complexity
of about 2278 improving significantly the complexity of 24836 given in [17].

4The cost of building and storing the lists T} [v}] is negligible.



2.2 Solving Problem 1 when P;2** > 2!4: Gradual Matching

In Fig. 2 we present an algorithm for solving Problem 1 that is useful in cases
where the average size of Ly, exceeds the size of Ly, i.e.> P,27% > 2!4_ In this
case the instant-matching algorithm has a higher complexity than the exhaustive
search. This is why here, instead of directly matching the z groups that appear
in relation ¢, we will first match the 2z’ < z ones, and next, the z — 2z’ remaining
ones. We present here how to use one step of the gradual-matching algorithm for
solving Problem 1. This algorithm reminds the method used in Example 1 where
the problem is first solved with only 6 relations. But the difference is that the
remaining z — 2’ relations can also be written in the form needed for Problem 1
and P,2* > 2!4. Let us suppose that we choose 2’ so that z's < 4 (the best
value for 2z’ depends on the situation).

Fig. 2 Gradual matching algorithm.

Require: Two lists L4 and L and a function ¢ as described in Problem 1.
Ensure: List Ls,0 C La X Lp of all elements verifying ¢.

1: for j from 1 to z do

2:  for all (vj,v}) in {0,1}° x {0,1}° do

3: if t;(v;,v;) = 1, then add v; to Tj[v}].

4: for each a = (a1,...,a,) in ({0, 1}5)2/ do

5: Empty Lauz.

6:  Consider the sublist Lg () of all elements in Lg with (v],...,v.,) = a.
7:  for each (vi,...,v,) in Ti[a1] X ... X Ty {a,r] do

8: add (v1,...,v,7) to Laus-

9:  for each v = (y1,...,7x) in Laus do
10: Consider the sublist L4 () of all elements of L4 with (v1,...,v./) =7.
11: Merge La(y) with Lp(a) with respect to t' = IT7__,, ,t;.
12: Add the solutions to Lso;.

13: Return Ls,;, containing about P;2'4+!5 elements.

Let 2™e'8¢ be the time complexity of merging once lists Lp(«) and L4 (7)
as defined in Fig. 2. Since their respective average sizes are ola—z"s and 2l5—='s
the complexity of the brute force is olatls=2z"s Tt can be improved by using
one of the proposed algorithms from this section but it cannot be smaller than
the size of the resulting merge/d list, 4.e. 24 T8 =2%"s"X/11 P Now the average

size of Lyyg 6 is S = 27 57 25=1P5 Then, the time complexity of this algorithm
is O(22° + 2% 5(2' 4+ S2meree)). It is worth noticing that this complexity corre-

sponds to 2/27 + 2latlB=3j=1 75 when the intermediate lists are merged by the

When P,2%° is close to 2'4 this algorithm might also outperform the instant-
matching technique.

SHere and in the previous section, there is no need for storing L., as each element
can be treated as soon as it is obtained, but these auxiliary lists are very useful for
describing the complexities.



brute force algorithm and to 2’25 + P,2!4+15 if they are merged by an optimal
algorithm. The memory complexity is O(22° + 24 +2!8 + S 4 P2latis), Again,
in some cases, the last term can disappear, if we do not need to store the list
Lsor, but just use the solutions on the fly.

2.3 Time-Memory Trade-Offs when P;2%* > 2!4: Parallel Matching

The parallel-matching algorithm improves the time complexity of the gradual-
matching by a time-memory trade-off and can be applied in the same situations.
It is a generalization of an algorithm proposed in [10]. As the gradual-matching
algorithm this algorithm first finds elements that verify ¢; = 1 for j € {1,...,2}
and then, for each of them, it checks if the remaining (z — 2’) relations are also
verified. However, in this algorithm, the matching of the 2z’ relations is done in
parallel for n and m relations, so that z’ = m + n. The motivation of choosing
different variables for n and m is showing that there is no need for them to be
the same when applying the algorithm. We choose n so that n < 2z, ns < l4

-
< zs > < zs > - (zm)s

ns ms ms ns ns ns ms ms ms ns
L L L L L'

A Vi Vo Vo VoV, B Vi Vam VirVa ViV, N VeV, ViV, M VouVoum Vo Vosm M VoV VeV VLYY
2,{5 0.0 | : Z,MIS 0.0 00| : 0.0 : 2‘8'2@ 0.0
203 : : 22ms i :
x B B | o o | o B [} B | o
B s
V
1.1 1.1 iy

Fig. 3: Representation of the parallel-matching algorithm.

and ns < lg, and in the same way, we choose m (n +m = 2z’ < z). This
algorithm will be explained with ordered lists, as it is more graphical and helps
the understanding. However, since we can perform it with hash tables indexed
by the values we want to have ordered, we do not need to take into account the
logarithmic terms for ordering and searching in the final complexity. First we
build the lists that we will use and that are represented in Fig. 3:

— We order the list La by the first n groups (vy,...,v,). La has 24757 ele-
ments in average corresponding to a given value of these n groups.

— We order the list Lp by the next m groups (v}, 1, . .,Vh ). Lp has 215=5™
elements in average corresponding to a given value of these m groups.

— We build the list L,, of size 22"*~2i=1P formed by all (V1o Uny U, .oy 00)

with v; € T][v;] for all 1 < j < m. All the elements from this list satisfy
tj(vj,vi) =1for j€[l,...,n].



— We build the list Ly, of size 22™~ 2527412 formed by all (vns1,- . - s Untm,
Uppts e oo s Uppn) With vy € Tj[v7] for all (n +1) < j < (n+m). All the
elements from this list satisfy ¢;(v;,v}) =1for j € [n +1,...,n+m].

— From L,, and Lp we build L as follows: for each (3,3’) in L,,, we add to

L;, all elements (3,v],...,v,) of Lp such that (v}, ,...,v},,,) = " and

we store them ordered by the values of (3,v],...,v]). The average size of

rn
n+m

L is olBFsm=3j=n1Pi Then we perform the algorithm given in Fig. 4.

Fig. 4 Parallel matching algorithm.

1: for each (o, o) in L,, do

2:  for each (v1,...,v;) in La with (vi,...,v,) = a do

3 if L], contains any element (vni1,...,Vntm,v1,...,v,) starting by
(’UnJrl, oo s Undtm,s Oé/) then

4: if (v1,...,v5,0],...,v,) satisfies the remaning (2 —n —m) conditions then

5: Add (vi,...,v,00, ..., 0%) to Lsor

6: Return Ls,; containing about P2lAtlB glements.

In total we find the 24H!B=Xi=1P existing matches, with a complexity of
O(Ql“ + 2lm 4 2lA+lB—Z;L;r1ij + glatns=320_,pj + olp+ms=3270, :Dj) in time
and O(2!» + 2bm 4 218 oletms =201 py 4 olatls =271 P5) in memory, where
the last term corresponds to the storage of all solutions, not always needed. In
this case, the storage of L4 is not necessary.

2.4 Example 2: Gradual Matching vs Parallel Matching

We are going to apply both previous algorithms to the analysis of Luffa presented

n [10]. We are given two lists Ls and Lp of size 257 and 25°C. These lists
contain elements formed by z = 52 groups of differences of s = 4 bits. List L4
contains the possible differences for the input of 52 Sboxes. List Lp contains the
possible differences for the output of the same 52 Sboxes. For the j-th Sbox, the
probability that one input difference can be associated to one output difference
is 27Pi = 27123, The average size of Ly, if we apply the instant-matching
algorithm is then P;2%¢ = 214494 1Tn this case ¢ can be decomposed in 52 t;, one
per Sbox. So t;(v;,v}) = 1 if there exists € {0, 1} such that

Sbox(x) @ Shox(z @ v;) = v}
The brute force algorithm for solving this problem has complexity of 26>6+67 —=
2132:6 in time and of 2%%-% in memory. If we apply the gradual-matching algorithm
with 2z’ = 16 we have S = 24432 and we obtain the 268® solutions with a time
complexity of 2129 and the same memory as before as no additional memory is
needed. If instead we apply the parallel-matching algorithm with m = n = 13, we
can obtain the solutions with a time complexity of 2!% and a memory complexity



of 2192, Different choices of parameters allow many other time-memory trade-
offs, but we just show here the one that provides the lowest time complexity, and
so the highest memory needs, for contrast with the gradual matching algorithm.

3 Stop-in-the-Middle Algorithms

In this section we present another case that allows to reduce the complexity
of solving the basic problem. It is described in Problem 2. Then, we define the
main lines of the stop-in-the-middle algorithms, that we use for solving Prob-
lem 2. Next, we present such an algorithm that solves Problem 2 in the scenario
of LANE-256. Then a more complex variant of this algorithm is applied to an
ECHO-256 scenario. We believe that, in particular, this kind of algorithms can
be adapted and applied to functions that use several AES (like) states in parallel
which are then merged at the end of each round.

In the following, we consider a permutation F from {0, 1}** to {0, 1}** and we
assume that there exists a decomposition function ¢ (respectively ¢) of the input
of F' (respectively the output) in k elements of {0, 1}*. These two decompositions
may be different. Then, instead of the original function F' we will now focus on
the function f =1 o F o ¢! which is a function over ({0,1}*)* (see Fig. 5). In
the following (u,w) denotes the word corresponding to the concatenation of the
vectors u and w.

Problem 2: Let z4 and zp be two integers less than or equal to k . Let L4
be a list of elements in ({0,1}%)*4 and Lp be a list of elements on ({0,1}%)*5.
The Problem 2 consists on finding all triples (a,b,¢) with a € L4, b € L and
c € Le = ({0,1}%)* such that

F(©) @ fle® (a,0°"200)) = (b,0°=2)),

where there exists the function Fy : ({0,1}*)* — ({0,1}*)¥ and some permuta-
tions of {0,1}*, g1,...,9% and hy,..., hy over {0,1}* such that

f =Ho F1 oG
where
G: ({0,1}%)% — ({0,1}*)*
(x1,...,2k) — (g1(x1), .-, gk (xk))
and

H - ({0, 1}s)k - ({o, 1}s)k
(z1,...,zk) — (hi(z1),. .., he(xk))

It is worth noting that we assume that both decompossitions ¢ and ¢ have
been chosen in an appropriate way such that the z4 words of a (respectively the
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Fig.5: Representation of F' from Problem 2.

zp words of b) correspond to the first words of the input state (respectively of
the output state). We call stop-in-the-middle algorithms those that solve Problem
2 following the main general scheme described in Fig. 6. The associated com-
plexities depend on the particular form of F}, as we show in the next sections.

Fig. 6 General scheme of stop-in-the-middle algorithms.

: for each b in Ly do
for each j € [1,...,28] do
for each y; € {0,1}° do
add (A" (y;), hj ' (y;) ® hy ' (y; © b;)) to Lje.
: for each a in L4 do
for each i € [1,...,z4] do
for each x; in {0,1}° do
add (gi(z:), gi(x:) @ gi(z: © ai)) to L.
Using the previous lists L; and L; 3, match in the middle using F1, i.e. construct
Laus = {(x,b1,...,b:p), 2 € ({0,1}*)*} such that
((Fl[gl(x1)7 sy 8zp (iUzA), :IZ'*)}, Fl[gl(l'l D CL1), <30z (sz D aZA)7 )D =
(B (yn), - by (W), y™), (T (1 @ 1), hZ (Yo ©02),y7)
for some z* € ({0,1}*)*7*4 and y* € ({0,1}%)**5.
10:  for all (z,b1,...,b.5) in Laue do
11: if b= (b1,...,b:5) € Lp then
12: add (a,b,z) to Lsor-
13: Return L.

)

In the cases we have studied and that we detail below, the function f is formed
by several AES transformations in parallel. We then expect 2!4+!5 solutions, as
for each a € L4 and each b € Ly there exists one ¢ € L so that the condition
of Problem 2 holds. The match-in-the-middle step is assumed to be simple due
to the simple form of F; (typical functions F are linear diffusion layers). For



the same reason, L, can typically be written in a compact way, for example,
in several independent lists.

3.1 Algorithm for LANE-256

Each lane of the internal state of LANE-256 is composed of two AES states.
An AES state is a state of size 128 bits that can be seen as a 4x4 matrix of bytes.
The AES transformations are noted: SB for SubBytes, SR for ShiftRows and MC
for MixColumn. The transformation SC mixes the two AES states at the end of
each round by interchanging their columns. We consider Fig. 7 that represents
a part of the differential path used in [12]. In that attack it was treated as the
merging of two inbounds and 2%* solutions were found with a complexity of 296
in time and 288 in memory. We consider the scheme represented in Fig. 7 where
we have swapped lines and columns for a more easy intuitive understanding (so
SR is applied to the columns and MC is applied to the lines).

1
& = Fy — h]
X 3[4
X" 3[4
4a(a4| (4444 [4lc)[3] [8[8[8[8
SB SR 171317 MC gtz 3 SC o2 sB B3138 s 34X e LT s 51 SB [glalals] SR EIEIEIT
4 4 3 x| 12 717]7 7i717]  [718]516
4 4 2 21212[2] [2[2[2]2] [2]x|x[1 6/6/6/6| [6[6/6] 666/ [6]7[8[5
4[3]2 4[3]2 1 1110 11104 12l [5]5[5[5] [55[55] [5[55[5] [5[6[7]8
#1 # #3 #4 #5 # #7 # #9 #10 #11

Fig. 7: Differential path associated to the first improvement on the LANE analysis.

Using the example from [12], 4 = 32 and I = 32 and L¢ is the list of all
possible input values and needs to be neither stored nor computed. We consider
that the input state (respectively the output state) of the function f presented in
Fig. 7 is decomposed into eight 32-bit words (i.e. s = 32 and k = 8). The input
differences and output differences that we consider in L4 and Lp correspond
to the first z4 = zp = 4 32-bit words of the state. In Fig. 7 each one of the
4+ 4 = 8 32-bits active word corresponds to the four active bytes with the same
number written on them (1 to 4 for the four active input words and 5 to 8 for
the 4 active output words).

With the algorithm described in Fig. 8 we find the 2% solutions with a
complexity of 26 in time and 25° in memory. The time complexity associated
to the studied path is 2528132 4204132 This comes from the fact that each L;
has average size 216, Then, L5 ¢ and L7 g have size 2/2732. Then the size of both
LY, and Ll is 2!5 since in each we keep the pairs of elements that match
on 4 active bytes, and this happens with a probability of 274 (32 values and
32 differences); and the number of possible pairs is 216+16+!5+32 The memory
complexity is 2!B+32+1 4 23241 4 olatls for obtaining 2'4+!2 solutions. In [15]
a detailed explanation on how this algorithm allows to considerably reduce the



Fig. 8 Algorithm for solving two inbounds of LANE-256.
Require: Function f and lists L4 and Lp of differences in #1 and #11 respectively.
Ensure: List £, = {(a,b,c) such that f(c® (a,0°*~%4))) @ f(c) = (b,05k==B))}.
1: for each bin Lp do

2 for i from 5 to 8 do

3: for each y € {0,1}** do

4

)

if b7 '(y) @ h; ' (y @ b;) has only the two bytes active (see state #7 ) then
Store (y,bi, b7 ' (y), h; ' (y @ b;)) in L;, where the last two terms are trun-
cated to the 2 active bytes.

6:  for each (ys,bs,us,ws) from Ls and (ys, bs, us, we) from Le do
7: Add (us,ws,ue, we, Ys, Ys, bs, bs) in Ls ¢ indexed by us, ws, us, we.
8:  for each (yr, b7, uz, wr) from L7 and (ys, bs, us, ws) from Ls do
9: Add (U77 wr,us, ws, Y7, yYys, b7, bg) in L778 indexed by U7, Wz, ug, Ws.

10: Empty Ls, Le, L7 and Ls.
11: for each a in L4 do
12:  for i from 1 to 4 do

13: for each z; € {0,1}** do
14: if gi(z:) @ gi(x; ® a;) has only the two bytes active (see state #4) then
15: Store (3, gi(2:), gi(z: D as)) in L;, where the two last terms are truncated

to the 2 active bytes.
16:  for ¢ from 0 to 1 do

17: for each (x2¢+1,u2¢+1,w2i+1) in L2~;+1 and (332~;+2, U25+2, w2¢+2) in L2i+2 do

18: if there exists an element in Lsyoi6+2i indexed by
(U2i4+1, W2it1, U2i+2, W2i+2) then _

19: Add (1‘2»;+1, L2242, b5+2i, 66+2¢) to L;sz indexed by (b5+2¢, bﬁJrgi).

20:  for each (1, x2,bs,b6) in LS, do

21: for each (br,bs) such that (bs,bs,br,bs) € Lp do

22: if there exists an element in L, indexed by (br,bs) then

23: add (a, (b5, be, b77 bs), (513’17 ZT2,T3, 324)) to £50l~

24: Return L.

complexity of the LANE-256 semi-free-start collision presented in [12] is given,
when applied jointly with other improvements concerning other steps of the
attack.

3.2 Algorithm for ECHO-256

An ECHO-256 state is a state of size 2048 bits that can be seen as a 4x4 matrix
of AES states. The ECHO operations BigSR, BigMC and BigSB are similar to
the AES ones, but they operate on AES states instead of bytes. A SuperSbox
is an Sbox defined by SR o SB o MC o SR o SB. Applied on an AES state, it can
be seen as a 32x32 Sbox. We define a SuperSboz set as each one of the 4 (in the
AES state) sets of bits that act as input and output of the SuperShox. We define
a BigSuperSbox as an Sbox defined by BigSR o BigSB o BigMC o BigSR o BigSB.
Applied to ECHO it defines 4 sets of size 4 AES-states.

We consider Fig. 9, where each column represents the four AES states that
form a BigSuperSbox at a certain state #i, for ¢ from 1 to 13. Each possible



differences in #1 in L4 consist of z4 = 12 32-bit words and the possible dif-
ferences in #13 consist of zp = 8 32-bit words, where Lp can be written as
Lp = Lp, x Lp, with both Lp, (associated to AES state By in Fig. 9) and
Lg, (associated to AES state By) are subsets of ({0,1}3?)* each of size 232 (this
is a particular case which has to be adapted in other cases). Finding solutions
for this differential path with the previously mentioned conditions is a problem
proposed in [18] and was solved in such a way that 232 solutions could be found
with a complexity of 2!?® in time and 237 in memory. We propose here a new
algorithm that can solve it for obtaining 264 solutions with the same time com-
plexity and a memory of 267. Variants of our algorithm can be applied in several
cases, like when the transition in #7 to #8 is from 2 active states to 3, or from
1 to 4 or from 4 to 1. Additionally we believe that it can improve the complexity
of other future attacks on ECHO-256.

g F h] !

#1 # #3 #4 #5 {>#6 #7 {>§} #9 #10 #11 #12 #13
M2EE  [2EE [2EE [2EF [26E [2EE [XXYY [20F [23@ [20EF [20[E [2EE  [2EE
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Fig. 9: Differential path on a BigSuperSbox of ECHO-256.

The list L¢ contains all the possible values for the input state. This list needs
to be neither computed nor stored. Here the aim is to find for each possible
(a,b*,b%) in L4 x Ly, x Lp, the associated ¢ so that f(c) @ f(c® (a,05*=24)) =
(b1, b%,0°F=28)) In Fig. 9 we can see how the function f can be written in the
way requested by Problem 2. We omit the operation BigSR as it does not affect
the states, as well as the round keys that are taken into account in the different
g; and h;. For the sake of simplicity we consider in Fig. 9 the list Lp of possible
differences before the last MC of the BigSuperSbox. This can be done by a sim-
ple transformation MC ™! of the differences in #B’. The grey bytes represent the
bytes with differences. We can observe that, from #1 to #6 there are z4 = 12
independent active SuperSbox sets (s = 32), denoted in Fig. 9 by a number from
1 to 12. To each of these groups we can associate a difference from L4 and a
value from L at state #1 and we can apply independently g;, i € [1,...,12]
to obtain the value and the difference of the group in #6. The same way, from
#8 to #13 there are zg = 8 independent active SuperSbox sets and the cor-
responding functions h;',i € [1,...8] that link state #13 with state #8. The
function F; =MCoBigMC takes a complete internal state in #6 and computes
the corresponding state in #8. Let f(x) = y, and let d?ﬂ the ith active diagonal



in state #7. Without knowing the values of x* nor of y* represented in Fig. 9 we
can still write the following equations that have to be verified, that are obtained
from BigMC, and that are used in the algorithm:

2xdf @d? odf @9xdFT e3xdl @6 xdF = hi N (y) ®3xhi L (yiva) (1)

for i € 1,...,4 where the multiplication corresponds to the one in the definition
of MC applied independently to each byte of the diagonal.

We consider that the input state (respectively the output state) of the func-
tion presented in Fig. 9 is decomposed into sixteen 32-bit words (i.e. s = 32 and
k = 16). The input differences (respectively output differences) that we consider
in Ly (Lp) correspond to the first z4 = 12 (zp = 8) 32-bit words of the state.
In Fig. 9 each one of the 12 (respectively 8) 32-bits active word from the input
(respectively the output) corresponds to the four active bytes with the same
number written on them (1 to 12 for the twelve active input words and 1 to 8
for the eight active output words).

Let Vx (Vy, Vo respectively) be the values at the positions in #7 marked
with an X (Y, O) and Ax (Ay, Ap) their differences. Let A;%T be an auxil-
iary variable denoting the difference for the SuperSbox set j' in state #r. The
algorithm is described in Fig. 10. So the time complexity is O(zp2'211 4
zp2lB2 TS 4 225 4 2lat64(oley 4 ley 4 9lm 2les 4 2,264)). The memory com-
plexity is O(zp2!'81+ 4 2p2!BaFs 4 2leitles £ 1), In the case of 4 = 0, we
will obtain a complexity of 2'?° in time and 256 in memory for obtaining 264
solutions. This algorithm proposes several trade-offs when changing the values
of |[Ax|, and can be adapted for other forms of Lp.

4 How to improve the best known attacks on five SHA-3
candidates

In this section we enumerate briefly the main algorithms or ideas that we use
to improve the best known attacks on the hash functions JH, Grgstl, ECHO,
Luffa and LANE as shown on Table 1. In the full version of the paper [15] more
detailed descriptions are provided.

— JH: To improve the complexities over the ones in [17] we use the instant-
matching (as in Section 2.1) and gradual-matching algorithms as well as the
fact that we do not merge the lists until we really have to (to keep lists of
smaller sizes, with a smaller complexity).

— Grgstl: Instead of the initial lists used in [16], we can define them so that
we erase the elements that for sure won’t verify the outbound part. Having
lists of smaller size translates to a smaller complexity.

— ECHO: Using conviniently the algorithm from Section 3.2 we provide better
trade-offs improving the time complexity from [18].

— Luffa: The parallel-matching algorithm is applied in [10], improving the time
complexity over the brute force merging method by increasing the memory
requirements. If we apply instead the gradual-matching algorithm, the time



Fig. 10 Algorithm for finding solutions for one ECHO BigSuperSbox.

Require: Function f, lists of differences L4 (in #1) and Lp, and Lp, (in #13).
Ensure: L., = {(a,b,b%, ¢), such that f(c)®f(c®(a,05*k7=4))) = (b1, 05*—=8))}

U IS A Rl e

©

10:
11:
12:

13:
14:

15:
16:

17:

18:

19:
20:
21:
22:

23:

24:

25:

26:
27:

28:

29

: for j from 1 to 4 do
for each y; € {0,1}? and for each b' from Lp, do

Store (hj_l(yj), hj_l(yj) @ hj_l(yj @ b)) in L;S’bl (4 x 232 lists of size 2°?).

: for j from 5 to 8 do
for each y; € {0,1}? and for each b from Lp, do

Store (h;*(y;), by (y;) @ hy * (y; ©b3)) in L

Tesp2 (A% 232 lists of size 2°2).

: for each a in L4 do
for i from 1 to 12 do

for each z; € {0,1}*? do _
Store (gi(x:), gi(wi) © gi(wi,a:)) in L.

for Ax from 0 to 2°* — 1 (and not the 128 bits as done in [18]) do

Compute Ao and Aﬁg for 7' € {1,2,5,6} (with BigMC and linear condit.).
for each b' in Lp, and for j = [1,2] do
Find an element in L;&bl such that h;l(yj) & h;l(yj ®b;) = A]#B and
store (b7 (y1), A8 b3 (y2), A, bY) in Loya, .
for each b* in Lp, and for j = [5,6] do
Find an element in L;&&bz, such that h;'(y;) @ h; ' (y; & b7) = Afs and
store (hs ' (ys), AF®, hg ' (ys), AL®, %) in Laua,-
for each (hy'(y1), A7® hy'(y2), A7®,b') in Laus, and for each
(hgl(y5)7 A?ES’ hﬁ_l(yﬁ)v Afsv b2) in Lauﬂﬁz do
Compute V{ = h7'(y1) ® 3 x hg ' (ys) and Vs = hy*(y2) ® 3 x hg *(ys), and
store ((hfl(yl)f A#87 hgl(yQ)v Afsv b1)7 (hgl(y5)7 A;#8’ hgl(yﬁ)v 4?87 bz)) in
a hash table T indexed by these (V/, V3).
for Ay from 0 to 2°* — 1 do
Determine by BigMC A%® for j' = 3,4,7,8; and A¥® for j € [1,...,12].
for i from 1 to 12 do
Find the element from L:;G such that g;(z:) ® gi(zi,a;) = Af%.
Compute with them by MC the values df” of the active diagonals in #7
and V; =2 xdf T @dl], 0 dis09xdT ©3xdl], ®6xdl ] for j=1,2.
if there is an element such that V{ = V; and V5 = V2 in T (one on average,
determines b' and b*) then

Find (3" (y;0), A%®) from L, .

Find (hjil(yj/), A?fs) from L;;&bz for j* = 7,8. This implies y7 and ys.
if with these values of (h;,l(yj/), j' = 3,4,7,8 and the ones obtained
in step 22 of g;(x;) for i = 3,4,7,8,11,12, the equation (1) for ¢ = 3,4
derived from F can be verified (happens with a probability of 27°%) then
The value z. is determined. Add (w1, ..., 2., 2%, a,b",b%) to Lsot

for 7' = 3,4. This implies y3 and ya.

: Return L4, containing about 264+1a glements.




complexity can still be better than the brute force one while the memory
needs are not increased.

— LANE: In the cases of LANE-256 and LANE-512 several improvements are
applied at different steps of the attacks from [12]. They use the instant-
matching algorithm, as well as some more appropriate ways to formulate the
problem, and the algorithms from Section 3.1 and from [15, App.B].

5 Conclusion

The main contribution of this paper is to propose several algorithms for solving
the problem which constitutes the bottleneck of most rebound attacks, leading
to improvements of the previously known complexities. We also highlight the im-
portance of identifying the situations that could help improving the complexity
of this type of attacks. This is often a difficult task due to the high technicality
of the attacks and algorithms.

Finally, the previous contributions lead to improvements of most of the best
known rebound attacks applied to the SHA-3 candidates JH, Grgstl, Luffa,
ECHO-256 and LANE. It is important to point out that we just tried to im-
prove the complexities of existing attacks. However, the work presented in this
paper can be very useful for future rebound attacks, in particular we believe that
the attacks on JH and on the compression function of ECHO can be improved
(extending the number of rounds attacked) by exploiting the algorithms and
ideas presented here. Finally, we believe that some of these algorithms, specially
those of Section 2, will be applicable in other contexts besides rebound attacks.
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