
Memory Delegation?

Kai-Min Chung??1, Yael Tauman Kalai2, Feng-Hao Liu3, and Ran Raz4

1 Department of Computer Science, Cornell University, Ithaca, NY, USA.
chung@cs.cornell.edu

2 Microsoft Research New England, Cambridge MA, USA, yael@microsoft.com
3 Department of Computer Science, Brown University, Providence RI, USA.

fenghao@cs.brown.edu
4 Department of Mathematics and Computer Science, Weizmann Institute of Science,

Rehovot, Israel. ran.raz@weizmann.ac.il

Abstract. We consider the problem of delegating computation, where
the delegator doesn’t even know the input to the function being dele-
gated, and runs in time significantly smaller than the input length.
For example, consider the setting of memory delegation, where a dele-
gator wishes to delegate her entire memory to the cloud. The delegator
may want the cloud to compute functions on this memory, and prove
that the functions were computed correctly. As another example, con-
sider the setting of streaming delegation, where a stream of data goes by,
and a delegator, who cannot store this data, delegates this task to the
cloud. Later the delegator may ask the cloud to compute statistics on
this streaming data, and prove the correctness of the computation. We
note that in both settings the delegator must keep a (short) certificate of
the data being delegated, in order to later verify the correctness of the
computations. Moreover, in the streaming setting, this certificate should
be computed in a streaming manner.
We construct both memory and streaming delegation schemes. We present
non-interactive constructions based on the (standard) delegation scheme
of Goldwasswer et. al. [GKR08]. These schemes allow the delegation of
any function computable by an L-uniform circuit of low depth (the com-
plexity of the delegator depends linearly on the depth). For memory
delegation, we rely on the existence of a polylog PIR scheme, and for
streaming, we rely on the existence of a fully homomorphic encryption
scheme.
We also present constructions based on the CS-proofs of Micali. These
schemes allow the delegation of any function in P. However, they are
interactive (i.e., consists of 4 messages), or are non-interactive in the
Random Oracle Model.

1 Introduction

The problem of delegating computation considers a scenario where one party,
the delegator, wishes to delegate the computation of a function f to another

? A full version of this paper can be found on [CKLR11]
?? Supported by US-Israel BSF grant 2006060 and NSF grant CNS-0831289.

party, the worker. The challenge is that the delegator may not trust the worker,
and thus it is desirable to have the worker “prove” that the computation was
done correctly. Obviously, verifying this proof should be easier than doing the
computation.

This concept of “outsourcing” computation received a lot of attention in re-
cent years, partly due to the increasing interest in cloud computing, where the
goal is to outsource all the computational resources to a (possibly untrusted)
“cloud”. There are several reasons why the client (or delegator) may not trust
the cloud, and thus would like to receive proofs for the correctness of the compu-
tation. For example, the cloud may have an incentive to return incorrect answers.
Such an incentive may be a financial one, if the real computation requires a lot of
work, whereas computing incorrect answers requires less work and is unlikely to
be detected by the client. Moreover, in some cases, the applications outsourced
to the cloud may be so critical that the delegator wishes to rule out accidental
errors during the computation.

In order to ensure that the worker (or the cloud) performed the computation
correctly, we would like the worker to prove this to the delegator. Of course,
it is essential that the time it takes to verify the proof is significantly smaller
than the time needed to actually run the computation. At the same time, the
running time of the worker carrying out the proof should also be reasonable —
comparable to the time it takes to do the computation.

The problem of delegating computation has been studied excessively (see
Section 1.2 for an overview on previous work). However, most previous work
on delegation allow the delegator to run in time polynomial in the input size,
as long as this runtime is significantly smaller than the time it takes to do the
computation. For example, when delegating the computation of a function f
that runs in time T and has inputs of size n, typically the desired runtime of the
delegator is poly(n, log T) and the desired runtime of the worker is poly(T).

In this work, we want the delegator to run in time that is even smaller than
the input size n. Namely, we don’t allow the delegator even to read the input!
At first, this requirement may seem unreasonable and unachievable. So, let us
start by motivating this requirement with two examples.

Memory delegation. Suppose that Alice would like to store all her memory in
the cloud. The size of her memory may be huge (for example, may include all the
emails she ever received). Moreover, suppose she doesn’t trust the cloud. Then,
every time she asks the cloud to carry out some computation (for example,
compute how many emails she has received from Bob during the last year), she
would like the answer to be accompanied by a proof that indeed the computation
was done correctly. Note that the input to these delegated functions may be her
entire memory, which can be huge. Therefore, it is highly undesirable that Alice
runs in time that is proportional to this input size. More importantly, Alice
doesn’t even hold on to this memory anymore, since she delegated it to the
cloud.

Thus, in a memory delegation scheme, a delegator delegates her entire mem-
ory to the cloud, and then may ask the could to compute functions of this

memory, and expects the answers to be accompanied by a proof. Note that in
order to verify the correctness of these proofs, the delegator must save some
short certificate of her memory, say a certificate of size polylog(n), where n is
the memory size. The proofs should be verifiable very efficiently; say, in time
polylog(n, T), where T is the time it takes to compute the function. Moreover,
Alice should be able to update her memory efficiently.

Streaming delegation. Suppose that there is some large amount of data that is
streaming by, and suppose that a user, Alice, wishes to save this data, so that
later on she will be able to compute statistics on this data. However, Alice’s
memory is bounded and she cannot store this data. Instead, she wishes to dele-
gate this to the cloud. Namely, she asks the cloud to store this streaming data
for her, and then she asks the cloud to perform computation on this data. As in
the case of memory delegation, in order to later verify the correctness of these
computations, Alice must save some short certificate of this streaming data. As
opposed to the setting of memory delegation, here the certificate should be com-
puted (and updated) in a streaming manner.

The settings of memory delegation and streaming delegation are quite sim-
ilar. In both settings Alice asks the cloud to store a huge object (either her
memory or the streaming data). There are two main differences between the
two: (1) In the setting of streaming delegation, the certificates and updates
must be computed in a streaming manner. Thus, in this sense, constructing
streaming delegation schemes may be harder than constructing memory dele-
gation schemes. Indeed, our streaming delegation scheme is more complicated
than our memory delegation scheme, and proving soundness in the streaming
setting is significantly harder than proving soundness in the memory setting. (2)
In the setting of streaming delegation, the memory is updated by simply adding
elements to it. This is in contrast to the setting of memory delegation, where the
memory can be updated in arbitrary ways, depending on the user’s needs. How-
ever, in the memory setting, we allow the delegator to use the help of the worker
when updating her certificate (or secret state), whereas in the streaming setting
we require that the delegator updates her certificate on her own. The reason for
this discrepancy, is that in the memory setting the delegator may not be able to
update her certificate on her own, since she may want to update her memory in
involved ways (such as, erase all emails from Bob). On the other hand, in the
streaming setting, it seems essential that the delegator updates her certificate
on her own, since in this setting the data may be streaming by very quickly, and
there may not be enough time for the delegator and worker to interact during
each update.

1.1 Our Results

We construct both memory delegation and streaming delegation schemes. The
memory delegation scheme consists of an offline phase, where the delegator D
delegates her memory x ∈ {0, 1}n to a worker W. This phase is non-interactive,

where the delegator sends a single message, which includes her memory content x
to the worker W. The runtime of both the delegator and the worker in the offline
phase is poly(n), where n is the memory size. At the end of this phase, the
delegator saves a short certificate σ of her memory, which she will later use
when verifying delegation proofs.

The streaming delegation scheme, on the other hand, doesn’t have such an
offline phase. In the streaming setting, we consider the scenario where at each
time unit t a bit xt is being streamed. The delegator starts with some secret
state (or certificate) σ0, and at time unit t + 1 she uses her secret state σt and
the current bit xt+1 being streamed, to efficiently update her secret state from
σt to σt+1.

In both settings, each time the delegator D wants the worker W to compute a
function f(x), they run a delegation protocol, which we denote by Compute(f).
The memory delegation scheme also has an Update protocol, where the dele-
gator D asks the worker W to update her memory and to help her update her
secret state σ. The latter can be thought of as a delegation request, and the
guarantees (in term of runtime and communication complexity) are similar to
the guarantees of the Compute protocol.

In the streaming setting, the delegator updates her secret state on her own
in time polylog(N), where N is an upper bound on the length of the stream.
Namely, the update function, that takes as input a certificate σt and a bit xt+1,
and outputs a new certificate σt+1, can be computed in time polylog(N).

We present two memory and streaming delegation protocols. The first are
non-interactive (i.e, Compute(f) consists of two messages, the first sent by the
delegator and the second sent by the worker). They are based on the non-
interactive version of the delegation protocol of Goldwasser et. al. [GKR08,KR09],
denoted by GKR (though are significantly more complicated than merely run-
ning GKR). As in GKR, the efficiency of the delegator depends linearly on the
depth of the circuit being delegated. Our second memory and streaming del-
egation protocols are interactive (i.e., Compute(f) consists of four messages).
These schemes are based on CS-proofs of Micali [Mic94], and allow for efficient
delegation of all functions in P.

In what follows, we state our theorems formally. However, due to the lack
of space, we refer the reader to the full version of this paper [CKLR11] for the
formal definition of a memory delegation scheme and a streaming delegation
scheme.

Theorem 1 (Memory Delegation). Assume the existence of a poly-log PIR
scheme, and assume the existence of a collision resistant hash family. Let F
be the class of all L-uniform poly-size boolean circuits. Then there exists a
non-interactive (2-message) memory delegation scheme mDel, for delegating any
function f ∈ F . The delegation scheme, mDel has the following properties, for
security parameter k.

– The scheme has perfect completeness and negligible (reusable) soundness er-
ror.

– The delegator and worker are efficient in the offline stage; i.e., both the
delegator and the worker run in time poly(k, n).

– The worker is efficient in the online phase. More specifically, it runs in
time poly(k, S) during each Compute(f) and Update(f) operation, where S
is the size of the L-uniform circuit computing f . The delegator runs in time
poly(k, d) during each Compute(f) and Update(f) operation, where d is the
depth of the L-uniform circuit computing f .5

In particular, assuming the existence of a poly-logarithmic PIR scheme, and
assuming the existence of a collision resistent hash family, we obtain a memory
delegation scheme for L-uniform NC computations, where the delegator D runs
in time poly-logarithmic in the length of the memory.

Theorem 2 (Streaming Delegation). Let k be a security parameter, and
let N be a parameter (an upper bound on the length of the stream). Let F be
the class of all L-uniform poly-size boolean circuits. Assume the existence of a
fully-homomorphic encryption scheme secure against poly(N)-size adversaries.
Then there exists a streaming delegation scheme sDelF for F with the following
properties.

– sDelF has perfect completeness and negligible reusable soundness error.
– D updates her secret state in time polylog(N), per data item.
– In the delegation protocol, when delegating a function f ∈ F computable by

an L-uniform circuit of size S and depth d, the delegator D runs in time
poly(k, d, logN), and the worker W runs in time poly(k, logN,S).

In particular, assuming the existence of a fully-homomorphic encryption scheme
secure against adversaries of size poly(N), we obtain a streaming delegation
scheme for L-uniform NC computations, where the delegator D runs in time
poly-logarithmic in the length of data stream.

Remark. We note that the property we needed from the GKR protocol is that
the verifier does not need to read the entire input in order to verify, but rather
only needs to access a single random point in the low-degree extension of the
input. (We refer the reader to Section 2.1 for the definition and properties of
a low-degree extension.) We note that the CS-proof delegation scheme of Mi-
cali [Mic94], for delegating the computation of (uniform) Turing machines, also
has the property that verification can be done by only accessing a few random
points in the low-degree extension of the input, assuming the underlying PCP
is a PCP of Proximity [BSGH+05].

Indeed using this delegation scheme, we get a memory delegation scheme and
a streaming delegation scheme for all of P. Using this scheme, the Compute(f)
protocol is interactive (i.e., it is a 4-message protocol). The runtime of the del-
egator is polylog(T) and the runtime of the worker is poly(T), where T is the

5 Thus, for every constant c ∈ N, if we restrict the depth of f to be at most kc, then
the delegator is considered efficient.

runtime of the Turing machine computing the function f .6 Furthermore, the
memory delegation scheme relies only on the existence of a collision resistant
hash family, without the need of a poly-log PIR scheme.

Theorem 3 (Interactive Memory Delegation). Assume the existence of a
collision resistant hash family. Then there exists a memory delegation scheme
mDel, for delegating any function computable by a polynomial-time Turning ma-
chine. The delegation scheme, mDel has the following properties, for security
parameter k.

– The scheme has perfect completeness and negligible (reusable) soundness er-
ror.

– The delegator and worker are efficient in the offline stage; i.e., both the
delegator and the worker run in time poly(k, n).

– The worker is efficient in the online phase. More specifically, it runs in
time poly(k, T) during each Compute(f) and Update(f) operation, where T
is an upper-bound on the running time of f . The delegator runs in time
poly(k, log T) during each Compute(f) and Update(f) operation.

– Both Compute(f) and Update(f) operations consist of 4 message exchanges.

Theorem 4 (Interactive Streaming Delegation). Let k be a security pa-
rameter, and let N be a parameter (an upper bound on the length of the stream).
Let F be the class of all functions computable by a polynomial-time Turning
machine. Assume the existence of a fully-homomorphic encryption scheme se-
cure against poly(N)-size adversaries. Then there exists a streaming delegation
scheme sDelF for F with the following properties.

– sDelF has perfect completeness and negligible reusable soundness error.

– D updates her secret state in time polylog(N), per data item.

– In the delegation protocol, when delegating a function f ∈ F computable in
time T , the delegator D runs in time poly(k, logN, log T), and the worker W
runs in time poly(k, logN,T). The delegation protocol consists of 4 message
exchanges.

We note that in the Random Oracle Model (ROM) [BR97], the delegation
scheme of Micali is non-interactive. This yields a non-interactive memory dele-
gation scheme and a non-interactive streaming delegation scheme, for delegating
all functions in P, in the ROM.

Due to the lack of space, we focus on our results using the GKR delegation
protocol, and refer the reader to the full version of this paper [CKLR11] for the
details on our results using the CS-delegation protocol. However, we note that
the techniques and proofs are essentially the same in both cases.

6 We assume that T ≥ n.

1.2 Previous Work

Various delegation protocols have been proposed in the literature. Some provide
delegation protocols that are sound against any cheating worker, whereas oth-
ers provide delegation protocols that are secure only against computationally
bounded cheating worker (i.e., arguments as opposed to proofs). Some of these
protocols are interactive, whereas others are non-interactive. We survey some
of these results below, however, we emphasize that in all these solutions, the
delegator runs in time that is (at least) linear in the input size, and thus do not
apply to our settings of memory delegation or streaming delegation.

Interactive proofs. The celebrated IP=PSPACE Theorem [LFKN92,Sha92] yields
interactive proofs for any function f computable in polynomial space, with a ver-
ifier (delegator) running in polynomial time. Thus, the IP=PSPACE protocol
can be seen as a delegation protocol for languages in PSPACE \ P. However,
the complexity of the prover (worker) is only bounded by polynomial space (and
hence exponential time). This theorem was refined and scaled down in [FL93] to
give verifier complexity poly(n, s) and prover complexity 2poly(s) for functions f
computable in time T and space s, on inputs of length n. Note that the prover
complexity is still super-polynomial in T , even for computations that run in the
smallest possible space, namely s = O(log T).

The prover complexity was recently improved by Goldwasser et al. [GKR08]
to poly(T, 2s), which is poly(T) when s = O(log T). More generally, Goldwasser
et al. [GKR08] give interactive proofs for computations of small depth d (i.e.
parallel time). For these, they achieve prover complexity poly(T) and verifier
complexity poly(n, d, log T). (This implies the result for space-bounded compu-
tation because an algorithm that runs in time T and space s can be converted into
one that runs in time poly(T, 2s) and depth d = O(s2).) However, if we do not
restrict to computations of small space or depth, then we cannot use interactive
proofs. Indeed, any language that has an interactive proof with verifier running
time (and hence communication) TV can be decided in space poly(n, TV).

Interactive arguments. Interactive arguments [BCC88] (aka computationally
sound proofs [Mic00]) relax the soundness condition to be computational. Namely,
instead of requiring that no prover strategy whatsoever can convince the ver-
ifier of a false statement, we instead require that no computationally feasible
prover strategy can convince the verifier of a false statement. In this model,
Kilian [Kil92] and Micali [Mic00] gave constant-round protocols with prover
complexity poly(T, k) and verifier complexity poly(n, k, log T) (where k is the
security parameter), assuming the existence of collision-resistant hash func-
tions [BG02].

Toward non-interactive Solutions. This possibility of efficient non-interactive ar-
guments was suggested by Micali [Mic00], who showed that non-interactive argu-
ments with prover complexity poly(T, k) and verifier complexity poly(n, k, log T)

are possible in the Random Oracle Model (the oracle is used to eliminate inter-
action a la Fiat–Shamir [FS86]). Heuristically, one might hope that by instanti-
ating the random oracle with an appropriate family of hash functions, we could
obtain a non-interactive solution to delegating computation: first the delegator
(or a trusted third party) chooses and publishes a random hash function from
the family, and then, the proofs are completely non-interactive (just one mes-
sage from the prover to the verifier). However, the Random Oracle Heuristic
is known to be unsound in general [CGH04] and even in the context of Fiat–
Shamir [Bar01,GK03]. Thus, despite extensive effort, the existence of efficient
non-interactive arguments remains a significant open problem in complexity and
cryptography.

There has been some recent progress in reducing the amount of interaction
needed. Using a transformation of Kalai and Raz [KR09], the GKR delegation
protocol [GKR08] can be converted into a 2-message argument (assuming the
existence of single-server private-information retrieval (PIR) schemes). However,
like the interactive proofs of [GKR08], this solution applies only to small-depth
computations, as the verifier’s complexity grows linearly with the depth.

Very recently, Gennaro, Gentry, and Parno [GGP10], and the followup work
of Chung, Kalai, and Vadhan [CKV10], gave a 2-message delegation scheme for
arbitrary functions. However, these constructions have an offline phase, where
the delegator invests time poly(T, k) and computes a secret state (T is the time
it takes to compute the function, and k is the security parameter). In the online
phase, the delegator’s running time is reduced to poly(n, k, log T) for an input of
length n, and the worker’s complexity is poly(T, k). Thus, the delegator’s large
investment in the offline phase can be amortized over many executions of the
online phase to delegate the computation of f on many inputs. Their online
phase is not completely non-interactive, but rather consists of two messages.
However, in many applications, two messages will be necessary anyway, as the
delegator may need to communicate the input x to the worker.

We remark that one main drawback of these works [GGP10,CKV10] is that
soundness is only guaranteed as long as the adversarial worker does not learn
whether the delegator accepted or rejected the proofs.

In another followup work, Applebaum, Ishai, and Kushilevitz [AIK10] also
consider the offline/online setting, but focus on efficient solutions for one-time
delegation (i.e., the online phase can only be executed one time). They also
consider the case when the delegation functions are represented as arithmetic
circuits.

PCPs and MIPs. The MIP=NEXP Theorem [BFL91] and its scaled-down ver-
sion by Babai et al. [BFLS91] yield multi-prover interactive proofs and proba-
bilistically checkable proofs for time T computations with a prover running in
time poly(T) and a verifier running in time poly(n, log T), exactly as we want.
However, using these for delegation require specialized communication models
— either 2 non-communicating provers, or a mechanism for the prover to give
the verifier random access to a long PCP (of length poly(T)) that cannot be
changed by the prover during the verification.

Streaming Interactive Proofs. Recently, Cormode, Thaler, and Yi [CTY10] con-
sidered streaming interactive proofs, which is a strengthening of interactive
proofs where the input is given to the verifier in a streaming manner and the
verifier is restricted to have sub-linear (ideally, poly-logarithmic) space. They
observed that both the GKR protocol [GKR08] and universal arguments [BG02]
can be modified to yield efficient streaming interactive proofs/arguments.

Streaming interactive proofs are closely related to streaming delegation. The
main difference is that streaming interactive proofs correspond to one-time
streaming delegation, whereas in our streaming delegation model, the delegator
is allowed to delegate as many computations to the worker as she want. Indeed,
the GKR protocol is also the starting point of our construction of streaming
delegation scheme, and the main effort is to make the scheme reusable.

2 Preliminaries

2.1 Low Degree Extension

Let H be an extension field of GF[2], and let F be an extension field of H (and
in particular, an extension field of GF[2]), where |F| = poly(|H|).7 We always
assume that field operations can be performed in time that is poly-logarithmic
in the field size. Fix an integer m ∈ N. In what follows, we define the low degree
extension of an n-element string (w0, w1, . . . , wn−1) ∈ Fn with respect to F,H,m,
where n ≤ |H|m.

Fix α : Hm → {0, 1, . . . , |H|m − 1} to be any (efficiently computable) one-to-
one function. In this paper, we take α to be the lexicographic order of Hm. We
can view (w0, w1, . . . , wn−1) as a function W : Hm → F, where

W (z) =

{
wα(z) if α(z) < n,

0 otherwise.
(1)

A basic fact is that there exists a unique extension of W into a function
W̃ : Fm → F (which agrees with W on Hm; i.e., W̃ |Hm ≡W), such that W̃ is an
m-variate polynomial of degree at most |H| − 1 in each variable. Moreover, as is
formally stated in the proposition below, the function W̃ can be expressed as

W̃ (t1, . . . , tm) =

n−1∑
i=0

β̃i(t1, . . . , tm) · wi,

where each β̃i : Fm → F is an m-variate polynomial, that depends only on the
parameters H,F, and m (and is independent of w), of size poly(H,m) and degree
|H| − 1 in each variable.

7 Usually, when doing low degree extensions, F is taken to be an extension field of
GF[2], and H is simply a subset of F (not necessarily a subfield). In this work,
following the work of [GKR08], we take H to be a subfield. However, all that is
actually needed is that it is of size 2` for some ` ∈ N.

The function W̃ is called the low degree extension of w = (w0, w1, . . . , wn−1)
with respect to F,H,m, and is denoted by LDEF,H,m

w . We omit the index of
F,H,m when the context is clear. Also, sometimes we use W̃ for simplicity.

Proposition 1. There exists a Turing machine that takes as input an extension
field H of GF[2],8 an extension field F of H, and integer m. The machine runs in
time poly(|H|,m) and outputs the unique 2m-variate polynomial β̃ : Fm×Fm →
F of degree |H|−1 in each variable (represented as an arithmetic circuit of degree
|H|−1 in each variable), such that for every w = (w0, w1, . . . , wn−1) ∈ Fn, where
n ≤ |H|m, and for every z ∈ Fm,

W̃ (z) =
∑
p∈Hm

β̃(z, p) ·W (p),

where W : Hm → F is the function corresponding to (w0, w − 1, . . . , wn−1) as
defined in Equation (1), and W̃ : Fm → F is its low degree extension (i.e., the
unique extension of W : Hm → F of degree at most H− 1 in each variable).

Moreover, β̃ can be evaluated in time poly(|H|,m). Namely, there exists a
Turing machine that runs in time poly(|H|,m) that takes as input parameters
H,F,m (as above), and a pair (z, p) ∈ Fm × Fm, and outputs β̃(z, p).

Corollary 1. There exists a Turing machine that takes as input an extension
field H of GF[2], an extension field F of H, an integer m, a sequence w =
(w0, w1, . . . , wn−1) ∈ Fn such that n ≤ |H|m, and a coordinate z ∈ Fm. It runs
in time n · poly(|H|,m), and outputs the value W̃ (z), where W̃ is the unique
low-degree extension of w (with respect to H,F,m).

2.2 Delegation Schemes

In recent years, as cloud computing is gaining popularity, there have been many
attempts to construct efficient delegation schemes. Loosely speaking, a delega-
tion scheme is a protocol between a delegator D and a worker W, where the
delegator asks the worker to do some computation, and prove that he indeed
did the computation correctly. Typically, a delegation scheme is with respect to
a class of functions F , and the requirement is that on input (f, x) where f ∈ F
and x is in the domain of f , the worker outputs f(x), along with a proof (which
may be interactive or non-interactive). The requirement is that the worker runs
in time that is polynomial in the size of f (when representing f as a circuit),
and the delegator runs in time that is significantly shorter than the size of f (as
otherwise, it would simply compute f(x) on its own). In this work, we use the
2-message delegation protocol of [GKR08], which in turn uses a round reduction
technique from [KR09]. The protocol has the following guarantees.

8 Throughout this work, when we refer to a machine that takes as input a field, we
mean that the machine is given a short (poly-logarithmic in the field size) description
of the field, that permits field operations to be computed in time that is poly-
logarithmic in the field size.

Theorem 5. [GKR08,KR09] Assume the existence of a poly-logarithmic PIR
scheme. Let k be the security parameter, and let F be the family of functions
computable by L-space uniform boolean circuits of size S(n) and depth d(n) ≥
logS(n). Then, there exists a delegation protocol for F with the following prop-
erties.

1. The worker runs in time poly(S, k) and the delegator runs in time n·poly(k, d(n)).
2. The protocol has perfect completeness and soundness s ≤ 1

2 (can be made
arbitrarily small), where soundness is against any cheating worker of size

≤ 2k
3

.
3. The protocol consists of two messages, with communication complexity d(n) ·

poly(k, logS). Moreover, the first message sent by the delegator depends only
on her random coin tosses, and is independent of the statement being proved.

4. If the delegator is given oracle access to the low-degree extension of x, rather
than being given the input x itself, then it runs in time poly(k, d(n)), and the
protocol still has all the properties described above, assuming the parameters
H,F,m of the low-degree extension satisfy the following:

|H| = θ(d · log n), m = θ

(
log n

log d

)
, |F| = poly(|H|)

where poly is a large enough polynomial.9 Moreover, the delegator queries
the low-degree extension of x at a single point, which is uniformly random
(over his coin tosses).

Throughout this paper, we denote this protocol by GKR.

2.3 Merkle Tree Commitments

Definition 1. Let h : {0, 1}k × {0, 1}k → {0, 1}k be a hash function. A Merkle
tree commitment of a sting x ∈ {0, 1}n w.r.t. h, denoted by Th(x), is a k-bit
string, computed as follows: The input x is partitioned into m = dn/ke blocks
x = (B1, . . . , Bm), each block of size k. These blocks are partitioned into pairs
(B2i−1, B2i), and the hash function h is applied to each pair, resulting in m/2
blocks. Then, again these m/2 blocks are partitioned into pairs, and the hash
function h is applied to each of these pairs, resulting with m/4 blocks. This is
repeated logm times, resulting in a binary tree of hash values, until one block
remains. This block is Th(x).

3 Overview of Our Constructions

In what follows we present a high-level overview of our memory and streaming
delegation schemes. In this extended abstract, we focus on our non-interactive
constructions, based on the GKR delegation schemes, and only present the high-
level overview of these constructions. We refer the reader to the full version of
this paper [CKLR11] for a formal presentation of our constructions and analysis.

9 The larger poly is, the smaller the soundness becomes.

3.1 Overview of our Memory Delegation Scheme

The starting point of this work is the observation of Goldwasswer et. al. [GKR08],
that their delegation protocol can be verified very efficiently (in time sub-linear
in the input size), if the delegator has oracle access to the low-degree extension
of the input x. Moreover, as observed by [GKR08], the delegator needs to access
this low-degree extension LDEx at a single point z, which depends only on the
random coin tosses of the delegator.

This observation immediately gives rise to a memory delegation scheme with
one-time soundness: The delegator’s secret state will be (z,LDEx(z)). Then, she
will use this secret state in order to verify computation using the GKR protocol.
As was argued by Goldwasswer et. al., this indeed works if the delegator runs
the delegation protocol once. However, the soundness crucially relies on the fact
that the delegator’s secret state is indeed secret, and if the delegator uses this
state more than once, then soundness breaks completely.

One idea, following the idea of Gennaro et. al. [GGP10], is to use a fully
homomorphic encryption (FHE) scheme to encrypt all the communication, in
order to hide the secret state. This indeed works if the worker does not learn
whether the delegator accepts or rejects his proofs. However, if the worker does
learn the verdict of the delegator, then there are known attacks that break
soundness.

In the streaming setting, we follow this approach, and we succeed in over-
coming this problem, and construct a scheme that is sound even if the worker
does learn the verdict of the delegator. We could follow this approach in the
memory delegation setting as well. However, for several reasons, we choose to
take a different approach. First, the approach above relies on the existence of an
FHE scheme, whereas our memory delegation scheme relies on the existence of a
poly-logarithmic PIR scheme, arguably a more reasonable assumption. Second,
the approach above results with the delegator having a secret state, whereas in
our memory delegation scheme, the state of the delegator is public. Finally, the
construction and proof of the memory delegation scheme is simpler.

In our approach, instead of having (z,LDEx(z)) as the delegator’s secret
state, the delegator keeps a tree-commitment of the entire LDEx as her secret
state (see Section 2.3 for the definition of a tree-commitment). Namely, she
chooses a random hash function h from a collision-resistant hash family, and
keeps (h, Th(LDEx)) as her state. In addition to giving the worker her memory x,
she also gives him the hash function h. We stress that her state is not secret,
which makes the proof of security significantly simpler than that in the streaming
setting (where the delegator’s state is secret).

Very roughly speaking, when the delegator wishes to delegate the compu-
tation of a function f , they execute Compute(f) by simply running the (non-
interactive) delegation protocol GKR(f). Recall that at the end of the GKR
protocol the delegator needs to verify the value of LDEx(r) for a random r.
However, she doesn’t have x, since it was delegated to the prover, and all she
has is the state (h, Th(LDEx)). So, rather than computing the value of LDEx(r)

on her own, the worker will reveal this value, by sending the augmented path in
the Merkle tree corresponding to the leaf r.

Unfortunately the high-level description given above is a gross oversimplifica-
tion of our actual scheme, and there are several technical issues that complicate
matters. We elaborate on these in Section 3.3.

We mention that when the delegator wishes to update her memory from x to
g(x), she needs to update her secret state from (h, Th(LDEx)) to (h, Th(LDEg(x))).

10

However, she cannot perform this operation on her own, since she does not
have x. Instead she will delegate this computation to the worker, by requesting
a Compute(g′) operation, where g′(x) = Th(LDEg(x)).

3.2 Overview of our Streaming Delegation Scheme

Our streaming delegation scheme is similar to our memory delegation scheme
described above, and the main difference is in the way the certificate is generated
and updated, and in the way the worker reveals the value LDEx(r).

Generating and updating the certificate. Recall that in the memory delegation
scheme, the certificate of the delegator D consists of a tree-commitment to the
low-degree extension of her memory x. Namely, her certificate is (h, Th(LDEx)),
where h is a collision resistant hash function. Note that this certificate cannot be
updated in a streaming manner, since any change to x changes the low-degree
extension LDEx almost everywhere.

Instead, in the streaming setting, we replace the tree commitment with an
“algebraic commitment”, which has the property that it can be updated effi-
ciently when new data items arrive. The resulting certificate is a random point in
the low-degree extension of the stream x; i.e., (z,LDEx(z)) for a random point z.
This certificate is efficiently updatable, if we assume some upper-bound N on the
size of the stream, and we take parameters H,F,m of the low-degree extension,
such that

|H| = polylog(N), m = θ

(
logN

log logN

)
, |F| = poly(|H|) (2)

(this follows from Proposition 1).
As in the memory delegation scheme, at the end of each delegation protocol,

the delegator needs to verify the value of LDEx(r) at a random point r. In the
memory delegation scheme this was done using a Reveal protocol where the
worker reveals the augmented path of the leaf r in the Merkle tree-commitment
of LDEx. In the streaming setting, the Reveal protocol is totally different, since
the delegator cannot compute the tree-commitment of LDEx. Unfortunately,
unlike in the memory delegation scheme, in the streaming setting constructing
a reusable and sound reveal protocol is highly non-trivial.

10 Actually, for technical reasons she will need to choose a fresh hash function h′ ← H
during each Update. We discard this technical issue here.

The Reveal protocol. Our starting point is a basic reveal protocol Reveal1 de-
scribed in Figure 1. Note that the soundness of Reveal1 relies on the secrecy
of the certificate σ. Namely, assuming that W does not know the point z, it is
not hard to see, by the Schwartz-Zippel Lemma, that an adversarial worker can
cheat with probability at most d/|F|, where d is the (total) degree of LDEx.

Reveal1 protocol: D stores a secret state σ = (z,LDEx(z)), where x ∈ {0, 1}N and z
is a random point in Fm, and wants to learn the value of LDEx(s) from W.

– D sends to W the line `sz that passes through the points s and z. More specifically,
D chooses two random points α1, α2 ← F, and defines `s,z to be the line that
satisfies `s,z(α1) = z and `s,z(α2) = s.

– W returns a univariate polynomial p : F → F, which is the polynomial LDEx

restricted to the line `s,z (i.e., p = LDEx|`s,z).
– D checks whether p(α1) = LDEx(z), and if so accepts the value p(α2) = LDEx(s).

Otherwise, she rejects.

Fig. 1. Reveal1 protocol

However, note that the Reveal1 protocol is not reusable. Suppose that D
uses the above reveal protocol to learn the value of LDEx on two random points
s, s′ ∈ Fm. From the two executions, an adversarial worker W∗ receives two lines
`s,z and `s′,z, and can learn the secret point z by taking the intersection of the
two lines. Once W∗ learns z, W∗ can easily cheat by returning any polynomial
p∗ that agrees with LDEx only on point z but disagrees on the remaining points.

As observed by Gennaro et. al. [GGP10], a natural way to protect the se-
cret point z, is to run the above Reveal protocol under a fully-homomorphic
encryption (FHE) scheme. Namely, D generates a pair of keys (pk, sk) for a FHE

(Gen,Enc,Dec,Eval), and sends pk and an encrypted line ˆ̀
s,z = Encpk(`s,z) to

W, who can compute the polynomial p = LDEx|` homomorphically under the
encryption. Indeed, by the semantic security of FHE, an adversarial worker W∗

cannot learn any information from D’s message ˆ̀
s,z. This indeed makes the pro-

tocol reusable provided that W∗ does not learn the decision bits of D, as proved
in [GGP10,CKV10].

However, since the decision bit of D can potentially contain one bit informa-
tion about the secret point z, it is not clear that security holds if W∗ learns these
decision bits. In fact, for both of the delegation schemes of [GGP10,CKV10],
which use FHE to hide the delegator D’s secret state, there are known attacks
that learn the whole secret state of D bit-by-bit from D’s decision bits.

Fortunately, we are able to show that a variant of the Reveal1 protocol de-
scribed in Figure 2 is reusable even if W∗ learns the decision bits of D. The main
difference between Reveal1 and Reveal2 is that in Reveal2, the delegator D uses
a random two-dimensional affine subspace instead of a line, and uses an FHE to
mask the entire protocol.

Reveal2 protocol: D stores a secret state σ = (z,LDEx(z)), where x ∈ {0, 1}N and z
is a random point in Fm, and wants to learn the value of LDEx(s) from W.

– D does the following.
1. Generate a pair of keys (pk, sk)← Gen(1k) for a fully homomorphic encryp-

tion scheme FHE.
2. Choose a random two-dimensional affine subspace Ss,z ⊂ Fm that contains

the points s and z. More specifically, choose two random points α1, α2 ← F2

and let Ss,z ⊂ Fm be a random two-dimensional affine subspace that satisfies
Ss,z(α1) = z and Ss,z(α2) = s.

3. Send Ŝs,z ← Encpk(Ss,z) and pk to W.
– W homomorphically computes the two-variate polynomial p = LDEx|Ss,z under

the FHE (denote the resulting ciphertext p̂), and sends p̂ to D.
– D decrypts and checks whether p(α1) = LDEx(z), and if so accepts the value
p(α2) = LDEx(s).

Fig. 2. Protocol Reveal2

We prove that no efficient adversarial W∗ can learn useful information about
the secret point z from the Reveal2 protocol. We note that the proof of the above
statement is highly non-trivial, and is one of the main technical difficulties in
this work. Informally, we first prove a “leakage-resilient lemma”, which claims
that the ciphertext Ŝrz and the decision bit b of D (which depend on the strategy
of W ∗) do not give too much information about Srz to W∗. In other words, the
random subspace Ss,z still has high (pseudo-)entropy from the point of view
of W∗. Then we use an information-theoretic argument to argue that a random
point z in a sufficiently random (with high entropy) subspace Ss,z is statistically
close to a random point in Fm, which implies that W∗ does not learn useful
information about z.

The Field Size. Recall that by Schwartz-Zippel Lemma, an adversarial worker
can cheat with probability at most d/|F|, where d is the (total) degree of LDEx.
Recall that in our setting of parameters:

|H| = polylog(N), m = θ

(
logN

log logN

)
, |F| = poly(|H|).

Thus, a cheating worker can cheat (and more importantly, obtain information
about the secret z) with probability d/|F| = O(1/polylog(N)), which is not low
enough.

The idea is to reduce the cheating probability to negligible by simply in-
creasing the field size to be super-polynomial. However, we cannot increase the
field size in the GKR protocol, since it will increase the complexity of the worker.
Instead, we use an extension field F̃ of F, of super-polynomial size, only in the cer-
tificate and the Reveal protocol, but run the GKR protocols as before. Namely,

the secret state is σ = (z,LDEF̃,H,m(z)) where z ← F̃m, The GKR protocol is
run exactly as before with the parameters (H,F,m).

3.3 Additional Technicalities

The high-level description given above (in Sections 3.1 and 3.2) is a gross over-
simplification of our actual schemes, and there are several technical issues that
complicate matters.

Recall that in the overview above, we claimed that Compute(f) merely runs
GKR, in addition to a Reveal protocol which helps the delegator verify the GKR
protocol.11 There are several technical reasons why this actually does not work.
In what follows, we explain what are the main technical problems with this
simple idea, and we give the highlevel idea of how to overcome these problems.

1. The first technicality (the easiest one to deal with), is that the GKR del-
egation scheme does not have a negligible soundness error. In our setting,
especially in the setting of memory delegation, it is very important to have
negligible soundness. The reason is that if the soundness is non-negligible,
then a cheating worker may cheat in the update procedure of the memory
delegation scheme (which is also being delegated). The problem is that if
a worker cheats even once in an update procedure, all soundness guaran-
tees are mute from that point on. So, we really need the soundness error to
be negligible. In order to reduce the soundness error, we will run the GKR
protocol in parallel u times (for any parameter u such that 1/2u = ngl(k),
where k is the security parameter). We denote the u-fold parallel repetition

of GKR by GKR(u). As a result the worker will need to reveal to u random
points in the low-degree extension: LDEx(r1), . . . ,LDEx(ru).

2. The second technical point is more subtle. In the offline stage, when the
delegator computes the tree commitment Th(LDEx), she needs to choose
the parameters H,F,m for the low-degree extension. The typical choice for
these parameters is:

|H| = polylog(n), |F| = poly(|H|), m = O

(
log n

log logn

)
,

where n = |x|. When delegating the computation of a function f , the worker

and delegator run GKR(u)(f) and need to verify LDEx(ri) = vi for random
points r1, . . . , ru. However, here the parameters of the low-degree extension
LDEx depend on the depth d of the circuit computing f . Namely, looking
at the parameters given in [GKR08] (see Theorem 5), the parameters of the
low-degree extension are

|H′| = θ(d · log n), m′ = θ

(
log n

log d

)
, |F′| = poly(|H′|).

Therefore, the worker cannot simply execute the Reveal protocols of the
memory delegation or the streaming delegation. In the memory setting, the
tree commitment is w.r.t. parameters H,F,m whereas the delegator needs

11 The Reveal protocol in the memory setting is totally different from the Reveal pro-
tocol in the streaming setting.

to verify LDEF′,H′,m′

x (ri) = vi. In the streaming setting, the secret state of

the delegator is (z,LDEF,H,m
x (z)), as opposed to (z,LDEF′,H′,m′

x (z)), thus the
Reveal protocol described in Section 3.2 doesn’t work.
We get around this technical problem by delegating the functions gri(x) ,
LDEH′,F′,m′

x (ri). Luckily, these functions can be computed by a poly-size
circuit of depth at most log2 n, assuming the delegated function f is of poly-
size (see Proposition 1). We delegate the computation of each of these gri
using GKR(u) to ensure negligible soundness. Thus, finally the worker will
need to reveal to u2 points in LDEx (u points for each gri).

12

3. The final technical difficulty is that all these algorithms need to run in paral-
lel, since we want our final delegation schemes to be non-interactive (i.e., to
consist of only two messages). Typically, there is no problem in running sev-
eral two-message protocols in parallel [BIN97,CHS05]. However, in our case,
the delegator uses a common secret input in these protocols. Namely, the del-
egator uses secret randomness r1, . . . , ru ∈ (F′)m′

in the parallel repetition of
the delegation protocol GKR(f) which ends with her needing to verify that

LDEH′,F′,m′

x (ri) = vi for every i ∈ [u]. In addition she uses these same ri’s
in the delegation protocols GKR(gri). Moreover, at the end of each of the
GKR(gri) protocols, the delegator needs to verify that LDEH,F,m

x (zi,j) = wi,j
for random points zi,1, . . . , zi,u ∈ Fm. Finally, they also run a reveal protocol
for each zi,j , denoted by Reveal(zi,j).
We note that the protocol GKR(f) (resp. GKR(g)) is not sound if the ri’s
(resp. zi,j ’s) are a priori known to the worker. To ensure that soundness
still holds even if we run all these algorithms in parallel, we mask parts of
the delegator’s message using a PIR scheme or an FHE scheme, and then
we claim that the soundness error remains negligible. To this end, we use a
“parallel composition lemma”, which roughly states that if a set of protocols
Π1, . . . Πt are executed in parallel, and the verifiers use the same common
private randomness p in all these protocols, then the soundness remains if
the messages of the verifiers hide this common secret randomness p.

Acknowledgments

We are very grateful to Shai Halevi for collaborating with us in the initial phase
of this work, and to Salil Vadhan for several helpful discussions.

References

[AIK10] Benny Applebaum, Yuval Ishai, and Eyal Kushilevitz. From secrecy to soundness:
Efficient verification via secure computation. In ICALP (1), pages 152–163, 2010.

[Bar01] Boaz Barak. How to go beyond the black-box simulation barrier. In FOCS, pages
106–115, 2001.

12 We note that there are several ways to improve efficiency, such as thinking of
(gr1 , . . . , gru) as one function. However, for the sake of simplicity of exposition, we
focus on the simplest (rather than most efficient) solution.

[BCC88] Gilles Brassard, David Chaum, and Claude Crépeau. Minimum disclosure proofs of
knowledge. Journal of Computer and System Sciences, 37(2):156–189, 1988.

[BFL91] László Babai, Lance Fortnow, and Carsten Lund. Non-deterministic exponential time
has two-prover interactive protocols. Computational Complexity, 1:3–40, 1991.

[BFLS91] László Babai, Lance Fortnow, Leonid A. Levin, and Mario Szegedy. Checking compu-
tations in polylogarithmic time. In STOC, pages 21–31, 1991.

[BG02] Boaz Barak and Oded Goldreich. Universal arguments and their applications. In
Proceedings of the 17th Annual IEEE Conference on Computational Complexity,
pages 194–203, 2002.

[BIN97] Mihir Bellare, Russell Impagliazzo, and Moni Naor. Does parallel repetition lower the
error in computationally sound protocols? In FOCS, pages 374–383, 1997.

[BR97] Mihir Bellare and Phillip Rogaway. Minimizing the use of random oracles in authen-
ticated encryption schemes. In ICICS, pages 1–16, 1997.

[BSGH+05] Eli Ben-Sasson, Oded Goldreich, Prahladh Harsha, Madhu Sudan, and Salil P. Vadhan.
Short pcps verifiable in polylogarithmic time. In IEEE Conference on Computational
Complexity, pages 120–134, 2005.

[CGH04] Ran Canetti, Oded Goldreich, and Shai Halevi. The random oracle methodology,
revisited. Journal of the ACM, 51(4):557–594, 2004.

[CHS05] Ran Canetti, Shai Halevi, and Michael Steiner. Hardness amplification of weakly
verifiable puzzles. In TCC, pages 17–33, 2005.

[CKLR11] Kai-Min Chung, Yael Tauman Kalai, Feng-Hao Liu, and Ran Raz. Memory delegation.
Cryptology ePrint Archive, Report 2011/273, 2011. http://eprint.iacr.org/.

[CKV10] Kai-Min Chung, Yael Kalai, and Salil P. Vadhan. Improved delegation of computation
using fully homomorphic encryption. In CRYPTO, pages 483–501, 2010.

[CTY10] G. Cormode, J. Thaler, and K. Yi. Verifying computations with streaming interactive
proofs. Technical Report TR10-159, ECCC Report, 2010.

[FL93] Lance Fortnow and Carsten Lund. Interactive proof systems and alternating time-
space complexity. Theoretical Computer Science, 113(1):55–73, 1993.

[FS86] Amos Fiat and Adi Shamir. How to prove yourself: Practical solutions to identification
and signature problems. In CRYPTO, pages 186–194, 1986.

[GGP10] Rosario Gennaro, Craig Gentry, and Bryan Parno. Non-interactive verifiable comput-
ing: Outsourcing computation to untrusted workers. In CRYPTO, pages 465–482,
2010.

[GK03] Shafi Goldwasser and Yael Tauman Kalai. On the (in)security of the fiat-shamir
paradigm. pages 102–113, 2003.

[GKR08] Shafi Goldwasser, Yael Tauman Kalai, and Guy N. Rothblum. Delegating computation:
interactive proofs for muggles. In STOC, pages 113–122, 2008.

[Kil92] Joe Kilian. A note on efficient zero-knowledge proofs and arguments (extended ab-
stract). In STOC, pages 723–732, 1992.

[KR09] Yael Tauman Kalai and Ran Raz. Probabilistically checkable arguments. In CRYPTO,
2009.

[LFKN92] Carsten Lund, Lance Fortnow, Howard J. Karloff, and Noam Nisan. Algebraic methods
for interactive proof systems. J. ACM, 39(4):859–868, 1992.

[Mic94] Silvio Micali. Cs proofs (extended abstracts). In FOCS, pages 436–453, 1994.
[Mic00] Silvio Micali. Computationally sound proofs. SIAM J. Comput., 30(4):1253–1298,

2000.
[Sha92] Adi Shamir. IP = PSPACE. Journal of the ACM, 39(4):869–877, 1992.

