
Automatic Search of Attacks on round-reduced
AES and Applications

Charles Bouillaguet, Patrick Derbez, and Pierre-Alain Fouque

ENS, CNRS, INRIA, 45 rue d’Ulm, 75005 Paris, France
{charles.bouillaguet,patrick.derbez,pierre-alain.fouque}@ens.fr

Abstract. In this paper, we describe versatile and powerful algorithms
for searching guess-and-determine and meet-in-the-middle attacks on
byte-oriented symmetric primitives. To demonstrate the strengh of these
tool, we show that they allows to automatically discover new attacks
on round-reduced AES with very low data complexity, and to find im-
proved attacks on the AES-based MACs Alpha-MAC and Pelican-MAC,
and also on the AES-based stream cipher LEX. Finally, the tools can
be used in the context of fault attacks. These algorithms exploit the
algebraically simple byte-oriented structure of the AES. When the at-
tack found by the tool are practical, they have been implemented and
validated.

1 Introduction

Since the introduction of the AES in 2001, it has been questioned whether its
simple algebraic structure could be exploited by cryptanalysts. Soon after its
publication as a standard [30], Murphy and Robshaw showed in 2002 an inter-
esting algebraic property: the AES encryption process can be described only
with simple algebraic operations in GF (28) [29]. Such a result paved the way for
multivariate algebraic techniques [13, 11] since the AES encryption function can
be described by a very sparse overdetermined multivariate quadratic system over
GF (2). However, so far this approach has not been so promising [28, 12], and
the initial objective of this simple structure, providing good security protections
against differential and linear cryptanalysis, has been fulfilled.

Recently, much attention has been devoted to the AES block cipher as a by-
product of the NIST SHA-3 competition. The low diffusion property of the key
schedule has been used to mount several related-key attacks [6, 5, 3, 27] and differ-
ential characteristic developed for hash functions have been used to also improve
single-key attacks [20]. In order to improve these attacks, new automatic tools
have been designed to automatically search either related-key attacks or collision
attacks on byte-oriented block ciphers [7] or AES-based hash functions [27].

In this paper, we look at the security of round-reduced versions of the AES
block cipher in a practical security model, in continuity with [8]. The adver-
sary knows a very small number of plaintext/ciphertext pairs, one or two, and

his goal is to recover the secret key. Studying reduced-round versions of AES
is motivated by the proliferation, these last years, of many AES-based primi-
tives for hashing or authentication, such as the Grøstl, ECHO, Shavite, LANE
hash functions, the LEX [1] stream cipher, or the Alpha-MAC [14] and Pelican-
MAC [15] message authentication codes. A possible explanation of this fancy
is that the AES enjoys very interesting security properties against statistical
attacks. Namely, two rounds achieve full diffusion, and there exist very good
differential and linear lower bounds for the best differential on four rounds [26,
25, 24]. Consequently, for some applications such as hashing and authentication
where the adversary has little or no access to the internal state, the full ten
AES rounds may be overkill, and some designers proposed to use less rounds
for more efficiency. In these applications, the adversary has less control over the
AES than in the usual block-cipher setting, and has access to a very few number
of plaintext/ciphertext pairs. For example, in the LEX stream cipher [2], only
a quarter of the state is leaked at each round and to generate the next 32 bits
of keystream, only one round of AES is performed. Furthermore, in some par-
ticular attacks, such as side-channel attacks, only a small number of rounds of
the cipher needs to be studied [31, 4]. In the latter scenario, the adversary does
not know plaintext/ciphertext pairs, but that some difference in intermediate
states results in two different ciphertexts. Finally, in symmetric cryptanalysis,
statistical attacks usually use distinguishers on a small number of rounds and
then, extend these distinguishers to more rounds. Consequently, it is important
to search the best attack in this model.

Related Work. In this security model, statistical attacks may be not the best
possible attacks, since they usually require many pairs with specific input differ-
ence and algebraic attacks seem to be more well-suited. However, such attacks
using either SAT solvers or Gröbner basis algorithms [29, 10], have never been
able, so far, to endanger even very reduced versions of the AES even though its
structure exhibits some algebraic properties. These attacks encode the problem
into a system of equations, then feeds the equations to a generic, sometimes
off-the-shelf equation solver, such as a SAT-solver or a Gröbner basis algorithm.
The main obstacle in these approaches is the S-box, that only admits “bad”
representations (for instance, it is a high degree polynomial over the AES finite
field), and increases the complexity of the equations, even though low degree
implicit equations may also exist.

Our tools, instead of using pre-existing generic equations solvers, first run a
search for an ad hoc solver tailored for the equations to solve, build it, and then
run it to obtain the actual solutions. They can be applied to systems of linear
equations containing a non-linear permutation of the field, such as an S-box.
Our idea is to consider the S-box as a black box permutation. We only use few
properties of this function and our attacks works for any instantiation of the S-
box. This approach is reminiscent of the ideas used in [27] by Khovratovich et al.
where similar systems of linear equations are written to describe a hash function,
and where additional constraints enforce the message and chaining value to follow

a certain truncated differential characteristic inside the function. Solving the
equations would then yield a collision. The basic strategy for finding a message
pair conforming a differential characteristic consists in exhaustively trying values
for the variables and checking if the constraints are satisfied. In order to speed
up the collision search, they propose to look for a maximum-sized set of variables
that could take freely any values without violating the constraints. To this end,
they use linear algebra, and essentially consider x and S(x) to be independent
variables, to find such maximum set using a greedy strategy. During the search of
a conforming message pair, the free variables can take all the possible values while
the value of the other variables are deduced from the free ones. Consequently,
the search avoids trying bad values for the latter variables which improves the
probabilistic trial stage. The algorithm in [27] is however limited in that when
the greedy strategy aborts, no other solutions are explored.

Our Techniques and Results. Our tools try to find attacks automatically by
searching some classes of guess-and-determine and meet-in-the-middle attacks.
They take as input a system of equations that describes the cryptographic prim-
itive and some constraints on the plaintext and ciphertext variables for example.
Then, it solves the equations by first running a (potentially exponential) search
for a customized solver for the input system. Then, the solver is run, and the
solutions are computed.

We describe two tools. Our preliminary tool uses a depth-first branch-and-
bound search to find “good” guess-and-determine attacks. It has been (covertly)
used to generate some of the attacks found in [8], and outperformed human
cryptanalyst in several occasions. However, the class of attack searched for by
this preliminary tool is quite restricted, and it fails to take into account important
differential properties of the S-box. Our second, more advanced tool, allows to
find more powerful attacks, such as Meet-in-the-Middle attacks. For instance,
it automatically exploits the useful fact that an input and output difference
on the S-box determine almost uniquely the actual input and output values.
The algorithmic techniques used by this tool are reminiscent of the Buchberger
algorithm [9]. The results found by these algorithms are summarized in tables 1
and 2.

We improve many existing attacks in the “very-low data complexity” league.
For instance, we find a certificational attack on 4 full AES rounds using just a
single known plaintext, and a practical attack on the same 4 full AES rounds
with 4 chosen plaintexts. We also look at AES-based primitives. We indepen-
dently discovered (along with [21]) the best known attack on Pelican-MAC, and
automatically rediscover the best attacks on Alpha-MAC and LEX. We also used
our tool to find a new, faster, attack on LEX. Lastly, we improve the efficiency of
the state-recovery part of the Piret-Quisquater fault attack against the full AES.
While it required 232 elementary operations, it now takes about one second on
a laptop.

Attacks on round reduced version of the AES-128
This paper Previous Best Attacks

#Rounds Data Time Memory Time Memory Ref.
1 1 KP 232 216 248 1 [19]
1.5 1 KP 256 1
1.5 2 KP 224 216

2 1 KP 264 248 280 1 [8] ?
2 2 KP 232 224 248 1 [8]
2 2 CP 28 28 228 1 [8]
2.5 1 KP 288 288

2.5 2 KP 280 280

2.5 2 CP 224 216

3 1 KP 296 296 2120 1 [8] ?
3 2 CP 216 28 232 1 [8]
4 1 KP 2120 2120

4 2 CP 280 280 2104 1 [8]
4 4 CP 232 224

4.5 1 KP 2120 2120

KP — Known plaintext, CP — Chosen plaintext,
Time complexity is measured in encryption units unless mentioned otherwise.
Memory complexity is measured approximately
? : previously published, but found with these tools
“r.5 rounds” — r full rounds and the final round

Table 1. Summary of our Proposed Attacks on AES-128

Organization of the paper. In section 2, we describe how the equations are
constructed given the AES description and how we represent them. Then, we
present our preliminary guess-and-determine attack finder in section 3 and then
a more advanced tool that finds meet-in-the-middle attacks in section 4. Finally,
in section 5, we show four different attacks that were automatically found by the
previous tool.

2 Preliminaries

Let F256 denote the finite field with 256 elements used in the AES. We denote
the Sbox of the SubBytes transformation by S : F256 → F256. In this paper we
only consider the 128-bit version of the AES. Keys, plaintext, ciphertext and
internal states of the cipher are represented by 4 × 4 matrices over F256. In
such a matrix, we use the following numbering of bytes: byte zero is the top-left
corner, the first column is made of bytes 0-3, while the last column is made of
bytes 12-15, with byte 15 in the bottom-right corner. We also denote by M [•, j]
the j-th column of M . In r-round AES, a master key, K0 is expanded into r

Attacks on Primitives based on AES
Primitive Complexity G & D Part References

Data Time Memory Time Memory
Pelican-MAC 285.5 queries 285.5 285.5 [32]
Pelican-MAC 264 queries 264 264 232 224 Sect. 5.2
Alpha-MAC 265 queries 264 264 232 216 [32] †
LEX 236.3 bytes 2112 236 [17]
LEX 240 bytes 2100 264 280 1 [18]
LEX 236.3 bytes 296 280 264 264 Full version
LEX 250 bytes 280 248 216 28 Full version
AES-128 1 fault 232 232 232 232 [31]
AES-128 1 fault 224 216 224 216 Sect. 5.3
Time complexity is measured in encryption units unless mentioned otherwise.
Memory complexity is measured approximately
† : the tools can find automatically a comparable attack

Table 2. Summary of our Proposed Attacks on Primitives based on AES

round keys, K1, . . . ,Kr by a key-schedule algorithm1 which is described by the
following equations:

KSi :

Ki[•, j] + Ki[•, j − 1] +Ki−1[•, j] = 0, j = 1, 2, 3
Ki[0] + Ki−1[0] + S (Ki−1[13]) + RCONi = 0
Ki[1] + Ki−1[1] + S (Ki−1[14]) = 0
Ki[2] + Ki−1[2] + S (Ki−1[15]) = 0
Ki[3] + Ki−1[3] + S (Ki−1[12]) = 0

An AES round performs the following sequence of operations: SubBytes,
ShiftRows, MixColumns, and a round subkey addition. We refer the reader to
the AES specification for more details [30]. We denote by Xi the internal state
entering round i (i.e., before SubBytes), while Yi and Wi denote the internal
state before and after the MixColumns operation, respectively. The master key
is XORed to the plaintext before entering the first round. The process is sum-
marized by these equations, where MC denote the MixColumns matrix:

Ri :

Wi +MC ×

S (Xi[0]) S (Xi[4]) S (Xi[8]) S (Xi[12])
S (Xi[5]) S (Xi[9]) S (Xi[13]) S (Xi[1])
S (Xi[10]) S (Xi[14]) S (Xi[2]) S (Xi[6])
S (Xi[15]) S (Xi[3]) S (Xi[7]) S (Xi[11])

 = 0

Xi+1 +Wi +K1+i = 0

It is straightforward to form the system of equations E describing the full en-
cryption process along with the key schedule: we just have to concatenate some
KSi’s and some Ri’s (without forgetting the initial key addition). Since the

1 Note that the AES-256 has a different key-schedule

right-hand-side of all these equations are zero, we stop representing them from
now on.

Let us denote by V (X) the vector space spanned by 1, x, S(x) for all x ∈ X,
for any set of variables X. If we denote by X the set of all key and internal
state variables then the cipher equations can be seen as a subspace of V (X). We
also introduce the notation S(E) to denote the set of solutions of a system of
equations E.

3 A preliminary Tool for Guess-And-Determine Attacks

Confronted with a system of equations in V (X) (possibly describing a crypto-
graphic problem), the most naive way to obtain its solutions consists in enumer-
ating all the variables and retaining only the combination that satisfy all the
equations. However, equations in V (X) are such that, in a given equation, once
all the terms but one are known then the last one can be found efficiently. This
enables more or less efficient guess-and-determine techniques to solve the equa-
tions. In a cryptographic setting, guess-and-determine attacks are often found
when data is very scarce, and statistic attacks are therefore impossible. Guess-
and-determine attacks can be more or less sophisticated, but the simplest ones
typically take the following form:
1: for all values of some part of the (unknown) internal state do
2: Compute the full internal state
3: Retrieve the secrets
4: Try to regenerate available data using secrets
5: if match available data then return secrets
6: end for

The difficulty in finding such an attack is to find which parts of the internal
state to enumerate, and to find how to recover the rest. In this section, we present
a Preliminary Tool that finds such attacks automatically. It takes as input a
system of equations in V (X) and a set K0 ⊂ X of initially known variables—these
are the variables corresponding to the available data, for instance the plaintext,
the ciphertext, the keystream, etc. The Preliminary Tool returns a C++ function
(the “solver”) that enumerates its solutions (using negligible memory), along with
the exact number of elementary operations it performs.

This Preliminary Tool has for instance been used to find one known plaintext
attacks against 1, 1.5, 2, 2.5 and 3 rounds of AES. Some of these attacks have
been published in [8]. While performing the research that lead to the publica-
tion [8], the Preliminary Tool (which was designed for the occasion) improved
on the best results found by well-known human cryptanalysts. For instance,
prior to the publication of [8], the best attack on one (full) round of AES was a
guess-and-determine attack with complexity 248 guessed described in [19]. This
preliminary tool found in less than a second an attack with 5 guesses and gen-
erated its implementation: the C++ file is available on the web page of the first
author.

Knowledge Propagation. The core idea of the Preliminary Tool is quite sim-
ple: if there is a linear combination of the equations in which the values of all
terms are known except one, then the value of this last term can be determined
efficiently.

When applied to the AES, this simple procedure automatically harnesses the
simple and clean algebraic structure of the cipher. It automatically exploits the
linear relations existing in the key-schedule, as well as the MixColumns property:
if y = MixColumns(x) then knowlege of any four bytes in (x, y) is sufficient to
recover the remaining four in a unique way.

An “algebraic” Point of View. The acquisition of further knowledge, ei-
ther by “guessing” or “determining” has an algebraic effect on the equations.
Let K ⊂ X be a set of variables whose value is known. If we substituted the
values of known variables into the original equations E, we would get a system
with less variables. In fact, this reduced system is essentially the quotient space
of E by V (K): starting from an equation f ∈ E, its equivalence class [f] in the
quotient contains a representative where all the variables in K have disappeared.
Alternatively, the variable x can be deduced from K if either [x] or [S(x)] belong
to the quotient. We will write x ∈ Propagate(K) when it is the case.

3.1 Automatic Search For a Minimal Number of Guesses

Given a set of “known” variables K = K0, we may propagate knowledge and
obtain the value of new variables, yielding a new set of known variables K1.
But it may turn out that new variables may again be obtained from K1. We
therefore define the function Propagate∗(X) which returns the least fixed point
of Propagate containing X.

A guess-and-determine solver has been found as soon as we have found a setG
of “guesses” such that Propagate∗(G) = X. In that case, we will say that G is
sufficient. The problem thus comes down to automatically find a sufficient set
of minimal size.

The process of exhaustively searching such a guess-and-determine attack can
be seen as the exploration of a DAG whose nodes are sets of variables. The
starting node is the setK0, and the terminal node is X. For any set of variablesX,
and any y /∈ X there is an edge X y−→ X ∪ {y}, meaning that we may always
choose to enumerate y to gain knowledge. Finally, for any set of variablesX, there
is an edge X → Propagate∗(X), symbolizing the fact that we may propagate
knowledge.

In this setting, the objective of the Preliminary Tool is to find a path from K
to X traversing a small (if not the smallest) number of “guess” edges. Indeed,
the cost of the resulting attack is exponential in the number of traversed “guess
edges”. The problem is that the size of the DAG is exponential in the number of
variables.

The search works in a depth-first branch-and-bound fashion reminiscent of
the DPLL procedure implemented in many SAT-solvers. The pseudo-code of the

search procedure is shown in Figure 1. The function Explore(K,G,B) returns
a minimal set of variables to guess in order to be able to recover the entire
internal state. Here K denotes the set of currently known variables (i.e., the
current node of the DAG), G denotes the set of variables that have been guessed
so far, and B denotes the set of variables that have been guessed in the best
known solution. This implicit assumption is that |G| < |B|, and that the result
of explore has cardinality smaller than or equal to B. To find the best solution,
just run Explore(K0, ∅,X).

Fig. 1 Pseudo-code of the Preliminary Tool.
1: function Explore(K,G,B)
2: if K = X then return G
3: if K→ Propagate∗(K) then
4: return Explore(Propagate∗(K),G,B)
5: if |G| = |B| − 1 then return B
6: for all x ∈ FilterGuesses(K) do
7: recursive← Explore(K ∪ {x},G ∪ {x},B)
8: if |recursive| < B then B← recursive
9: if |G| = |B| − 1 then return B
10: end for
11: return B
12: end function

In order to speed-up the search procedure, we used several pruning strategies
that remove “guess” edges from the DAG without modifying its reachability
properties.

Local Pruning. In simple words, if we need to guess a new variable, and if
guessing x allows to deduce y, then it is useless to guess y instead of x. More
formally, we see that if y ∈ Propagate∗(K ∪ {x}), then:

Propagate∗(K ∪ {y}) ⊆ Propagate∗(K ∪ {x})

A reasonable pruning strategy is to consider only the candidate guesses that are
not “subsumed” by any other.

Global Pruning. A somewhat surprising consequence of the fact that Propagate∗

is monotonic brings in a powerful result, enabling us to further discard some bad
guesses.

Lemma 1. Let V X be an insufficient set of variables, and let G ⊆ X be a
sufficient set of variables. Then:

G ∩ (X−Propagate∗(V)) 6= ∅

If G denotes a sufficient set of minimal size, then Lemma 1 gives us a priori
knowledge on G, and it enables to choose the first guess of the search procedure
in X − Propagate∗(V) without risking to throw the best solution away. It is
also possible to use lemma 1 at any point of the search, but then V must be
chosen to be a superset of the currently known variables (otherwise we may not
learn anything).

The problem remains to find the biggest possible sets V of variables such
that Propagate∗(V) 6= X. At each step, there is a different tradeoff to make
between pruning and exploring the DAG. In any case, a simple greedy heuristic—
add to V the variable x that minimizes the size of Propagate∗(V ∪ {x})—
already give interesting results.

3.2 Limitations

The main limitation of this approach is that it completely fails to take into
account the differential properties of the S-box. For instance, it cannot exploit the
fact that when the input and output differences of the S-box are fixed and non-
zero, then at most 4 possible input values are possible. Therefore, this approach
alone does not bring useful result when more than one plaintext is available.
However, it can be used as a sub-component in a more complex technique. We
now move on to describe a generalization of this technique that allows to find
more powerful attacks.

4 A Tool for Meet-In-The-Middle Attacks

The equations describing the AES enjoy an interesting and important property.
Let us consider a partition of the set of variables, X = X1 ∪ X2. Then any
equation f ∈ E can be written f = f1+f2, with f1 ∈ V (X1) and f2 ∈ V (X2). In
some sense, these equations are separable. We will see that this allows a recursive
“meet-in-the-middle” approach.

4.1 Solving Subsystems Recursively

The simple algebraic structure of the equations allows us to efficiently extract
from a system E a subsystem containing only certain variables (say X1), by
simply computing the vector space intersection E∩V (X1). In the sequel we will
denote it by E (X1). We note that a solution of E is also a solution of E(X1), for
any X1 X, but that the converse is not true in general.

Now let us be given a partition X = X1 ∪ X2 and two black-box solvers A1

and A2 that find all the solutions of E(X1) and E(X2). The two sub-solvers A1

and A2 can be used to find the solutions S of the full problem E. An obvious way
would be to compute the solutions S1 of E(X1) and S2 of E(X2), and to test all
the solutions in the Cartesian product S1×S2. This would require about |S1|·|S2|
evaluations of the equations.

However, it is possible to do better. Firstly, we observe that the vectors
in S1 × S2 automatically satisfy the equations in E(X1) + E(X2). Therefore we
first compute a supplementary of E(X1)+E(X1) inside E (let us denote it byM).
The solutions of E are in fact the elements of S1 × S2 satisfying the equations
ofM. This already makes less constraints to check. Second, sieving the elements
satisfying these constraints can be done in roughly |S1|+ |S2| operations, using
variable separation and a table. Let (fi)1≤i≤n be a basis of E, and fi = gi + hi
with gi ∈ V (X1) and hi ∈ V (X2). If the values of all the variables in X1 (resp. X2)
are available, then the gi’s (resp. hi) may be evaluated. We denote by G (resp.H)
the function that evaluates all the gi on its input. We build two tables:

L1 ←− {(G(x1), x1) | x1 solution of E(X1)}
L2 ←− {(H(x2), x2) | x2 solution of E(X2)}

Then, the solutions of E are the pairs (x, y) for which there exist a z such
that (z, x) ∈ L1 and (z, y) ∈ L2. They can be identified efficiently by various
methods (sorting the tables, using a hash index, etc.). We have just combined A1

and A2 to form a new solver, A = A1 1 A2, that enumerates the solutions S
of E.

Note that the guess-and-determine attacks discussed in the previous section
form a particular case of this more general framework. They can be described
by a recursive combination where X2 always contain a single variable.

Complexity of the Combination. Given two sub-solvers A1 and A2, the
complexity and the properties of A1 1 A2 are easy to determine. Let us denote
by T (A) the running time of A, byM(A) its memory consumption, by V (A) the
set of variables occurring in the corresponding equations, and by S(A) the set
of solutions it outputs. The number of operations performed by the combination
is the sum of the number of operations produced by the sub-solvers, plus the
number of solutions (the time required to scan the tables, namely |S1|+ |S2|, is
in the worst case of the same order as the running time of the two sub-solvers).
However, we use the following approximation

T (A1 1 A2) = max
(
T (A1), T (A2), |S(E(V (A1) ∪ V (A2)))|

)
It is possible to store only the smallest table, and to enumerate the content

of the other “on the fly”, while looking for a collision. This reduces the memory
complexity to the maximum of the memory complexity of the sub-solvers, and
the size of the smaller table. This yields:

M(A1 1 A2) = max
{
M(A1),M(A2),min

(
|S(A1)| , |S(A2)|

)}
Heuristic Assumption On the Number of Solutions. Evaluating the com-
plexity of a given (possibly recursive) combination requires evaluating the num-
ber of solutions of various sub-systems. This is a difficult problem in general,

and in order to be able to quickly evaluate the properties of a combination,
we use the following heuristic assumption : if S1 are the solutions of E(X1),
then |S1| ≈ 28(|X1|−dimE(X1)). This heuristic assumption introduces a risk of fail-
ure, or of wrong estimation of the complexity. To protect ourselves against this
risk, we have tried, when possible, to implement the solvers and check if this
assumption holds.

4.2 Automatic Search for Recursive Combinations of Solvers

Given a system of equations, we would like to build an efficient solver by breaking
the problem down to smaller and smaller subsystems, recursively generating
efficient sub-solver for the sub-problems and combining them back.

Note that E({x}) cannot be further broken down, and is a “base case” of
the decomposition, which is dealt with by a “base solver”. We can safely assume
that E({x}) = 0, since otherwise, for a maximum cost of 28, one can determine x
uniquely (according to our hypothesis) and add it to the set of known variables.

Combining base solvers in various ways yields solving trees of various shapes.
It is often possible to construct several solving trees that solve the same problem
in different ways, and sometimes more or less efficiently.

Comparing Solvers. We therefore want to be able to compare solvers in a
meaningful way. We want A1 � A2 if A1 is overally more interesting (works
faster, finds solution of a bigger system). We also want the order relation to be
compatible with the combination operation (i.e., A1 � A2 implies A1 1 A3 �
A2 1 A3). We thus define:

A1 � A2 ⇐⇒ T (A1) ≤ T (A2) , V (A1) ⊇ V (A2) , |S (A1) | ≤ |S (A2) |

The equivalence relation induced by this order carries an interesting meaning:
if A1 � A2 and A2 � A1, then A1 and A2 offer essentially the same functionality.
The equivalence relation is also compatible with the combination operation. We
observe that given a set of variables X1, there can be only one maximal solver
(up to equivalence) for E(X1). Thus, our objective is now clearly identified: find
a maximal (i.e., the best) solver for E.

Exhaustive Search for the Best Recursive Solver. The procedure Ex-
haustiveSearch on fig. 2 computes the set of all maximal solvers for all sub-
systems of a given system of equations E. In particular, it will construct a max-
imal solver for E itself. The algorithm is reminiscent of (and inspired by) the
Buchberger algorithm for Gröbner bases [9]. The complexity of this algorithm
seems difficult to evaluate. It depends on the equations, and on the order in
which the combinations are performed. In any case, the size of its ouput is up-
per bounded by 2|X| (because it will return only one maximal solver for each
subset of X). The parameter Tup allows the user to enforce an upper-bound
on the time complexity of the generated solvers (by discarding the others). For

small values of Tup, this may for instance allow to prove the non-existence of
recursive solvers with complexity lower than a threshold. The running time of
the exhaustive search also gets smaller with lower values of Tup.

In practice, what dominates the execution of this algorithm is the computa-
tion of the dimension of the combination C, and the bookkeeping required to
updateG. A nice improvement is to use the Propagate∗ function from section 3:
each time a new solver C is constructed, we check whether V (C) is stable by
Propagate∗. If not, we combine it with the base solvers in Propagate∗(V (C))−
V (C), thus improving it without increasing its running time. We also have the
following theorem which allows us to reduce the size of the search space and to
refine solvers :

Theorem 1. Let X be a set of variables, x ∈ X and A an optimal solver for
E (X− {x}). If dimE (X− {x}) = dimE (X) − 1 then A 1 {x} is an optimal
solver for E (X).

Fig. 2 Exhaustive Search for a good recursive solver
1: function Add-Reduce(G,A)
2: if there exist A′ ∈ G such that A′ � A then return G
3: return {A} ∪ {A′ ∈ G | A � A′}
4: end function

5: function ExhaustiveSearch(E, Tup)
6: G← Base Solvers for E (one for each variable)
7: repeat
8: G′ ← G
9: for all pairs (A1,A2) ∈ G′ do
10: C ← A1 1 A2

11: if T (C) ≤ Tup then G← Add-Reduce(G,C)
12: end for
13: until G = G′

14: return G
15: end function

Randomized Search. The complexity of the exhaustive search is inherently
exponential, and exploring the whole space might not be feasible. In that case, a
non-exhaustive randomized search might find good results, without offering the
guarantee that they are the best possible. The procedure RandomizedSearch
on fig. 3 shows a possible randomized search that we have found to give good
results. The idea is again quite simple: at each step, we choose a random set
of variables Y , we build a solver for E(Y), and if it is not subsumed by any
previously known solver, we include it in the current solver list, and we try to
combine it with all the solvers we know. It would make sense to choose Y with
some care, for instance using the pruning strategies discussed in section 3.

There are many possible other ways to perform such a randomize search:
Choose the size of the random subsets of X according to some distribution,
periodically restart the procedure, periodically flush “bad” solvers from G, run
the exhaustive search for a while, fill G, then switch to randomized search, etc.

Fig. 3 Randomized Search for a good recursive solver
1: function RandomizedSearch(E, Tup)
2: G← ∅
3: loop
4: Y ← random subset of X, of size Tup

5: (Z1, Z2, . . .)← Propagate∗(Y)
6: B ← BaseSolver(Z1) 1 BaseSolver(Z2) 1 . . .
7: G← Add-Reduce(G,B)
8: for all A ∈ G do
9: C ← A 1 B
10: if T (C) > Tup then drop C
11: if V (C) = X then return C
12: L← Add-Reduce(G,C)
13: end for
14: end loop
15: end function

4.3 Usage

When an interesting solver for E is found by the search procedure, it is not
particularly complicated to recursively generate a C++ implementation thereof
(i.e., a function that takes as input the “known” variables, and returns the solu-
tions of the system of equations), or a text file that describes which variables to
enumerate, which tables to join, in a nearly human-readable language.

5 Applications

In this section, we show several attacks that were found by the tool of sec-
tion 4. The attacks were found completely automatically. The human interven-
tion consisted in writing down the right equations, which sometimes required
some knowledge of the primitive (for instance, to choose a sparse input differ-
ence for Pelican-MAC, or to use a 3-collision for LEX). The tool re-discovered
attacks equivalent to the best published results on LEX and Alpha-MAC. We
also used it to find a better attack on LEX (which is not included in this paper
due to lack of space, but is present in the full version). This illustrates that the
tool can be a useful research assistant, allowing the cryptanalyst to quickly test
a global idea (“let’s use a 3-collision against LEX”), while the tool takes care of

the tedious, nasty and delicate details. When possible, we implemented these at-
tacks (either manually or using code generated by the tools), and checked them
using a reference implementation of the AES.

These attacks that we improve upon are all relatively recent. We also improve
on the Piret-Quisquater fault attack against the AES, an older result that had
a suboptimal state recovery procedure. The tool automatically found a better
one.

5.1 Improved Attacks on Reduced-Round Rijndael

We present a new key-recovery attack with a negligible complexity about 28 en-
cryptions. This is a significant improvement of the best previous attack published
in [8] with a complexity about of 232 encryptions, demonstrating the power of
our tool. The adversary asks for the encryption of two plaintexts which differ
only in four bytes composing one column. The attack relies on Lemma 2 which
cleverly uses the linearity in the key-schedule of the AES.

Lemma 2. For all i, j ≥ 1 we have the following equation :

MC (Yi−1[•, j] + Yi[•, j − 1] + Yi[•, j])
= Xi[•, j] +Xi+1[•, j − 1] +Xi+1[•, j]

Fig. 4 Gray squares denote the presence of a difference. Black squares denote a
known difference.

X0 Y0 W0

K1

SR + SB MC

∆X0 ∆Y0 ∆W0

MC

X1 Y1 W1

K2

SR + SB MC

∆X1 ∆Y1 ∆W1

MC

P X2

δ0
δ3

δ2
δ1

0
1
1
1

11 1
2
2

2

22 2

3
3

3333
4
4
4

K0

We denote by δi the non-zero byte of column ∆Y0[•, i]. We begin by con-
structing, in table form, the inverse of the following functions:

– T1 : Y0[1, 3] 7−→ δ3
– T2 : Y0[2, 2] 7−→ δ2
– T3 : Y0[3, 1] 7−→ δ1
– Tij : X1[i, j] 7−→ δj , i+ j 6= 3

Then, for each possible value of X1[0, 3], we perform following steps :

1-a Get δ3 and, using T•3 and T1, get X1[•, 3] and Y0[1, 3].
1-b Compute X1[1, 2] by applying lemma 2.
2-a Get δ2 and, using T•2 and T2, get X1[•, 2] and Y0[2, 2].
2-b Compute X1[2, 1] by applying lemma 2.
3-a Get δ1 and, using T•1 and T3, get X1[•, 1] and Y0[3, 1].
3-b Compute X1[3, 0] by applying lemma 2.
4 Get δ0 and, using T•0, get X1[•, 0].
5 Compute K2 and check whether it is correct.

We have implemented and tested this attack. On average, there are 28.65

candidates for K2, which is very close to our hypothesis.
We can easily extend the attack to three rounds. The adversary simply asks

for the encryption of two plaintexts which differ only in one byte and guesses
the corresponding byte on K0. The configuration is the same as before and we
can apply the previous attack. This gives a new attack with a time complexity
of about 216 encryptions and negligible memory requirement.

5.2 Improved Forgery Attacks on Pelican-MAC

The best published attacks against Alpha-MAC and Pelican-MAC is [32]. For
Alpha-MAC, after having found an internal collision (this requires 265 queries),
the internal state is recovered with a guess-and-determine attack that makes
about 264 simple operations. For Pelican-MAC, an impossible differential attack
recovers the internal state with data and time complexity 285.5.

The general idea we exploit is to find a single collision in the internal state,
found by injecting message blocks following a fixed truncated differental char-
acteristic. Then, the state recovery problem is encoded in equations and given
to the tool. It must be noted that an attack with the same global complexity
has been independently found time by Dunkelman, Keller and Shamir [21], us-
ing an impossible differential. The “state-recovery” phase presented here is faster
though.

Pelican-MAC. We now present a new attack against Pelican-MAC, with time
and data complexity 264. We pick an arbitrary message block M1 and query the
MAC with 264 random two-block messagesM1 ‖M2, and store the (message,tag)
pair in a table. Then, we query the MAC on (M1+∆i) || (M ′2), where ∆i is zero
everywhere except on the first byte, andM ′2 is random. When a collision is found,
we know that the pair of internal states follows the differential characteristic of
figure 5 (there could be accidental difference cancellations with small probability
though).

We then wrote down the state-recovery problem as a system of equations:
two unknown states with a known one-byte difference yields two unknown states
with a known (full) difference. The tool of section 4 quickly found an attack that
runs in time and space about 232 (the attack with 224 in memory is much more
complicated to describe), and which is summarized by fig. 5. The key observation

(which the tool found all by itself) is that if α, β, γ and δ denote the differences
in Y1, then the differences in X2 are:

∆X2 =

02α β γ 03δ
α β 03γ 02δ
α 03β 02γ δ

03α 02β γ δ

Fig. 5 Gray squares denote the presence of a difference. Hatched squares denote
a known difference.

X0 Y0 X1

α

δ
γ

β

Y1 X2

1
1

1
1

2
2

2
2

3
3

3
3

4
4

4
4

Y2

1
1
1
1

2
2
2
2

3
3
3
3

4
4
4
4

1
1
1
1

2
2
2
2

3
3
3
3

4
4
4
4

X3 Y3

We extracted a description of the attack from the tool’s output. It proceeds
as follows:

1-a Guess bytes 0-3 of X3. The corresponding values in X ′3 can be found thanks
to the known difference in Y3.

1-b Partially decrypt in the second round to get suggestions for α, β, γ and δ.
1-c Store bytes 0− 3 of X3 in a hash table T0 indexed by (α, β, γ, δ)
2 Repeat the process with the second column of X3. Store bytes 4 − 7 of X3

in a table T1 indexed by (α, β, γ, δ).
3 Repeat the process with the third and fourth column of X3. Build tables T2
and T3

4 Enumerate (α, β, γ, δ). Look-up T0, T1, T2 and T3 and retrieve the parts of
X3 corresponding to (α, β, γ, δ), if present.

5 if (α, β, γ, δ) occurs in the 4 tables, then we get a complete suggestion for
X3. Decrypt 3 rounds and recover X0. Check if the input difference is right.

We implemented the state-recovery part of the attack (the collision-finding would
not be feasible in practice for us) and validated it experimentally. The number
of tested candidates is consistent with the expected number (232).

Alpha-MAC. Obviously, we cannot overally improve on the attack of [32],
since finding the collision dominates the running time. However, it is noteworthy
that the tool found a state-recovery procedure that requires only 232 elementary
operations and memory, when the first input message difference contains only
one active byte. This is much more efficient than its counterpart in [32].

5.3 Improvement to the Piret-Quisquater Fault Attack

In the Piret-Quisquater fault attack [31], an unknown difference is introduced
in byte 0 of the internal state X7. The adversary observes the output difference,
and recovers the secret key in time 232. Here, we show an improved procedure
(found by the Tool) working in time 224 and memory 216. Let us denote by δ
the difference S(X0[0, 0]) + S(X ′0[0, 0]). For the sake of simplicity, we describe
the attack assuming that the final MixColumns operation has not been removed.
The attack can be replayed without it, but some details become significantly
messier. The attack makes use of the following non-trivial observation, that we
extracted from the rool’s output:

Lemma 3. i) X1[1] can be deduced from X2[•, 0] and X2[•, 3]
ii) X1[2] can be deduced from X2[•, 0], X2[•, 2] and X2[•, 3]
iii) X1[3] can be deduced from X2[•, 0], X2[•, 1] and X2[•, 3]

Fig. 6 Fault attack against the AES. Gray square indicates the presence of a
difference.

X0

SB

SR

1
MC

ARK

2
2
5
8

X1

SB

SR

2
2

5
8

MC

ARK

3
3
3
3

9
9
9
9

6
6
6
6

3
3
3
3

X2

SB

SR

MC

ARK

X3

K1 K2 K3

1. Guess the difference in X1[0, 0]
2. Guess the actual value of X1[0, 0] and X1[1, 0]
3. Compute the difference in X2[•, 0] and X2[•, 3], then the actual values.
4. Use lemma 3, item i to filter the guesses of step 3. Only 216 out of 224 should

pass the test.
5. Guess the actual value of X1[2, 0]
6. Compute the difference in X2[•, 2], then the actual values.
7. Use lemma 3, item ii to filter the guesses of step 5. Only 216 should pass.
8. Guess the actual value of X1[3, 0]
9. Compute the difference in X2[•, 1], then the actual values.
10. Use lemma 3, item iii to filter the guesses of step 8. Only 216 should pass.
11. At this point we should have 216 candidates for (X1[•, 0], X ′1[•, 0]). From

those, X2 can be reconstructed entirely, as well as K3. Simply test all the
candidates.

We implemented this attack and validated it in practice. It terminates in
a couple of seconds on a laptop. In particular, we could check that the actual
number of tested candidates was consistent with the expected number.

References

1. Biryukov, A.: The Design of a Stream Cipher LEX. In Biham, E., Youssef, A.M.,
eds.: Selected Areas in Cryptography. Volume 4356 of Lecture Notes in Computer
Science., Springer (2006) 67–75

2. Biryukov, A.: Design of a New Stream Cipher-LEX. In Matthew J. B. Robshaw
and Olivier Billet, ed.: The eSTREAM Finalists. Volume 4986 of Lecture Notes in
Computer Science. Springer (2008) 48–56

3. Biryukov, A., Dunkelman, O., Keller, N., Khovratovich, D., Shamir, A.: Key Re-
covery Attacks of Practical Complexity on AES-256 Variants with up to 10 Rounds.
[22] 299–319

4. Biryukov, A., Khovratovich, D.: Two New Techniques of Side-Channel Cryptanal-
ysis. In Paillier, P., Verbauwhede, I., eds.: CHES. Volume 4727 of Lecture Notes
in Computer Science., Springer (2007) 195–208

5. Biryukov, A., Khovratovich, D.: Related-Key Cryptanalysis of the Full AES-192
and AES-256. In Matsui, M., ed.: ASIACRYPT. Volume 5912 of Lecture Notes in
Computer Science., Springer (2009) 1–18

6. Biryukov, A., Khovratovich, D., Nikolic, I.: Distinguisher and Related-Key Attack
on the Full AES-256. [23] 231–249

7. Biryukov, A., Nikolic, I.: Automatic Search for Related-Key Differential Charac-
teristics in Byte-Oriented Block Ciphers: Application to AES, Camellia, Khazad
and Others. [22] 322–344

8. Bouillaguet, C., Derbez, P., Dunkelman, O., Keller, N., Fouque, P.A.: Low Data
Complexity Attacks on AES. Cryptology ePrint Archive, Report 2010/633 (2010)
http://eprint.iacr.org/.

9. Buchberger, B.: Ein Algorithmus zum Auffinden der Basiselemente des Restk-
lassenringes nach einem nulldimensionalen Polynomideal. PhD thesis, University
of Innsbruck (1965)

10. Buchmann, J., Pyshkin, A., Weinmann, R.P.: A Zero-Dimensional Gröbner Basis
for AES-128. In Robshaw, M.J.B., ed.: FSE. Volume 4047 of Lecture Notes in
Computer Science., Springer (2006) 78–88

11. Cid, C.: Some Algebraic Aspects of the Advanced Encryption Standard. [16] 58–66
12. Cid, C., Leurent, G.: An Analysis of the XSL Algorithm. In Roy, B.K., ed.:

ASIACRYPT. Volume 3788 of Lecture Notes in Computer Science., Springer (2005)
333–352

13. Courtois, N., Pieprzyk, J.: Cryptanalysis of Block Ciphers with Overdefined Sys-
tems of Equations. In Zheng, Y., ed.: ASIACRYPT. Volume 2501 of Lecture Notes
in Computer Science., Springer (2002) 267–287

14. Daemen, J., Rijmen, V.: A NewMAC Construction ALRED and a Specific Instance
ALPHA-MAC. In Gilbert, H., Handschuh, H., eds.: FSE. Volume 3557 of Lecture
Notes in Computer Science., Springer (2005) 1–17

15. Daemen, J., Rijmen, V.: The Pelican MAC Function. Cryptology ePrint Archive,
Report 2005/088 (2005) http://eprint.iacr.org/.

16. Dobbertin, H., Rijmen, V., Sowa, A., eds.: Advanced Encryption Standard - AES,
4th International Conference, AES 2004, Bonn, Germany, May 10-12, 2004, Revised

Selected and Invited Papers. In Dobbertin, H., Rijmen, V., Sowa, A., eds.: AES
Conference. Volume 3373 of Lecture Notes in Computer Science., Springer (2005)

17. Dunkelman, O., Keller, N.: A New Attack on the LEX Stream Cipher. In
Pieprzyk, J., ed.: ASIACRYPT. Volume 5350 of Lecture Notes in Computer Sci-
ence., Springer (2008) 539–556

18. Dunkelman, O., Keller, N.: Cryptanalysis of the Stream Cipher LEX (2010) Avail-
able at http://www.ma.huji.ac.il/ nkeller/Crypt-jour-LEX.pdf.

19. Dunkelman, O., Keller, N.: The effects of the omission of last round’s mixcolumns
on aes. Inf. Process. Lett. 110(8-9) (2010) 304–308

20. Dunkelman, O., Keller, N., Shamir, A.: Improved Single-Key Attacks on 8-Round
AES-192 and AES-256. In Abe, M., ed.: ASIACRYPT. Volume 6477 of Lecture
Notes in Computer Science., Springer (2010) 158–176

21. Dunkelman, O., Keller, N., Shamir, A.: Alred blues: New attacks on aes-based
mac’s. Cryptology ePrint Archive, Report 2011/095 (2011) http://eprint.iacr.org/.

22. Gilbert, H., ed.: Advances in Cryptology - EUROCRYPT 2010, 29th Annual Inter-
national Conference on the Theory and Applications of Cryptographic Techniques,
French Riviera, May 30 - June 3, 2010. Proceedings. In Gilbert, H., ed.: EURO-
CRYPT. Volume 6110 of Lecture Notes in Computer Science., Springer (2010)

23. Halevi, S., ed.: Advances in Cryptology - CRYPTO 2009, 29th Annual International
Cryptology Conference, Santa Barbara, CA, USA, August 16-20, 2009. Proceed-
ings. In Halevi, S., ed.: CRYPTO. Volume 5677 of Lecture Notes in Computer
Science., Springer (2009)

24. Keliher, L.: Refined Analysis of Bounds Related to Linear and Differential Crypt-
analysis for the AES. [16] 42–57

25. Keliher, L., Meijer, H., Tavares, S.E.: Improving the Upper Bound on the Maximum
Average Linear Hull Probability for Rijndael. In Vaudenay, S., Youssef, A.M.,
eds.: Selected Areas in Cryptography. Volume 2259 of Lecture Notes in Computer
Science., Springer (2001) 112–128

26. Keliher, L., Meijer, H., Tavares, S.E.: New Method for Upper Bounding the Max-
imum Average Linear Hull Probability for SPNs. In Pfitzmann, B., ed.: EURO-
CRYPT. Volume 2045 of Lecture Notes in Computer Science., Springer (2001)
420–436

27. Khovratovich, D., Biryukov, A., Nikolic, I.: Speeding up Collision Search for Byte-
Oriented Hash Functions. In Fischlin, M., ed.: CT-RSA. Volume 5473 of Lecture
Notes in Computer Science., Springer (2009) 164–181

28. Monnerat, J., Vaudenay, S.: On Some Weak Extensions of AES and BES. In
Lopez, J., Qing, S., Okamoto, E., eds.: ICICS. Volume 3269 of Lecture Notes in
Computer Science., Springer (2004) 414–426

29. Murphy, S., Robshaw, M.J.B.: Essential Algebraic Structure within the AES. In
Yung, M., ed.: CRYPTO. Volume 2442 of Lecture Notes in Computer Science.,
Springer (2002) 1–16

30. NIST: Advanced Encryption Standard (AES), FIPS 197. Technical report, NIST
(November 2001)

31. Piret, G., Quisquater, J.J.: A Differential Fault Attack Technique against SPN
Structures, with Application to the AES and KHAZAD. In Walter, C.D., Çetin
Kaya Koç, Paar, C., eds.: CHES. Volume 2779 of Lecture Notes in Computer
Science., Springer (2003) 77–88

32. Yuan, Z., Wang, W., Jia, K., Xu, G., Wang, X.: New Birthday Attacks on Some
MACs Based on Block Ciphers. [23] 209–230

