
Secure Computation on the Web:
Computing without Simultaneous Interaction

Shai Halevi1, Yehuda Lindell2?, and Benny Pinkas2? ??

1 IBM T.J. Watson Research Center
shaih@alum.mit.edu
2 Bar-Ilan University

lindell@biu.ac.il, benny@pinkas.net

Abstract. Secure computation enables mutually suspicious parties to
compute a joint function of their private inputs while providing strong
security guarantees. However, its use in practice seems limited. We argue
that one of the reasons for this is that the model of computation on the
web is not suited to the type of communication patterns needed for secure
computation. Specifically, in most web scenarios clients independently
connect to servers, interact with them and then leave. This rules out the
use of secure computation protocols that require that all participants
interact simultaneously.
We initiate a study of secure computation in a client-server model where
each client connects to the server once and interacts with it, without
any other client necessarily being connected at the same time. We point
out some inherent limitations in this model and present definitions that
capture what can be done. We also present a general feasibility result and
several truly practical protocols for a number of functions of interest. All
our protocols are based on standard assumptions, and we achieve security
both in the semi-honest and malicious adversary models.

1 Introduction

Web-servers are a dominant communication medium in today’s society. Some
examples include users of social networks that communicate by sending mes-
sages to the web-servers of their network to “write on the wall” of their friends
(and these servers distribute the messages to the intended recipients), program
committees that use web-based systems to share their reviews and discussions,
readers that participate in on-line polls on newspaper web sites, bidders engag-
ing in on-line auctions, voters using web-based election systems, and so on. In
many cases, direct interaction between users is impossible simply because users
are off line most of the time. In almost all systems today, the web-server serves
not only as a communication medium but also as a trusted party. It receives
all the information from the users and does all the processing, and it is trusted
by the users to only use their information as needed for the application (or as
? Supported by the European Research Council as part of the ERC project LAST.

?? Supported in part by the Israel Science Foundation (grant No. 860/06).

specified in the “privacy policy” of the web site). This may be appropriate in
some cases, but there are many cases where there is no reason for users to trust
the server or each other, and indeed many cases where this trust was found to
be unjustified in retrospect. (For example see [1].)

A natural approach toward rectifying this problem is to use cryptographic
techniques for eliminating trusted parties. Indeed, the last three decades saw
a very significant body of work within the cryptography research community
(going under the general name of secure multi-party computation), devoted to
finding various ways of transforming systems that rely on trusted parties into
systems that do not need them (see, e.g., [2, Ch. 7] for an overview).

In fact, with client-side processing in Web 2.0 we now have a huge mass of
parties with serious computing platforms and conflicting interests, all wishing
to interact with each other to perform some joint tasks. This seems to offer the
perfect setting for mass deployment of secure multi-party computation, but in
reality such mass deployment has not happened. Some of the reasons are related
to practical issues with browser technology (e.g., clients cannot verify that they
run the right program), but here we focus on a more cryptographic reason; specif-
ically, the fact that our current multi-party protocols seem incompatible with the
communication patterns of today’s web applications. Much of the work on secure
multi-party computation assumes that all parties remain on-line throughout the
computation, and most solutions also rely on strong communication primitives
like broadcast. In contrast, clients on the web connect in an ad hoc manner via a
server at different times, and typically do not communicate with each other. We
thus ask whether one can eliminate the need for the web-server being a trusted
party, even in this setting of loosely connected parties that are off line most of
the time.

Beyond the practical interest that we discussed above, addressing multi-party
computation in this model is also of significant theoretical interest. It is not at
all clear that theoretically meaningful secure computation can be achieved in
a setting where each party carries out a single interaction with an untrusted
server at a different time (either in the semi-honest or the malicious settings).
The power of this model is therefore a natural theoretical question to consider.

We note at the outset that a naive approach using fully homomorphic en-
cryption [3, 4] does not solve the problem of secure computation in our setting.
This is due to the fact that although each party can encrypt its input and the
computation can be done homomorphically, there is still the need to decrypt the
final ciphertexts while preventing decryption of the intermediate ciphertexts.

1.1 Our Contributions

We initiate a study of secure computation with loosely connected parties. We
define security, and observe that in this setting it is not always possible to achieve
the same level of security as in the standard setting of secure computation.
We formalize what can be achieved in this model, and then present theoretical
and practical constructions, for both the cases of semi-honest and malicious
adversaries. Our constructions all rely on standard assumptions (like the DDH

assumption) and are in the standard model. The only exception is that for our
practical construction in the case of malicious adversaries, we use random oracles
in order to obtain practical non-interactive zero-knowledge via the Fiat-Shamir
paradigm [5].

We begin by considering a very basic setting of a server and n parties, denoted
P1, P2, . . . , Pn. Each party Pi has an input xi, and the parties wish to jointly
evaluate a function f(x1, . . . , xn) (e.g., the sum of the inputs, or their maximum
value), such that the server learns the output value. To simplify the exposition,
consider the case where the parties talk to the server in order, first party P1,
then party P2, all the way up to party Pn, and if everyone cooperates then after
talking to them all the server should be able to learn the output value.

We stress that although our basic model assumes a pre-set order, many of
the protocols that we describe allow the parties to interact with the server in
an arbitrary order, which need not be set up in advance. However, all our pro-
tocols assume that the clients connect to the server sequentially, removing this
requirement is an interesting open problem.

Consider first the case of semi-honest parties. It is easy to see that even in this
model protocols cannot always provide the same privacy guarantees as standard
secure function evaluation protocols (SFE). For example, if the last n− i parties
collude with the server, then they can always evaluate the residual function
g~xi (zi+1, . . . , zn) def= f(x1, . . . , xi, zi+1, . . . , zn) on as many inputs (zi+1, . . . , zn)
as they like. This is due to the fact that these last n − i parties must have the
capability of computing f(x1, . . . , xi, xi+1, . . . , xn) for every possible vector of
their inputs xi+1, . . . , xn. Furthermore, since the first i parties are no longer
involved, nothing prevents the last n− i parties from just rerunning the rest of
the protocol many times with different inputs zi+1, . . . , zn.

We formalize the inherent “leakage” in this model by introducing the concept
of a one-pass decomposition of a function: A decomposition of an n-input function
f(x1, x2, . . . , xn) is a vector of functions {fi(yi−1, xi) : i = 1, . . . , n}, such that for
all inputs x1, . . . , xn it holds that f(x1, x2, . . . , xn) = fn(· · · f2(f1(x1), x2) . . . , xn).
Here yi represents the intermediate result based on the inputs of parties P1

through Pi and y0 is defined as the empty string. One can see that every pro-
tocol for computing f in our model corresponds to some (possibly randomized)
decomposition of f , roughly because we can think of yi as the state of the server
after interacting with party Pi. However, as we will see, not all decompositions
are equal; some are better than others (and some are incomparable). We there-
fore break up the problem of secure computation in this model into (a) finding
a “good” decomposition of the given function f , and (b) devising a protocol to
securely compute a given decomposition.

Good decompositions. Although every function f can be decomposed as de-
scribed above, some decompositions are more “interesting” or “natural” than
others. A trivial example is that any function f can be decomposed by setting
the functions f1, . . . , fn−1 to all be the identity function and then setting fn = f .
A more interesting example is that the sum function, f(x1, . . . , xn) =

∑
i xi, can

be decomposed by letting the fi’s be the partial sums, fi(yi−1, xi) = yi−1 + xi.

Clearly, the decomposition of the sum function using partial sums is much better
than its decomposition using the identity functions, since it reveals much less
information to the adversary (in the case of a corrupted server and corrupted
party Pn the adversary learns all the inputs when the identity function is used,
in contrast to a partial sum only).

We are particularly interested in “minimum-disclosure” decompositions of f ,
where yi = fi(· · ·) carries no more information about the inputs x1, . . . , xi than
the truth-table of the residual function g~xi from above. For example, it is easy
to see that for the sum function, having the fi’s be the partial sums is indeed a
minimum-disclosure decomposition, because given xi+1, . . . , xn and the output
yn it is possible to compute the partial sum yi. In Section 2 we define this notion
of minimum-disclosure decompositions and describe many functions that have
efficient minimum-disclosure decompositions. Then in Section 4.1 we describe
practical protocols for securely computing some of these decompositions (in a
PKI model). The functions that we can handle in this fashion include all the
symmetric functions on small domains (and also some other functions). Thus,
for example, we construct a practical protocol for computing a referendum, as
privately as is possible in our model.

Securely computing any decomposition. Given a specific decomposition
of f (that codifies the “leakage” that we are willing to tolerate while comput-
ing f in our model), what does it mean for a protocol to securely compute this
decomposition? In keeping with the intuition that yi represents the partial result
up to party Pi, we set out to formalize the requirement that these partial results
are the only thing that can be learned by the bad parties.

First, observe that many of the intermediate results yi’s can be hidden from
the corrupted parties. For example, if parties P1, P2 and P3 are honest then we
expect the partial results y1 and y2 to remain hidden, even if a dishonest P4

learns y3. In fact our formal definition requires a little more: A protocol is said
to securely compute a given decomposition of f if the only partial result that
it leaks is the one after the last honest party. Namely, the view of any set of
adversarial parties can be simulated knowing only the value yi = fi(. . .), where
i is the index of the last honest party. Furthermore, if the server is honest, then
nothing but the output of f is revealed. (We remark that a weaker definition
where bad parties can learn all the yi’s for which party Pi+1 is dishonest, is
essentially equivalent to the notion of i-Hop homomorphic encryption from [6].)

In Section 5 we consider the task of devising a protocol to securely compute
a particular given decomposition of a function f . Using re-randomizable garbled
circuits similar to Gentry et al. [6] we show that under the DDH assumption
any efficient decomposition of f can be securely computed in our model (if a
PKI is available). Our treatment simplifies the techniques from [6], in that we
use re-randomizable garbled circuits only in conjunction with re-randomizable
encryption (whereas [6] needed also re-randomizable OT). We also strengthen
the construction from [6] slightly in order to deal with malicious parties. See
Section 5 for more details about these points.

1.2 Some Related Work

Some of the techniques that we use are similar to those used in the work of Harnik
et al. [7]. In that work they considered a multi-party computation settings where
the inputs of parties are incorporated one at a time, with the goal of minimizing
the number of OTs that are needed every time a new input is received. In
particular our protocols for symmetric functions are reminiscent of their tables
method.

Another related work is that of Choi et al. [8]. They considered a setting
where the parties can interact in a setup phase before receiving their inputs,
and then they want to minimize online communication while maintaining full
security. Their results are not applicable in our model, however, since, as we
explained, full security cannot be obtained in our model (and this remains true
even given an interactive setup phase).

2 One-Pass Decompositions

Throughout the text we denote the number of parties (not counting the server)
by n, and the security parameter by m. For an integer n we denote Zn =
{0, 1, . . . , n − 1} and [n] = {1, 2, . . . , n}. In the text we also refer to random-
ized functions which can be viewed as distributions over deterministic functions
all with the same domain and range.

Definition 1 (Decomposition). Let f : Dn → R be an n-variable function
(from domain D to range R). A deterministic one-pass decomposition of f is
a sequence of functions f1 : D → {0, 1}∗, fi : {0, 1}∗ × D → {0, 1}∗ for i =
2, 3, . . . , n − 1, and fn : {0, 1}∗ × D → R such that for all x1, . . . , xn ∈ D, it
holds that f(x1, x2, . . . , xn) = fn(· · · f2(f1(x1), x2) · · · , xn).

A randomized one-pass decomposition of f is a sequence of n randomized
functions with the same domains and ranges as above, such that the equality
above holds with overwhelming probability (in the implicit security parameter).

Below we will omit the “one-pass” qualifier and just call this sequence of func-
tions a decomposition. We often also omit the distinction between deterministic
and randomized decompositions. Given a decomposition f̄ = 〈f1, . . . , fn〉, we
denote by f̃i the concatenation of the first i functions,

f̃i(x1, x2, . . . , xi)
def= fi(· · · f2(f1(x1), x2) · · · , xi). (1)

2.1 Minimum-Disclosure Decompositions

As was mentioned above, some decompositions are better than others and some
functions have efficient decompositions that are “as good as possible” (in that
they do not leak anything beyond the ability to compute the residual func-
tions gi), while others do not. Fix an n-input function f and n particular inputs

x1, . . . , xn. For all i = 0, . . . , n we denote by g~xi the “residual function” with the
first i variables fixed. That is, for ~x = 〈x1, . . . , xn〉, define

g~xi (zi+1, . . . , zn) def= f(x1, . . . , xi, zi+1, . . . , zn). (2)

(In particular g~x0 = f and g~xn is the constant function g~xn(·) = f(x1, . . . , xn).)
As we explained above, any decomposition of f must at least leak the ability
to compute g~xi on all residual input vectors zi+1, . . . , zn. A minimum-disclosure
decomposition is one that does not leak anything else. Namely, for all i it is pos-
sible to compute the output of the composition of the first i functions f1, . . . , fi,
given only oracle access to the residual function g~xi (·).

Definition 2 (Minimum-Disclosure). A decomposition f̄ is minimum disclo-
sure if there exists a probabilistic black box simulator S such that for every vector
of inputs ~x = 〈x1, . . . , xn〉 of total length ` and every i ∈ [n], Sg

~x
i (·)(`, n, i) runs

in time polynomial in `+n, and the output of Sg
~x
i (·)(`, n, i) equals f̃i(x1, . . . , xi),

except with negligible probability.3

We stress that not all functions have efficient minimum-disclosure decompo-
sitions,4 as is stated in the following theorem.

Theorem 1. If one-way functions exist, then there are functions that do not
have efficient minimum-disclosure decompositions.

The theorem is proved in the full version of the paper [9]. Roughly, a decompo-
sition is minimum-disclosure only when the residual functions gi are efficiently
learnable. Hence, a pseudorandom function f : Seeds× Inputs→ Outputs (when
viewed as a two-input function f(s, x)) does not have an efficient minimum-
disclosure decomposition. In the full version we also include a discussion about
functions with incomparable decompositions.

2.2 Some Functions with Minimum-Disclosure Decompositions

The sum function. Perhaps the simplest example is the sum function over
a group: f(x1, . . . , xn) =

∑n
j=1 xj . In this case the decomposition into partial

sums fi(yi−1, xi) = yi−1 + xi is clearly minimum disclosure. Indeed, we have
f̃i(x1, . . . , xi) =

∑i
j=1 xj , and the simulator S can simply query g~xi (0, . . . , 0) and

return the answer that it gets: g~xi (0, . . . , 0) = f(x1, . . . , xi, 0, . . . , 0) =
∑i
j=1 xi.

Selection functions. Other illustrating examples of functions with minimum-
disclosure decompositions are selection functions. Consider first the selection
function with index at the end, f(x1, . . . , xn−1, j) = xj . Here we can see that
the trivial decomposition, where for i < n we have fi = identity and for i = n

3 For randomized functionalities we require that {Sg~x
i (·)(`, n, i)} c≡ {f̃i(x1, . . . , xi)}.

4 The residual truth table of a function is always minimum disclosure; however, it may
be exponentially large.

we have fn = f , is minimum disclosure. This is because given oracle access to g~xi
for any i < n, the simulator can just query it with varying inputs of the selection
variable j, thus getting all the inputs x1, . . . , xi.

On the other hand, consider the selection function with index at the begin-
ning, f(j, x2, . . . , xn) = xj . Here a minimum disclosure decomposition would
maintain a value and a state bit (wait/done), such that when the state is wait
then the value is j, and when the state is done then the value is xj . To see that
this is indeed minimum disclosure, notice that given access to g~xi the simulator
can test if the selection index j is larger than i, e.g., by testing if g~xi gives differ-
ent values on 〈0, 0, . . . , 0〉 and 〈1, 1, . . . , 1〉. If j > i then the simulator can find j
by testing which is the input that g~xi depends on, and if j < i the simulator can
output xj (which is the output of g~xi on every input).

Binary symmetric functions. An n-input binary symmetric function takes n
bits as input, and the output depends only on the number of 1’s in the input
(i.e., the Hamming weight). Some examples include the AND, OR, PARITY,
and MAJORITY functions. We note that the truth table of a binary symmet-
ric function has an efficient representation: we just list for every 0 ≤ j ≤ n
the output of f on inputs with Hamming-weight j. Thus, the truth table is of
length n+ 1 rather than of length 2n. We also note that for a binary symmetric
function f and input ~x, all the corresponding g~xi ’s are also binary symmetric
functions, and moreover the truth table of g~xi+1 can be computed from the value
of xi and the truth table of g~xi . Specifically, for xi = 0 the truth table of g~xi+1

is obtained from that of g~xi by removing the last row, and for xi = 1 the truth
table of g~xi+1 is obtained by removing the first row from that of g~xi .

For a binary symmetric function f , consider the decomposition that outputs
at every step i the truth table of g~xi . The above observations imply that this de-
composition is efficient, and it is minimum disclosure since it is easy to compute
the truth table of a symmetric function given oracle access to that function.

Symmetric functions over other domains. The observations from above can
be extended to symmetric functions over other domains. We assume without loss
of generality that the domain is Zc = {0, 1, . . . , c − 1} for some integer c. An
n-input symmetric function over Zc is one where permuting the inputs does not
affect the output. In other words, the output depends only on how many of the
inputs assume what value of the domain. This type of function is common for
statistical measurement, including functions like SUM, AVERAGE, MEDIAN,
MAJORITY, MAXIMUM and more.

The truth table for a symmetric function over Zc can be expressed using a
single row for all the inputs that have exactly j0 inputs of value 0, j1 inputs
of value 1, and so on up to jc−2 inputs of value c − 2 and jc−1 = n −

∑c−2
i=0 ji

inputs of value c − 1. That is, we have a row in the truth table for every c-
vector of non-negative integers 〈j0, j1, . . . , jc−1〉 that sum up to n, so we have a
total of

(
n+c−1
n

)
rows. Hence the truth table is of polynomial-size O(nc) for any

constant c. Moreover, in this case we again have the properties that all the g~xi ’s

are symmetric, and the truth table of g~xi+1 can be computed efficiently from the
value of xi and the truth table of g~xi+1 (see the full version for more details).

Also similarly to the binary case, when the truth table has polynomial size
then it can be constructed efficiently given only oracle access to the function,
hence the functions that output at every step i the truth table of g~xi constitute
a minimum-disclosure decomposition of the original symmetric function f .

3 Server-Based One-Pass Protocols

All our protocols are staged in the PKI model. Namely, where each party knows
the public keys of all other parties, and each honest party knows the private key
corresponding to its own public key.

A server-based one-pass protocol for n clients and a server is a sequence of n
two-party protocols, π̄ = 〈π1, . . . , πn〉, which are carried out sequentially with πi
being a two-party protocol between the server and the ith client Pi. The output
of the protocol π̄ is defined as the output of the server after the last protocol πn.
Below we denote the clients by P1, P2, . . . , Pn and the server by Pn+1. We denote
the joint outputs of an adversary A and server Pn+1 after a real execution of
π̄ with inputs ~x = (x1, . . . , xn), vector of public/private key-pairs ~kp, auxiliary
input z to A, corrupted parties I ⊆ [n + 1], and security parameter m, by
REALπ̄,A(z),I(~x, ~kp, 1m).

Securely computing a decomposition. We define security via the ideal/real
paradigm in the stand-alone setting with static corruptions. In the ideal world,
there is an additional trusted party that carries out the computation for the
parties. In our setting, the trusted party receives the input of all clients and the
identities of corrupted parties, and sends to the server the function output as
well as any information that is inherently learned in our model (based on who
is corrupted). Note that the ideal model is defined for a function decomposition
f̄ . (It is not necessary to include f since f̄ fully determines f .)

In the ideal world of the semi-honest model, the output that is given to the
server is always the value of the function f(x1, . . . , xn) on the given inputs of
all the clients. In addition, if the server is corrupted, then the trusted party
sends it the value f̃i(x1, . . . , xi) = fi(· · · , f2(f1(x1), x2) · · · , xi) where i is the
index of the last honest party. We denote the outputs of a semi-honest ideal-
world adversary S and server Pn+1 after an ideal execution with inputs ~x =
(x1, . . . , xn), auxiliary input z to S, corrupted parties I ⊆ [n + 1], and security
parameter m, by IDEALsh

f̄ ,S(z),I(~x, z, 1
m).

The ideal-world of the malicious model is exactly the same, except that cor-
rupted clients may send any arbitrary inputs to the trusted party, not necessarily
the ones from their input. By convention, if a client sends input ⊥, then the out-
put of the function is defined to be ⊥ (representing an aborted execution). The
joint output here is denoted IDEALmal

f̄ ,S(z),I(~x, z, 1
m).

Definition 3 (Securely Computing a Decomposition). Let f be an n-input
function and let f̄ = 〈f1, . . . , fn〉 be a decomposition of f . A server-based one-

pass protocol π̄ securely computes the decomposition f̄ in the semi-honest (resp.
malicious) model, if for every non-uniform probabilistic polynomial-time semi-
honest (resp. malicious) adversary A in the real world, there exists a non-uniform
probabilistic polynomial-time adversary S for the semi-honest (resp. malicious)
ideal world, such that for all ~x ∈ ({0, 1}∗)n and z ∈ {0, 1}∗{

IDEALf̄ ,S(z),I(~x, 1
m)
}

c≡
{
REALπ̄,A(z),I(~x, ~kp, 1m)

}
where the key-pairs ~kp are chosen as described above.

We stress that if the server is honest, then in all cases nothing is learned
by the adversary. When the function has a minimum-disclosure decomposition
and a protocol that realizes that decomposition, then that protocol is called
optimally-private.

Definition 4 (Optimally-Private). Let f be an n-input function. We say
that π̄ is an optimally-private server-based one-pass protocol for computing f if
there exists a minimum-disclosure decomposition f̄ of f such that π̄ securely
computes f̄ in the semi-honest (resp. malicious) model.

4 Practical Optimal Protocols

In Section 5 we show that any decomposition can be securely computed given a
public-key infrastructure, under the DDH assumption. As a corollary we obtain
that any function that has a minimum-disclosure decomposition can be com-
puted with optimal privacy. However, this construction is far from being practi-
cal; even for simple functions and semi-honest adversaries, it requires computing
hundreds of exponentiations per gate. In this section, we present highly efficient
protocols for specific examples from Section 2.2. These protocol are truly practi-
cal and could be implemented, for example, in a conference program committee
review site in order to carry out secure voting. (With only a few tens of users,
the solution that provides security in the presence of malicious adversaries would
only require a few seconds of computation by each client and the server.) In the
full version we describe protocols for the other functions from Section 2.2.

4.1 Protocols for Symmetric Functions

We begin by showing how to securely compute any binary symmetric function,
based on the truth-table decomposition described in Section 2.2.

The Semi-Honest Case. Recall that symmetric functions have a concise truth
table of size n+ 1, that the minimum-disclosure decomposition for functions of
this class consists of the truth table of the g~xi ’s, and that computing the next
truth table is carried out by removing the first or last row of the current truth
table. Intuitively, our protocol works by having the first client P1 encrypt each
entry of the truth table iteratively (in a layered, or onion like, structure) under

all parties’ public keys. Then, each party in turn removes the encryption under
its public key, and removes the first row of the truth table if its input is 0, or
the last row of the truth table if its input is 1. After the last party, the table
contains just one row which is encrypted under the server’s key.

This solution is not quite enough, however. For example, a collusion of P1

and P3 can learn P2’s exact input (irrespective of whether or not the server is
corrupted). To see this, observe that P1 generates all the ciphertexts. In addi-
tion, it can see all the ciphertexts received by P3 after P2 decrypts its layer of
encryption. Hence, given P3’s view P1 can determine if P2 removed the first or
the last row of the table.

We solve this problem by using rerandomizable public-key encryption. Loosely
speaking, this means that given an encryption c = Epk(x) and the public key pk
it is possible to generate an equivalent encryption c′ = Epk(x) with independent
randomness. We stress that the rerandomization must work on all layers of the
(onion-type) encryption. The requirements here are therefore different from the
standard notion. Let Epk(x; r) denote an encryption of x using randomness r, and
let Epk1,...,pkn+1(x; r1, . . . , rn+1) = Epk1(· · ·Epkn+1(x; rn+1) · · · ; r1) denote a lay-
ered encryption starting with the encryption of x under pkn+1 with randomness
rn+1 and re-encrypting under each pki in turn, using randomness ri. For short-
hand, we write Ē~pk(x;~r) where ~pk = (pk1, . . . , pkn+1) and ~r = (r1, . . . , rn+1).5

We define:

Definition 5. A public-key scheme (G,E,D) is layer rerandomizable if there
exists a procedure R such that for every x ∈ {0, 1}∗ and every ~r ∈ ({0, 1}∗)n,{

~pk , Ē~pk(x;~r), Ē~pk(x;~s)
}
≡
{
~pk, Ē~pk(x;~r), R(~pk, Ē~pk(x;~r))

}
where ~pk = (pk1, . . . , pkn) is such that all the pki’s are in the range of G, and
~s ∈R ({0, 1}∗)n is a vector of uniformly distributed random strings.

We stress that the definition requires the rerandomization to work for all
randomness ~r (even randomness that is “badly chosen”). However, it is assumed
that all the public keys are “legitimate” in that they are in the range of G. Layer
rerandomizability can be obtained from any additively homomorphic encryption
scheme. Namely, define an initial layered encryption of x by

Ē~pk(x;~r) def= 〈Epk1(x1; r1), . . . , Epkn
(xn; rn)〉

where x1, . . . , xn are chosen at random under the constraint that ⊕nj=1xj = x.
A jth step layered encryption of x is defined as

Ēj~pk(x;~r) def=
〈
x1, . . . , xj , Epkj+1(xj+1; rj+1), . . . , Epkn(xn; rn)

〉
Rerandomization works by adding to the xi’s random δi’s that sum up to zero,
and then rerandomizing each ciphertext separately, under the appropriate key.
5 Below we abuse these notations somewhat, denoting by Ē~pk(x;~r) a procedure that

encrypts x under all the public keys but not necessarily in an onion fashion.

In addition, it is possible to decrypt in layers by having each party decrypt its
ciphertext in turn and pass on the decrypted value along with the rest. Namely,
the jth party transforms a (j−1)th level layered encryption to a jth level layered
encryption.

A more efficient layer rerandomizable encryption scheme can be constructed
from El Gamal. Let G be a group of prime order q with generator G. Then, for
public-key h = Gα and Epk(x) = (Gr, hr·x), defineR(pk, 〈u, v〉) = 〈u ·Gs, v · hs〉,
where s ∈R Zq. Observe that for u = Gr, v = hr · x it follows that R(pk, u, v) =
(Gr+s, hr+s · x), which is distributed identically to an encryption of x under an
independent random string r′ = r + s mod q.

In order to make this layer rerandomizable without increasing the size of
the ciphertext, we define layered encryption as follows. Each party Pi has an
El Gamal public-key hi = Gαi relative to the same group (G, q, g) as before.
However, an encryption of x under the public keys h1, . . . , hn is defined to be
(Gr, (H1,n)r ·x), where H1,n =

∏n
j=1 hj = G

∑n
j=1 αj . In general, we define Hi,n =∏n

j=i hj = G
∑n

j=i αj . It remains to show how Pi “decrypts” under its key hi and
rerandomizes the result. Given (u, v) where u = Gr and v = (Hi,n)r · x, party
Pi decrypts by computing u′ = u and v′ = v · u−αi . This works because taking
u = Gr and v = x · (Hi,n)r we have that

v · u−αi = x · (Hi,n)r · (Gr)−αi = x ·
(
G

∑n
j=i αj

)r
·
(
G−αi

)r = x ·
(
G

∑n
j=i+1 αj

)r
and so (u′, v′) is a valid encryption of x with randomness r, under public key
Hi+1,n. Rerandomization is then carried out as described above, using public-key
Hi+1,n. That is, we compute u′′ = u′ ·Gs and v′′ = v′ · (Hi+1,n)s.

Returning to symmetric functions, in our protocol we will now use layer
rerandomizable encryption to encrypt the lines of the truth table, and each
party in turn will decrypt its own layer, remove either the first or last row from
the table, rerandomize and then send back to the server.

Theorem 2. Let f be a binary symmetric function. If the encryption scheme
(G,E,D) is layer rerandomizable, and all honest parties’ public keys are gen-
erated honestly using G, then the protocol above is an optimally-private server-
based one-pass protocol for computing f , in the presence of semi-honest adver-
saries. Moreover, it is secure even if the semi-honest adversary can choose the
randomness for the protocol in an arbitrary manner.

Proof (sketch). We separately prove the case that Pn+1 is corrupted and the case
that it is not. If Pn+1 is not corrupted, then it suffices to prove that it obtains
correct output and that the adversary’s view can be simulated without any help
from the trusted party. Correctness is immediate from the construction. The view
of the adversary can be simulated since everything is encrypted under the key of
the honest server. Specifically, every time an honest party Pi is supposed to carry
out its interaction with the server, construct a brand new truth table Ci which
contains n − i + 1 encryptions of 0 under the public-keys pki+1, . . . , pkn+1, in
turn. The fact that this is indistinguishable from a real execution follows directly
from the hiding property of encryptions, and the rerandomizability property.

Next, we consider the case that the server Pn+1 is corrupted, and 1 ≤ i ≤ n is
the index of the last honest party. In this case, the simulator S is given the value
yi = f̃i(x1, . . . , xn), which in this case is the appropriate partial truth table. The
simulation is the same as before for every iteration up to and including i− 1. In
the ith iteration, S simulates the message sent by the honest Pi by encrypting
under the public keys pki+1, . . . , pkn+1 the partial truth table that it received
from the trusted party. As before, the output distribution of the adversary is
indistinguishable from a real execution (note that the last simulated message is
actually identical to in a real execution; the difference comes from prior ones
which are all encryptions of 0 instead of the real partial truth table). ut

In the protocol above, using the El-Gamal-based rerandomizable encryption,
each party computes less than 3n exponentiations, so the total number of expo-
nentiations if at most 3n2. Hence this protocol could be practical for a large (but
not huge) number of parties, perhaps even for n in the thousands. We remark
however that the parties must work sequentially, and this may be a limitation if
n is too large. Also, in this concrete instantiation the parties can connect and in-
teract with the server in any order, which is an important property for practical
implementation and deployment.

The Malicious Case. Since the semi-honest protocol is secure for any random
coins used by the dishonest parties, it is enough to add signatures so that corrupt
parties and/or server cannot modify the messages sent by previous parties, and
(non-interactive) zero-knowledge proofs of good behavior to obtain security in
the malicious model. We describe the resulting protocol in the full version. For
our concrete El Gamal implementation, all these proofs can be made efficient
since they can all be reduced to compound statements about equality of dis-
crete logarithms, and these can be made non-interactive using the Fiat-Shamir
transformation in the random-oracle model. In particular, each party needs to
compute O(n2) exponentiations, we estimate that running the protocol with
n = 100 parties will take just a few minutes per party.

Symmetric Functions Over Larger Domains. In the full version we also
show that the protocols for binary symmetric functions extend to symmetric
functions over any domain Zc, where the complexity grows as nO(c). Hence we
get efficient protocols for any constant c.

4.2 Selection Functions

In this section, we construct an optimally-private protocol for the selection func-
tion f(j, x2, . . . , xn) = xj ; i.e., where the selector is first. As we have seen in
Section 2.2, the disclosure in this case is the least. Specifically, if the last honest
party is after the selected party, then the only thing learned by the server is the
selected value and not even its position. Otherwise, the position is learned, but
nothing else. (Note that hiding the position is really the only interesting issue
in this function, since otherwise it can be trivially solved by having the selector
first announce who is selected and next having the selected party send its value.)

The semi-honest case. Our protocol is similar to the following 1-out-of-N
(semi-honest) oblivious transfer protocol, using additively homomorphic encryp-
tion: The receiver, who wants to get the jth value, generates N ciphertexts, all
encrypting 1 except the jth that encrypts a 0. Using the additive-homomorphism,
the sender multiplies the ciphertexts by random scalars (a different random num-
ber for each ciphertext) and then adds its value xi to the ith ciphertext. When
the receiver decrypts, it gets the jth value intact and all other values are random.

Our setting is a little more complicated than the OT setting, since (a) the in-
puts are split between parties P2, . . . , Pn rather than all belonging to one sender,
and (b) the receiver in our case is the server Pn+1, while the selection index j
is known to the first party P1. The latter concern is handled by choosing an
encryption scheme with plaintext space much larger than the domain of inputs
to the parties. Now with high probability the jth entry will be the only one in
the domain of inputs, so the server can identify it. To handle the first concern we
will use a mix-net-like construction (using a layer-rerandomizable encryption),
with each party shuffling the ciphertexts so that the following parties cannot tell
which ciphertext came from what party. (Also, we use El Gamal which is mul-
tiplicative rather than additive-homomorphic, and so we modify the underlying
OT protocol accordingly.)

In more detail, P1 with selector input j prepares a vector of El Gamal ci-
phertexts, all encrypting the group generator G except for the jth entry that
encrypts the group element 1. The ith ciphertext in this vector is encrypted
under the compound El Gamal public key Hi,n+1 =

∏n+1
t=i ht. (When using a

generic layer-rerandomizable encryption, the ith ciphertext is encrypted onion-
style under the public keys of parties i though n + 1.) We call this vector the
“initial ciphertexts” and denote it by I. During the protocol the initial cipher-
texts will be passed unchanged, and the parties use them to process another
vector of ciphertexts that contain the actual values. We call that other vector of
ciphertexts the “work ciphertexts”, and denote it by W.

Each party Pi (i ≥ 2) receives the initial ciphertexts I and a vector Wi−1

of i − 2 ciphertexts. The ciphertexts in Wi−1 are all encrypted under Hi,n+1.
Pi takes the ith ciphertext from I (which is also encrypted under Hi,n+1), uses
the multiplicative homomorphism of El Gamal to raise the plaintext inside it
to a random power in Zq, then uses the homomorphism again to multiply the
plaintext by its input xi. It inserts the resulting ciphertext toWi−1, thus getting
a vector of i − 1 ciphertexts which we denote by W ′i. Pi then peels off its layer
of encryption (resulting in ciphertexts under Hi+1,n+1), randomly permutes the
ciphertexts and re-randomizes them, thus obtaining a new vector of ciphertexts
Wi, which Pi sends back to the server.

After all the parties have participated, the server has a vector of “work ci-
phertexts” Wn, encrypted under the public key of the server Hn+1 = hn+1.
The server decrypts this vector, and if the corresponding plaintext vector has
a single element from the input domain of the protocol then the server out-
puts that element. A pseudocode description of this protocol (described using a

generic additively homomorphic encryption layer-rerandomizable) can be found
in Protocol 3.

PROTOCOL 3 (Semi-Honest Optimal Protocol for the Selection
Function)

– Inputs: Party P1 has an index j (2 ≤ j ≤ n), and each party Pi (2 ≤ i ≤
n) has a private input xi, its own private key ski, and a vector of public
keys (pk2, . . . , pkn, pkn+1).

– The protocol:
1. First party instructions:

(a) For every i = 2, . . . , n, i 6= j, P1 computes ci = Ēpki,...,pkn+1(1).
For i = j, P1 computes cj = Ēpkj ,...,pkn+1(0).

(b) P1 sends the vector of initial ciphertexts I = (c2, . . . , cn) to the
server Pn+1.

2. Interaction of clients P2, . . . , Pn with server. For i = 2, . . . , n:
(a) Pn+1 sends Pi the initial ciphertexts I, and a vectorWi−1 of i−2

ciphertexts, encrypted under ~pki = (pki, . . . , pkn+1). (For i = 2,
W1 is empty.)

(b) Pi extracts the ith ciphertext from I, ci = I[i] (encrypting a

bit bi ∈ {0, 1} under ~pki.) It chooses a random number ri from
the plaintext space and uses the additive-homomorphic property
of the encryption to compute an encryption of ri · bi + xi, using
ci = E~pki

(bi), ri and xi.

(c) Pi adds c′i to the vectors Wi−1 (thus receiving a vector of i − 1
ciphertexts under (pki, . . . , pkn+1)) and decrypts a layer of all of
these ciphertexts using its secret key ski; denote the result byW ′i.

(d) Pi permutes the ciphertexts in W ′i and rerandomizes all of them
using the public keys pki+1, . . . , pkn+1. Denoting the result by
Wi, Pi sends Wi back to the server.

3. Concluding the computation: Upon receiving the encrypted vectorWn

(of length n− 1) from Pn, the server Pn+1 decrypts all the ciphertext
using its secret key skn+1. If the corresponding plaintext vector in-
cludes a single element from the input space then the server outputs
that plaintext (otherwise it outputs ‘?’).

Using similar arguments as in the binary symmetric case, we have that Pro-
tocol 3 is optimally-private in the presence of semi-honest adversaries, if the
encryption schemes used is additively homomorphic and layer rerandomizable,
and has plaintext space which is super-polynomially larger than the input space
for the protocol.

The malicious case. As above, in this case we need to have the parties sign
on their messages and prove that they behaved honestly. This can be achieved
using similar techniques as those described above.

5 Securely Computing any Decomposition

In this section, we present a basic feasibility result regarding the possibility of
securely computing an arbitrary given decomposition in our model. For this we

use re-randomizable garbled circuits that were introduced by Gentry et al. for
the purpose of multi-Hop homomorphic encryption [6]. (Below we call this the
GHV construction.) Roughly, each party Pi receives from the server a garbled
circuit encoding f̃i−1(x1, . . . , xi−1), adds its input to generate a garbled circuit
for f̃i(x1, . . . , xi), then re-randomizes this garbled circuit (so as to hide xi from
colluding parties i− 1 and i+ 1) and sends the result back to the server.

The main problem that arises is that in our setting we do not want the server
to be able to evaluate all the f̃i’s. More specifically, if i is the index of the last
honest party then we do not want the adversary to be able to evaluate f̃j for
any j < i. (In contrast, in the setting of multi-Hop homomorphic encryption if
party Pi+1 is dishonest then the adversary can evaluate f̃i.)

To solve this we again use layered re-randomizable encryption: instead of
giving the parties the input labels for the garbled circuit, we give them only
the encryption of these input labels, encrypted under all the keys of the parties
that did not participate yet. Each party peels of its layer of encryption and re-
randomizes the result, hence the server learns the input label only after all the
(honest) parties decrypted their layers, and it cannot evaluate the circuit earlier.

We note that the layered re-randomizable encryption is intertwined with the
garbled-circuit construction, since each party has to be able to transform the
encryption of the inputs of one garbled circuit into “freshly random” encryption
of the inputs to a re-randomized version of the garbled circuit. Recall that in the
GHV construction the labels on the wires are balanced bit-strings (with half 0s
and half 1s), and re-randomizing a circuit is done by bitwise permuting the labels.
Hence we use bit-wise encryption (to handle the permutation) where ciphertexts
can be re-randomized (to hide the correlation to the previous circuit).

We mention that the original construction from [6] is secure only in the semi-
honest model. In particular a malicious party can choose “bad labels” to wires
to foil re-randomization, by choosing the two labels on a wire with a very small
(or very large) Hamming distance. We thus modify the construction slightly and
require that the Hamming distance between the two labels be exactly half their
length. This turns the GHV construction into one that works for any adversarial
coins in the semi-honest model, so we can add (non-interactive) zero-knowledge
proofs and get resilience against malicious adversaries.

5.1 Our Construction, Semi-Honest Model

As described above, we obtain security in our model by augmenting the GHV
construction with encryption of the input labels. Differently from Gentry et al.,
we do not use oblivious transfer to encode the input of the first party but instead
have that party encrypt the labels corresponding to its input bits with El Gamal.
(We note that the same simplification could also be used in the context of multi-
Hop homomorphic encryption.)

In more detail, our construction works in the PKI model, where each party Pi
has a secret key ski and a corresponding public key pki = pk(ski), and every party
knows the public keys of all other parties. In the description below we assume
that these are all keys for El Gamal encryption, namely we have ski = αi ∈ Zq

and pki = Gαi where G is a generator in an order-q group G in which DDH is
hard.

The protocol. Let 〈f1, . . . , fn〉 be a given decomposition that we want to imple-
ment. Namely, we want a protocol where the view of any set of cooperating semi-
honest parties can be simulated knowing only the value yi = f̃i(x1, . . . , xi) =
fi(. . . f1(x1), . . . , xi), where i is the index of the last honest party (i.e., the last
party not in the set of corrupted parties).

Throughout the computation, we maintain the invariant that before interact-
ing with party Pi the server has a garbled circuit of the function f̃i−1(x1, . . . , xi−1)
and an encryption of all the labels corresponding to the inputs bits in x1, . . . , xi−1,
where the encryption is with respect to the public keys of the remaining parties
pki, . . . , pkn, pkn+1 (pkn+1 is the key of the server.)

In more detail, let Λi−1 be a garbled circuit that the server has before talking
to party Pi (where Λ0 is the empty garbled circuit with no inputs). To slightly
simplify notations we assume that all the inputs xi are exactly t-bit long, and
let xij denote the jth bit of xi, i.e. xi = xi1xi2 . . . xit. Hence Λi−1 has (i − 1)t
input wires, and there are two `-bit labels associated with each input wire. We
denote the 0 and 1 labels associated with the jth input wire of the ith party by
L0ij , L1ij , respectively.

Below we also denote by σkij the kth bit of the label corresponding to the
input bit xij . That is, if xij = 0 then (σ1

ij . . . σ
`
ij) = L0ij and if xij = 1 then

(σ1
ij . . . σ

`
ij) = L1ij . Hence before talking to party Pi the server should have

encryptions of all the bits σki′j for i′ < i, j = 1, . . . , t and k = 1, . . . , `. Specifi-
cally, let Hi be the compounded public key of parties i through n + 1, namely
Hi

def=
∏n+1
j=i hi. Then for each bit σki′j with i′ < i, j ≤ t and k ≤ `, the server

has an El Gamal encryption of σki′j relative to public key Hi, i.e., a pair of the

form (Gr, Gσ
k
ij · H r

i). (Of course, the exponents r in all these ciphertexts are
chosen independently.)

The ith party. The ith party has its input xi = (xi1 . . . xit), its secret key αi
and the public keys of the parties after it, hi+1, . . . , hn, hn+1. It receives from
the server the garbled circuit Λi−1 corresponding to f̃i−1, and the encryption of
all the bits σkij relative to the compounded public key Hi. Recall that f̃i is an
extension of f̃i−1 via fi(yi−1, xi), namely

f̃i(x1, . . . , xi−1, xi) = fi(f̃i−1(x1, . . . , xi−1)︸ ︷︷ ︸
yi−1

, xi).

Hence party Pi can extend the garbled circuit Λi−1 corresponding to f̃i−1 into a
garbled circuit Λi corresponding to f̃i, using the output labels of Λi−1 as input
labels for the wires of yi−1 and choosing new input labels for the wires of xi.
That is, party Pi builds the Yao circuit for f̃i, choosing random labels for all
wires except for the input wires corresponding to the output of f̃i−1; the garbled
labels on the input wires are taken as the output labels for the wires of the
received circuit. Thus, the two circuits are composed into one.

Next, party Pi uses its secret key αi to convert all the El Gamal ciphertexts
relative to Hi into encryption of the same bits relative to Hi+1. Namely, given
a ciphertext (u = Gr, v = Gσ ·H r

i), Party Pi computes v′ = v/uαi and outputs
the ciphertexts (u, v′). This is indeed an encryption of the bit σ with respect to
Hi+1, since Hi+1 = Hi/hi = Hi/G

αi and therefore

v′ =
v

uαi
=

Gσ ·H r
i

Grαi
= Gσ ·

(
Hi

Gαi

)r
= Gσ ·H r

i+1 .

Party Pi also encrypts the bits σkij of the labels corresponding to all of its input
bits xij , relative to the compounded public key Hi+1.

At this point Party Pi holds the complete state as needed for the next step
of the computation, and it only remains to re-randomize this state (so as to
hide xi). To this end, Party Pi applies the re-randomization procedure to the
garbled circuit Λi to get a new garbled circuit Λ′i. This includes in particular
choosing a random permutation πij for the wire of every input bit xij . Party Pi
permutes accordingly the vector of El Gamal ciphertexts for the bits on that wire
(σ1
ij . . . σ

`
ij), thus obtaining an encryption of the new input label for this wire.

(All these encryptions are relative to the compound public key Hi+1.) Finally it
re-randomizes these encryptions by choosing for each ciphertext a new exponent
r′ and replacing the pair

〈
u = Gr, v = Gσ ·Hr

i+1

〉
with u′ = u · Gr′ = Gr+r

′

and v′ = v · Hr′

i+1 = Gσ · Hr+r′

i+1 . Party Pi sends Λ′i and all the ciphertexts (in
order) to the server, and the server is now ready for party Pi+1.

The server. After the interaction with the last party n, the server has a garbled
circuit for the function f̃n = f , and encryption of the input labels corresponding
to all the input bits of all the parties, relative to the public key Hn+1 = hn+1.
Since the server knows the secret key αn+1 corresponding to hn+1, it can decrypt
all these ciphertexts and recover the label on each input wire. The server then
evaluates the garbled circuit and obtains the result f(x1, . . . , xn), as needed. The
proof of the following theorem can be found in the full version [9].

Theorem 4. For any decomposition f̄ = 〈f1, . . . , fn〉, the protocol from Sec-
tion 5.1 is a server-based one-pass protocol that securely computes f̄ in the semi-
honest model, even if the dishonest parties can choose arbitrary random coins
for the protocol.

5.2 The Malicious Model

As we saw in Theorem 4, the security of the semi-honest protocol holds even
if dishonest parties are allowed to choose their coins arbitrarily (rather than at
random). Thus, to achieve security in the presence of malicious adversaries, we
have each party prove that it followed the instructions of the protocol relative
to some input and set of random coins. This proof must be non-interactive and
verified by all subsequent parties. This requires a common reference string (or
perhaps re-use of the available PKI). In order for us to extract the inputs used
in the ideal-model simulation, the proof also has to be a proof of knowledge.

One option for this is to use a universally composable non-interactive system of
zero-knowledge proofs of knowledge, using enhanced trapdoor permutations [10].

In addition, we need to ensure that if the server is corrupted, then it does
not modify any of the constructions carried out by the honest parties. This can
be achieved using digital signatures (and having the signing key be part of the
public-key infrastructure).

Theorem 5. Assume the existence of enhanced trapdoor permutations and that
DDH holds. Then, for any decomposition f̄ = 〈f1, . . . , fn〉, there exists a server-
based one-pass protocol that securely computes f̄ in the malicious model, with a
public-key infrastructure and in the common reference string model.

6 Extensions and Open Problems

In this work we considered a very simple setting of a server and n clients that
all know about each other (and in particular have each other’s public keys),
and where the order in which the clients connect to the server is pre-set. Our
practical solutions for symmetric functions extend also to the “first come first
serve” setting with no pre-set order, but still require all parties to know about
each other. In addition, all our solutions are sequential, they all rely heavily on
the fact that client i completes the interaction with the server before client i+ 1
begins. Allowing concurrency between clients is a very interesting open problem
and may be crucial for a large number of clients.

Another possible extension deals with functions that have natural “projec-
tions” on any subset of their variables. (For example, for the AVERAGE func-
tion, it is natural to talk about the average of any subset of the variables.) In
this case, it may be desirable that the server be able to compute the function
value as soon as at least t of the n clients connected to it.6 Although it may be
possible to replace the onion-like encryption in our protocols with encryption in
a t-out-of-n manner, it seems nontrivial to do it in such a way that will still not
allow a subset of t parties to decrypt the entire transcript of the protocol.

Another very interesting extension is when we have a large universe of clients
that do not have each other’s public keys, and we want to compute some function
as soon as n of them connect to the server (e.g., polling). In this case it may
be reasonable to assume that the clients all share some system parameters, and
maybe even that each client has some secret key for the system, so perhaps tools
from identity-based cryptography can be used here.

Finally, we point out that if we can have each of the parties connect twice
to the server (rather than once), then our protocols can be used for achiev-
ing the standard notion of privacy for secure computation. Indeed, instead of
computing the original n-input function f(x1, . . . , xn), we set up a protocol for
computing the extended 2n-input function that depends only the first n inputs

6 In general, if we have a decomposition of f then we can think of f̃t(x1, . . . , xt) as the
projection of f on the first t variables. Computing f̃i may or may not be desirable,
depending on the application.

f̂(x1, . . . , xn, xn+1, . . . , x2n) = f(x1, . . . , xn). We consider a decomposition of f̂
where the intermediate value after the nth input is f(x1, . . . , xn), design a pro-
tocol to realize it, and let party Pi play the role of both parties i and i + n
in this protocol. With this protocol, as soon as one of the parties is honest we
have that the intermediate result after “the last honest party” in the protocol is
f(x1, . . . , xn). Hence the view of the corrupted parties can be simulated knowing
only this value.

Acknowledgments. We thank the CRYPTO 2011 reviewers for their many
helpful comments.

References

1. A Face Is Exposed for AOL Searcher No. 4417749. (The New York Times, August
9, 2006) http://www.nytimes.com/2006/08/09/technology/09aol.html.

2. Goldreich, O.: Foundations of Cryptography, Basic Applications. Volume 2. Cam-
bridge University Press (2004)

3. Rivest, R., Adleman, L., Dertouzos, M.: On data banks and privacy homomor-
phisms. In: Foundations of Secure Computation, Academic Press (1978) 169–177

4. Gentry, C.: Fully homomorphic encryption using ideal lattices. In: 41st ACM
Symposium on Theory of Computing – STOC 2009, ACM (2009) 169–178

5. Fiat, A., Shamir, A.: How to Prove Yourself. Practical Solutions to Identification
and Signature Problems. In: Advances in Cryptology - CRYPTO’86. Volume 263
of Lecture Notes in Computer Science., Springer-Verlag (1986) 186–189

6. Gentry, C., Halevi, S., Vaikuntanathan, V.: i-Hop Homomorphic Encryption and
Rerandomizable Yao Circuits. In: Advances in Cryptology - CRYPTO 2010. Vol-
ume 6223 of Lecture Notes in Computer Science., Springer (2010) 155–172 Full
version available on-line from http://eprint.iacr.org/2010/145.

7. Harnik, D., Ishai, Y., Kushilevitz, E.: How Many Oblivious Transfers Are Needed
for Secure Multiparty Computation? In: Advances in Cryptology - CRYPTO 2007.
Volume 4622 of Lecture Notes in Computer Science., Springer (2007) 284–302

8. Choi, S.G., Elbaz, A., Malkin, T., Yung, M.: Secure Multi-party Computation
Minimizing Online Rounds. In Matsui, M., ed.: Advances in Cryptology - ASI-
ACRYPT 2009. Volume 5912 of Lecture Notes in Computer Science., Springer
(2009) 268–286

9. Halevi, S., Lindell, Y., Pinkas, B.: Secure Computation on the Web: Computing
without Simultaneous Interaction. (http://eprint.iacr.org/2011/157)

10. De Santis, A., Di Crescenzo, G., Ostrovsky, R., Persiano, G., Sahai, A.: Robust
Non-interactive Zero Knowledge. In Kilian, J., ed.: Advances in Cryptology -
CRYPTO 2001. Volume 2139 of Lecture Notes in Computer Science. (2001) 566–
598

