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Abstract. We study the design of protocols for set-operation verification, namely
the problem of cryptographically checking the correctness of outsourced set op-
erations performed by an untrusted server over a dynamic collection of sets that
are owned (and updated) by a trusted source. We present new authenticated data
structures that allow any entity to publicly verify a proof attesting the correctness
of primitive set operations such as intersection, union, subset and set difference.
Based on a novel extension of the security properties of bilinear-map accumu-
lators as well as on a primitive called accumulation tree, our protocols achieve
optimal verification and proof complexity (i.e., only proportional to the size of
the query parameters and the answer), as well as optimal update complexity (i.e.,
constant), while incurring no extra asymptotic space overhead. The proof con-
struction is also efficient, adding a logarithmic overhead to the computation of
the answer of a set-operation query. In contrast, existing schemes entail high com-
munication and verification costs or high storage costs. Applications of interest
include efficient verification of keyword search and database queries. The secu-
rity of our protocols is based on the bilinear q-strong Diffie-Hellman assumption.

1 Introduction

Providing integrity guarantees in third-party data management settings is an active area
of research, especially in view of the growth in usage of cloud computing. In such set-
tings, verifying the correctness of outsourced computations performed over remotely
stored data becomes a crucial property for the trustworthiness of cloud services. Such a
verification process should incur minimal overheads to the clients or otherwise the ben-
efits of computation outsourcing are dismissed; ideally, computations should be verified
without having to locally rerun them or to utilize too much extra cloud storage.

In this paper, we study the verification of outsourced operations on general sets
and consider the following problem. Assuming that a dynamic collection of m sets
S1, S2, . . . , Sm is remotely stored at an untrusted server, we wish to publicly verify ba-
sic operations on these sets, such as intersection, union and set difference. For example,
for an intersection query of t sets specified by indices 1 ≤ i1, i2, . . . , it ≤ m, we aim at
designing techniques that allow any client to cryptographically check the correctness of
the returned answer I = Si1 ∩Si2 ∩ . . .∩Sit . Moreover, we wish the verification of any
set operation to be operation-sensitive, meaning that the resulting complexity depends
only on the (description and outcome of the) operation, and not on the sizes of the in-
volved sets. That is, if δ = |I| is the answer size then we would like the verification cost
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to be proportional to t+δ, and independent ofm or
∑
i |Si|; note that work at least pro-

portional to t + δ is needed to verify any such query’s answer. Applications of interest
include keyword search and database queries, which boil down to set operations.
Relation to verifiable computing. Recent works on verifiable computing [1,12,16]
achieve operation-sensitive verification of general functionalities, thus covering set op-
erations as a special case. Although such approaches clearly meet our goal with respect
to optimal verifiability, they are inherently inadequate to meet our other goals with
respect to public verifiability and dynamic updates, both important properties in the
context of outsourced data querying. Indeed, to outsource the computation as an en-
crypted circuit, the works in [1,12,16] make use of some secret information which is
also used by the verification algorithm, thus effectively supporting only one verifier;
instead, we seek for schemes that allow any client (knowing only a public key) to query
the set collection and verify the returned results. Also, the description of the circuit in
these works is fixed at the initialization of the scheme, thus effectively supporting no
updates in the outsourced data; instead, we seek for schemes that are dynamic. In other
scenarios, but still in the secret-key setting, protocols for general functionalities and
polynomial evaluation have recently been proposed in [11] and [6] respectively.

Aiming at both publicly verifiable and dynamic solutions, we study set-operation
verification in the model of authenticated data structures (ADSs). A typical setting
in this model, usually referred to as the three-party model [36], involves protocols exe-
cuted by three participating entities. A trusted party, called source, owns a data structure
(here, a collection of sets) that is replicated along with some cryptographic information
to one or more untrusted parties, called servers. Accordingly, clients issue data-structure
queries to the servers and are able to verify the correctness of the returned answers,
based only on knowledge of public information which includes a public key and a di-
gest produced by the source (e.g., the root hash of a Merkle tree).4 Updates on the data
structure are performed by the source and appropriately propagated by the servers. Vari-
ations of this model include: (i) a two-party variant (e.g., [30]), where the source keeps
only a small state (i.e., only a digest) and performs both the updates/queries and the
verifications—this model is directly comparable to the model of verifiable computing;
(ii) the memory checking model [7], where read/write operations on an array of memory
cells is verified—however, the absence of the notion of proof computation in memory
checking (the server is just a storage device) as well as the feature of public verifiability
in authenticated data structures make the two models fundamentally different.5

Achieving operation-sensitive verification. In this work, we design authenticated data
structures for the verification of set operations in an operation-sensitive manner, where
the proof and verification complexity depends only on the description and outcome of
the operation and not on the size of the involved sets. Conceptually, this property is
similar to the property of super-efficient verification that has been studied in certifying
algorithms [21] and certification data structures [19,37], which is achieved as well as
in the context of verifiable computing [1,12,16], where an answer can be verified with
complexity asymptotically less than the complexity required to produce it. Whether the

4 Conveying the trust clients have in the source, the authentic digest is assumed to be publicly
available; in practice, a time-stamped and digitally signed digest is outsourced to the server.

5 Indeed, memory checking might require secret memory, e.g., as in the PRF construction in [7].
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above optimality property is achievable for set operations (while keeping storage linear)
was posed as an open problem in [23]. We close this problem in the affirmative.

All existing schemes for set-operation verification fall into the following two rather
straightforward and highly inefficient solutions. Either short proofs for the answer of
every possible set-operation query are precomputed allowing for optimal verification
at the client at the cost of exponential storage and update overheads at the source and
the server—an undesirable trade-off, as it is against storage outsourcing. Or integrity
proofs for all the elements of the sets involved in the query are given to the client who
locally verifies the query result: in this case the verification complexity can be linear in
the problem size—an undesirable feature, as it is against computation outsourcing.

We achieve optimal verification by departing from the above approaches as fol-
lows. We first reduce the problem of verifying set operations to the problem of veri-
fying the validity of some more primitive relations on sets, namely subset containment
and set disjointness. Then for each such primitive relation we employ a correspond-
ing cryptographic primitive to optimally verify its validity. In particular, we extend the
bilinear-map accumulator to optimally verify subset containment (Lemmas 1 and 4),
inspired by [32]. We then employ the extended Euclidean algorithm over polynomials
(Lemma 5) in combination with subset containment proofs to provide a novel optimal
verification test for set disjointness. The intuition behind our technique is that disjoint
sets can be represented by polynomials mutually indivisible, therefore there exist other
polynomials so that the sum of their pairwise products equals to one—this is the test to
be used in the proof. Still, transmitting (and processing) these polynomials is bandwidth
(and time) prohibitive and does not lead to operation-sensitive verification. Bilinearity
properties, however, allow us to compress their coefficients in the exponent and, yet,
use them meaningfully, i.e., compute an internal product. This is why although a con-
ceptually simpler RSA accumulator [5] would yield a mathematically sound solution, a
bilinear-map accumulator [28] is essential for achieving the desired complexity goal.

We formally describe our protocols using an authenticated data structure scheme
or ADS scheme (Definition 1). An ADS scheme consists of algorithms {genkey, setup,
update, refresh, query, verify} such that: (i) genkey produces the secret and public
key of the system; (ii) on input a plain data structure D, setup initializes the authen-
ticated data structure auth(D); (iii) having access to the secret key, update computes
the updated digest of auth(D); (iv) without having access to the secret key, refresh up-
dates auth(D); (v) query computes cryptographic proofsΠ(q) for answers α(q) to data
structure queries q; (vi) verify processes a proof Π and an answer α and either accepts
or rejects. Note that neither query nor verify have access to the secret key, thus modeling
computation outsourcing and public verifiability. An ADS scheme must satisfy certain
correctness and security properties (Definitions 2 and 3). We note that protocols in both
the three-party and the two-party models can be realized via an ADS scheme.

Our main result, Theorem 1, presents the first ADS scheme to achieve optimal ver-
ification of the set operations intersection, union, subset and set difference, as well as
optimal updates on the underlying collection of sets. Our scheme is proved secure under
the bilinear extension of the q-strong Diffie-Hellman assumption (see, e.g., [8]).

Complexity model. To explicitly measure complexity of various algorithms with re-
spect to number of primitive cryptographic operations, without considering the depen-
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Table 1. Asymptotic access and group complexities of various ADS schemes for intersection
queries on t = O(1) sets in a collection of m sets with answer size δ. Here, M is the sum of
sizes of all the sets and 0 < ε < 1 is a constant. Also, all sizes of the intersected or updated sets
are Θ(n), |Π| denotes the size of the proof, and CR stands from “collision resistance”.

setup update, refresh query verify, |Π| assumption
[23,38] m+M logn+ logm n+ logm n+ logm Generic CR

[26] m+M m+M n n Strong RSA

[29] mt +M mt 1 δ Discrete Log

this work m+M 1 n log3 n+mε logm δ Bilinear q-Strong DH

dency on the security parameter, we adopt the complexity model used in memory check-
ing [7,14], which has been only implicitly used in ADS literature. The access complex-
ity of an algorithm is defined as the number of memory accesses performed during
its execution on the authenticated data structure that is stored in an indexed memory
of n cells.6 E.g., a Merkle tree [24] has O(log n) update access complexity since the
update algorithm needs to read and write O(log n) memory cells of the authenticated
data structure, each cell storing exactly one hash value. The group complexity of a data
collection (e.g., proof or ADS group complexity) is defined as the number of elemen-
tary data objects (e.g., hash values or elements in Zp) contained in this collection. Note
that although the access and group complexities are respectively related to the time and
space complexities, the former are in principle smaller than the latter. This is because
time and space complexities are counting number of bits and are always functions of the
security parameter which, in turn, is always Ω(log n). Therefore time and space com-
plexities are always Ω(log n), whereas access and group complexities can be O(1).
Finally, whenever it is clear from the context, we omit the terms “access” and “group”.

Related work. The great majority of authenticated data structures involve the use of
cryptographic hashing [2,7,18,20,39,23,27] or other primitives [17,31,32] to hierarchi-
cally compute over the outsourced data one or more digests. Most of these schemes in-
cur verification costs that are proportional to the time spent to produce the query answer,
thus they are not operation sensitive. Some bandwidth-optimal and operation-sensitive
solutions for verification of various (e.g., range search) queries appear in [2,19].

Despite the fact that privacy-related problems for set operations have been exten-
sively studied in the cryptographic literature (e.g., [9,15]), existing work on the integrity
dimension of set operations appears mostly in the database literature. In [23], the impor-
tance of coming up with an operation-sensitive scheme is identified. In [26], possibly
the closest in context work to ours, set intersection, union and difference are authen-
ticated with linear costs. Similar bounds appear in [38]. In [29], a different approach
is taken: In order to achieve operation-sensitivity, expensive pre-processing and expo-
nential space are required (answers to all possible queries are signed). Finally, related to
our work are non-membership proofs, both for the RSA [22] and the bilinear-map [3,13]
accumulators. A comparison of our work with existing schemes appears in Table 1.

6 We use the term “access complexity” instead of the “query complexity” used in memory check-
ing [7,14] to avoid ambiguity when referring to algorithm query of the ADS scheme. We also
require that each memory cell can store up to O(poly(logn)) bits, a word size used in [7,14].
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2 Preliminaries

We denote with k the security parameter and with neg(k) a negligible function.7

The bilinear-map accumulator. Let G be a cyclic multiplicative group of prime order
p, generated by element g ∈ G. Let also G be a cyclic multiplicative group of the same
order p, such that there exists a pairing e : G × G → G with the following properties:
(i) Bilinearity: e(P a, Qb) = e(P,Q)ab for all P,Q ∈ G and a, b ∈ Zp; (ii) Non-
degeneracy: e(g, g) 6= 1; (iii) Computability: For all P,Q ∈ G, e(P,Q) is efficiently
computable. We call (p,G,G, e, g) a tuple of bilinear pairing parameters, produced as
the output of a probabilistic polynomial-time algorithm that runs on input 1k.

In this setting, the bilinear-map accumulator [28] is an efficient way to provide
short proofs of membership for elements that belong to a set. Let s ∈ Z∗p be a randomly
chosen value that constitutes the trapdoor in the scheme. The accumulator primitive
accumulates elements in Zp − {s}, outputting a value that is an element in G. For a set
of elements X in Zp − {s} the accumulation value acc(X ) of X is defined as

acc(X ) = g
Q
x∈X (x+s) .8

Value acc(X ) can be constructed using X and g, gs, gs
2
, . . . , gs

q

(through polynomial
interpolation), where q ≥ |X |. Subject to acc(X ) each element in X has a succinct
membership proof. More generally, the proof of subset containment of a set S ⊆ X—
for |S| = 1, this becomes a membership proof—is the witness (S,WS,X ) where

WS,X = g
Q
x∈X−S(x+s) . (1)

Subset containment of S inX can be checked through relation e(WS,X , g
Q
x∈S(x+s)) ?=

e (acc(X ), g) by any verifier with access only to public information. The security prop-
erty of the bilinear-map accumulator, namely that computing fake but verifiable subset
containment proofs is hard, can be proved using the bilinear q-strong Diffie-Hellman as-
sumption, which is slightly stronger than the q-strong Diffie-Hellman assumption [8].9

Assumption 1 (Bilinear q-strong Diffie-Hellman assumption) Let k be the security
parameter and (p,G,G, e, g) be a tuple of bilinear pairing parameters. Given the ele-
ments g, gs, . . . , gs

q ∈ G for some s chosen at random from Z∗p, where q = poly(k), no
probabilistic polynomial-time algorithm can output a pair (a, e(g, g)1/(a+s)) ∈ Zp×G,
except with negligible probability neg(k).

We next prove the security of subset witnesses by generalizing the proof in [28].
Subset witnesses also appeared (independent of our work but without a proof) in [10].

7 Function f : N → R is neg(k) if and only if for any nonzero polynomial p(k) there exits N
such that for all k > N it is f(k) < 1/p(k).

8 Q
x∈Si(x+ s) is called characteristic polynomial of set Si in the literature (e.g., see [25]).

9 However, the plain q-strong Diffie-Hellman assumption [28] suffices to prove just the collision
resistance of the bilinear-map accumulator.
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Lemma 1 (Subset containment) Let k be the security parameter and (p,G,G, e, g) be
a tuple of bilinear pairing parameters. Given the elements g, gs, . . . , gs

q ∈ G for some
s chosen at random from Z∗p and a set of elements X in Zp−{s} with q ≥ |X |, suppose
there is a probabilistic polynomial-time algorithm that finds S and W such that S * X
and e(W, g

Q
x∈S(x+s)) = e(acc(X ), g). Then there is a probabilistic polynomial-time

algorithm that breaks the bilinear q-strong Diffie-Hellman assumption.

Proof. Suppose there is a probabilistic polynomial-time algorithm that computes such a
set S = {y1, y2, . . . , y`} and a fake witness W. Let X = {x1, x2, . . . , xn} and yj /∈ X
for some 1 ≤ j ≤ `. This means that

e(W, g)
Q
y∈S(y+s) = e(g, g)(x1+s)(x2+s)...(xn+s) .

Note that (yj + s) does not divide (x1 + s)(x2 + s) . . . (xn + s). Therefore there exist
polynomial Q(s) (computable in polynomial time) of degree n− 1 and constant λ 6= 0,
such that (x1 + s)(x2 + s) . . . (xn + s) = Q(s)(yj + s) + λ. Thus we have

e(W, g)(yj+s)
Q

1≤i6=j≤`(yi+s) = e(g, g)Q(s)(yj+s)+λ ⇒

e(g, g)
1

yj+s =
[
e(W, g)

Q
1≤i6=j≤`(yi+s)e(g, g)−Q(s)

]λ−1

.

Thus, this algorithm can break the bilinear q-strong Diffie-Hellman assumption. ut

Tools for polynomial arithmetic. Our solutions use (modulo p) polynomial arithmetic.
We next present two results that are extensively used in our techniques, contributing
to achieve the desired complexity goals. The first result on polynomial interpolation is
derived using an FFT algorithm (see Preparata and Sarwate [34]) that computes the DFT
in a finite field (e.g., Zp) for arbitrary n and performingO(n log n) field operations. We
note that an n-th root of unity is not required to exist in Zp for this algorithm to work.

Lemma 2 (Polynomial interpolation with FFT [34]) Let
∏n
i=1(xi+s) =

∑n
i=0 bis

i

be a degree-n polynomial. The coefficients bn 6= 0, bn−1, . . . , b0 of the polynomial can
be computed with O(n log n) complexity, given x1, x2, . . . , xn.

Lemma 2 refers to an efficient process for computing the coefficients of a polyno-
mial, given its roots x1, x2, . . . , xn. In our construction, we make use of this process a
numbers of times, in particular, when, given some values x1, x2, . . . , xn to be accumu-
lated, an untrusted party needs to compute g(x1+s)(x2+s)...(xn+s) without having access
to s. However, access to g, gs, . . . , gs

n

(part of the public key) is allowed, and therefore
computing the accumulation value boils down to a polynomial interpolation.

We next present a second result that will be used in our verification algorithms.
Related to certifying algorithms [21], this result states that if the vector of coeffi-
cients b = [bn, bn−1, . . . , b0] is claimed to be correct, then, given the vector of roots
x = [x1, x2, . . . , xn], with high probability, vector b can be certified to be correct with
complexity asymptotically less than O(n log n), i.e., without an FFT computation from
scratch. This is achieved with the following algorithm:
Algorithm {accept, reject} ← certify(b, x, pk): The algorithm picks a random κ ∈
Z∗p. If

∑n
i=0 biκ

i =
∏n
i=1(xi + κ), then the algorithm accepts, else it rejects.
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Lemma 3 (Polynomial coefficients verification) Let b = [bn, bn−1, . . . , b0] and x =
[x1, x2, . . . , xn]. Algorithm certify(b, x, pk) has O(n) complexity. Also, if accept ←
certify(b, x, pk), then bn, bn−1, . . . , b0 are the coefficients of the polynomial

∏n
i=1(xi+

s) with probability Ω(1− neg(k)).

Authenticated data structure scheme. We now define our authenticated data structure
scheme (ADS scheme), as well as the correctness and security properties it must satisfy.

Definition 1 (ADS scheme) Let D be any data structure that supports queries q and
updates u. Let auth(D) denote the resulting authenticated data structure and d the
digest of the authenticated data structure, i.e., a constant-size description ofD. An ADS
scheme A is a collection of the following six probabilistic polynomial-time algorithms:

1. {sk, pk} ← genkey(1k): On input the security parameter k, it outputs a secret key
sk and a public key pk;

2. {auth(D0), d0} ← setup(D0, sk, pk): On input a (plain) data structure D0 and
the secret and public keys, it computes the authenticated data structure auth(D0)
and the respective digest d0 of it;

3. {Dh+1, auth(Dh+1), dh+1, upd} ← update(u,Dh, auth(Dh), dh, sk, pk): On in-
put an update u on data structure Dh, the authenticated data structure auth(Dh),
the digest dh, and the secret and public keys, it outputs the updated data struc-
ture Dh+1 along with the updated authenticated data structure auth(Dh+1), the
updated digest dh+1 and some relative information upd;

4. {Dh+1, auth(Dh+1), dh+1} ← refresh(u,Dh, auth(Dh), dh, upd, pk): On input
an update u on data structure Dh, the authenticated data structure auth(Dh), the
digest dh, relative information upd (output by update), and the public key, it out-
puts the updated data structure Dh+1 along with the updated authenticated data
structure auth(Dh+1) and the updated digest dh+1;

5. {Π(q), α(q)} ← query(q,Dh, auth(Dh), pk): On input a query q on data struc-
ture Dh, the authenticated data structure auth(Dh) and the public key, it returns
the answer α(q) to the query, along with a proof Π(q);

6. {accept, reject} ← verify(q, α,Π, dh, pk): On input a query q, an answer α, a
proof Π , a digest dh and the public key, it outputs either accept or reject.

Let {accept, reject} ← check(q, α,Dh) be an algorithm that decides whether α
is a correct answer for query q on data structureDh (check is not part of the definition of
an ADS scheme). There are two properties that an ADS scheme should satisfy, namely
correctness and security (intuition follows from signature schemes definitions).

Definition 2 (Correctness) LetASC be an ADS scheme {genkey, setup, update, refresh,
query, verify}. We say that the ADS scheme ASC is correct if, for all k ∈ N, for all
{sk, pk} output by algorithm genkey, for all Dh, auth(Dh), dh output by one invoca-
tion of setup followed by polynomially-many invocations of refresh, where h ≥ 0, for
all queries q and for all Π(q), α(q) output by query(q,Dh, auth(Dh), pk), with all but
negligible probability, whenever algorithm check(q, α(q), Dh) outputs accept, so does
algorithm verify(q,Π(q), α(q), dh, pk).
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Definition 3 (Security) Let ASC be an ADS scheme {genkey, setup, update, refresh,
query, verify}, k be the security parameter, ν(k) be a negligible function and {sk, pk} ←
genkey(1k). Let also Adv be a probabilistic polynomial-time adversary that is only
given pk. The adversary has unlimited access to all algorithms of ASC, except for al-
gorithms setup and update to which he has only oracle access. The adversary picks
an initial state of the data structure D0 and computes D0, auth(D0), d0 through oracle
access to algorithm setup. Then, for i = 0, . . . , h = poly(k), Adv issues an update
ui in the data structure Di and computes Di+1, auth(Di+1) and di+1 through oracle
access to algorithm update. Finally the adversary picks an index 0 ≤ t ≤ h + 1, and
computes a query q, an answer α and a proof Π . We say that the ADS scheme ASC
is secure if for all k ∈ N, for all {sk, pk} output by algorithm genkey, and for any
probabilistic polynomial-time adversary Adv it holds that

Pr
[
{q,Π, α, t} ← Adv(1k, pk); accept← verify(q, α,Π, dt, pk);

reject← check(q, α,Dt).

]
≤ ν(k) . (2)

3 Construction and algorithms

In this section we present an ADS scheme for set-operation verification. The underlying
data structure for which we design our ADS scheme is called sets collection, and can
be viewed as a generalization of the inverted index [4] data structure.
Sets collection. The sets collection data structure consists of m sets, denoted with
S1, S2, . . . , Sm, each containing elements from a universe U . Without loss of gener-
ality we assume that the universe U is the set of nonnegative integers in the interval
[m + 1, p− 1]− {s},10 where p is k-bit prime, m is the number of the sets in our col-
lection that has bit size O(log k), k is the security parameter and s is the trapdoor of the
scheme (see algorithm genkey). A set Si does not contain duplicate elements, however
an element x ∈ U can appear in more than one set. Each set is sorted and the total space
needed is O(m+M), where M is the sum of the sizes of the sets.

In order to get some intuition, we can view the sets collection as an inverted index. In
this view, the elements are pointers to documents and each set Si corresponds to a term
wi in the dictionary, containing the pointers to documents where term wi appears. In
this case, m is the number of terms being indexed, which is typically in the hundreds of
thousands, while M , bounded from below by the number of documents being indexed,
is typically in the billions. Thus, the more general terms “elements” and “sets” in a sets
collection can be instantiated to the more specific “documents” and “terms”.

The operations supported by the sets collection data structure consist of updates
and queries. An update is either an insertion of an element into a set or a deletion of
an element from a set. An update on a set of size n takes O(log n) time. For simplicity,
we assume that the number m of sets does not change after updates. A query is one
of the following standard set operations: (i) Intersection: Given indices i1, i2, . . . , it,
return set I = Si1 ∩ Si2 ∩ . . . ∩ Sit ; (ii) Union: Given indices i1, i2, . . . , it, return set
U = Si1 ∪ Si2 ∪ . . . ∪ Sit ; (iii) Subset query: Given indices i and j, return true if

10 This choice simplifies the exposition; however, by using some collision-resistant hash function,
universe U can be set to Zp − {s}.
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Si ⊆ Sj and false otherwise; (iv) Set difference: Given indices i and j, return set
D = Si − Sj . For the rest of the paper, we denote with δ the size of the answer to a
query operation, i.e., δ is equal to the size of I, U, or D. For a subset query, δ is O(1).

We next detail the design of an ADS schemeASC for the sets collection data struc-
ture. This scheme provides protocols for verifying the integrity of the answers to set
operations in a dynamic setting where sets evolve over time through updates. The goal
is to achieve optimality in the communication and verification complexity: a query with
t parameters and answer size δ should be verified with O(t+ δ) complexity, and at the
same time query and update algorithms should be efficient as well.

3.1 Setup and updates

We describe an ADS scheme ASC = {genkey, setup, update, refresh, query, verify}
for the sets collection data structure and we prove that its algorithms satisfy the com-
plexities of Table 1. We begin with the algorithms that are related to the setup and the
updates of the authenticated data structure.

Algorithm {sk, pk} ← genkey(1k): Bilinear pairing parameters (p,G,G, e, g) are
picked and an element s ∈ Z∗p is chosen at random. Subsequently, an one-to-one func-
tion h(·) : G → Z∗p is used. This function simply outputs the bit description of the
elements of G according to some canonical representation of G. Finally the algorithm
outputs sk = s and pk = {h(·), p,G,G, e, g,g}, where vector g contains values

g =
[
gs, gs

2
, . . . , gs

q
]
,

where q ≥ max{m,maxi=1,...,m{|Si|}}. The algorithm has O(1) access complexity.

Algorithm {D0, auth(D0), d0} ← setup(D0, sk, pk): Let D0 be our initial data struc-
ture, i.e., the one representing sets S1, S2, . . . , Sm. The authenticated data structure
auth(D0) is built as follows. First, for each set Si its accumulation value acc(Si) =
g

Q
x∈Si

(x+s) is computed (see Section 2). Subsequently, the algorithm picks a con-
stant 0 < ε < 1. Let T be a tree that has l = d1/εe levels and m leaves, numbered
1, 2, . . . ,m, where m is the number of the sets of our sets collection data structure.
Since T is a constant-height tree, the degree of any internal node of it is O(mε). We
call such a tree an accumulation tree, which was originally introduced (combined with
different cryptography) in [32]. For each node of the tree v, the algorithm recursively
computes the digest d(v) of v as follows. If v is a leaf corresponding to set Si, where
1 ≤ i ≤ m, the algorithm sets d(v) = acc(Si)(i+s); here, raising value acc(Si) to
exponent i+ s, under the constraint that i ≤ m, is done to also accumulate the index i
of set Si (and thus prove that acc(Si) refers to Si). If node v is not a leaf, then

d(v) = g
Q
w∈N(v)(h(d(w)+s)) , (3)

where N (v) denotes the set of children of node v. The algorithm outputs all the sets
Si as the data structure D0, and all the accumulation values acc(Si) for 1 ≤ i ≤ m,
the tree T and all the digests d(v) for all v ∈ T as the authenticated data structure
auth(D0). Finally, the algorithm sets d0 = d(r) where r is the root of T , i.e., d0 is
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the digest of the authenticated data structure (defined similarly as in a Merkle tree).11

The access complexity of the algorithm is O(m+M) (for postorder traversal of T and
computation of acc(Si)), where M =

∑m
i=1 |Si|. The group complexity of auth(D0)

is also O(m + M) since the algorithm stores one digest per node of T , T has O(m)
nodes and there are M elements contained in the sets, as part of auth(D0).
Algorithm {Dh+1, auth(Dh+1), dh+1, upd} ← update(u,Dh, auth(Dh), dh, sk, pk):
We consider the update “insert element x ∈ U into set Si” (note that the same algo-
rithm could be used for element deletions). Let v0 be the leaf node of T corresponding
to set Si. Let v0, v1, . . . , vl be the path in T from node v0 to the root of the tree, where
l = d1/εe. The algorithm initially sets d′(v0) = acc(Si)(x+s), i.e., it updates the ac-
cumulation value that corresponds to the updated set (note that in the case where x is
deleted from Si, the algorithm sets d′(v0) = acc(Si)(x+s)

−1
). Then the algorithm sets

d′(vj) = d(vj)(h(d
′(vj−1))+s)(h(d(vj−1))+s)

−1
for j = 1, . . . , l , (4)

where d(vj−1) is the current digest of vj−1 and d′(vj−1) is the updated digest of vj−1.12

All these newly computed values (i.e., the new digests) are stored by the algorithm. The
algorithm then outputs the new digests d′(vj−1), j = 1, . . . , l, along the path from
the updated set to the root of the tree, as part of information upd. Information upd
also includes x and d′(vl). The algorithm also sets dh+1 = d′(vl), i.e., the updated
digest is the newly computed digest of the root of T . Finally the new authenticated
data structure auth(Dh+1) is computed as follows: in the current authenticated data
structure auth(Dh) that is input of the algorithm, the values d(vj−1) are overwritten
with the new values d′(vj−1) (j = 1, . . . , l), and the resulting structure is included in
the output of the algorithm. The number of operations performed is proportional to 1/ε,
therefore the complexity of the algorithm is O(1).
Algorithm {Dh+1, auth(Dh+1), dh+1} ← refresh(u,Dh, auth(Dh), dh, upd, pk): We
consider the update “insert element x ∈ U into set Si”. Let v0 be the node of T corre-
sponding to set Si. Let v0, v1, . . . , vl be the path in T from node v0 to the root of the
tree. Using the information upd, the algorithm sets d(vj) = d′(vj) for j = 0, . . . , l, i.e.,
it updates the digests that correspond to the updated path. Finally, it outputs the updated
sets collection as Dh+1, the updated digests d(vj) (along with the ones that belong to
the nodes that are not updated) as auth(Dh+1) and d′(vl) (contained in upd) as dh+1.13

The algorithm has O(1) complexity as the number of performed operations is O(1/ε).

3.2 Authenticity of accumulation values

So far we have described the authenticated data structure auth(Dh) that our ADS
schemeASC will use for set-operation verifications. Overall, auth(Dh) comprises a set
11 Digest d(r) is a “secure” succinct description of the set collection data structure. Namely, the

accumulation tree protects the integrity of values acc(Si), 1 ≤ i ≤ m, and each accumulation
value acc(Si) protects the integrity of the elements contained in set Si.

12 Note that these update computations are efficient because update has access to secret key s.
13 Note that information upd is not required for the execution of refresh, but is rather used for

efficiency. Without access to upd, algorithm refresh could compute the updated values d(vj)
using polynomial interpolation, which would have O(mε logm) complexity (see Lemma 2).
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ofm accumulation values acc(Si), one for each set Si, i = 1, . . . ,m, and a set ofO(m)
digests d(v), one for each internal node v of the accumulation tree T . Our proof con-
struction and verification protocols for set operations (described in Section 3.3) make
use of the accumulation values acc(Si) (subject to which subset-containment witnesses
can be defined), and therefore it is required that the authenticity of each such value can
be verified. Tree T serves this exact role by providing short correctness proofs for each
value acc(Si) stored at leaf i of T , this time subject to the (global) digest dh stored at
the root of T . We next provide the details related to proving the authenticity of acc(Si).

The correctness proof Πi of accumulation value acc(Si), 1 ≤ i ≤ m, is a collection
of O(1) bilinear-map accumulator witnesses (as defined in Section 2). In particular, Πi

is set to be the ordered sequence Π = (π1, π2, . . . , πl), where πj is the pair of the
digest of node vj−1 and a witness that authenticates vj−1, subject to node vj , in the
path v0, v1, . . . , vl defined by leaf v0 storing accumulation value acc(Si) and the root
vl of T . Conveniently, πj is defined as πj = (βj , γj), where

βj = d(vj−1) and γj = Wvj−1(vj) = g
Q
w∈N(vj)−{vj−1}

(h(d(w))+s)
. (5)

Note that πj is the witness for a subset of one element, namely h(d(vj−1)) (recall,
d(v0) = acc(Si)(i+s)). Clearly, pair πj has group complexity O(1) and can be con-
structed using polynomial interpolation with O(mε logm) complexity, by Lemma 2
and since vj has degree O(mε). Since Πi consists of O(1) such pairs, we conclude that
the proof Πi for an accumulation value acc(Si) can be constructed with O(mε logm)
complexity and has O(1) group complexity. The following algorithms queryTree and
verifyTree are used to formally describe the construction and respectively the verifica-
tion of such correctness proofs. Similar methods have been described in [32].
Algorithm {Πi, αi} ← queryTree(i,Dh, auth(Dh), pk): Let v0, v1, . . . , vl be the path
of T from the node storing acc(Si) to the root of T . The algorithm computes Πi by
settingΠi = (π1, π2, . . . , πl), where πj = (d(vj−1),Wvj−1(vj)) and Wvj−1(vj) is given
in Equation 5 and computed by Lemma 2. Finally, the algorithm sets αi = acc(Si).
Algorithm {accept, reject} ← verifyTree(i, αi, Πi, dh, pk): Let the proof be Πi =
(π1, π2, . . . , πl), where πj = (βj , γj). The algorithm outputs reject if one of the
following is true: (i) e(β1, g) 6= e(αi, gigs); or (ii) e (βj , g) 6= e

(
γj−1, g

h(βj−1)gs
)

for some 2 ≤ j ≤ l; or (iii) e(dh, g) 6= e
(
γl, g

h(βl)gs
)
. Otherwise, it outputs accept.

We finally provide some complexity and security properties that hold for the cor-
rectness proofs of the accumulated values. The following result is used as a building
block to derive the complexity of our scheme and prove its security (Theorem 1).

Lemma 4 Algorithm queryTree runs with O(mε logm) access complexity and outputs
a proof of O(1) group complexity. Moreover algorithm verifyTree has O(1) access
complexity. Finally, for any adversarially chosen proof Πi (1 ≤ i ≤ m), if accept ←
verifyTree(i, αi, Πi, dh, pk), then αi = acc(Si) with probability Ω(1− neg(k)).

3.3 Queries and verification

With the correctness proofs of accumulation values at hand, we complete the description
of our scheme ASC by presenting the algorithms that are related to the construction
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and verification of proofs attesting the correctness of set operations. These proofs are
efficiently constructed using the authenticated data structure presented earlier, and they
have optimal size O(t+ δ), where t and δ are the sizes of the query parameters and the
answer. In the rest of the section, we focus on the detailed description of the algorithms
for an intersection and a union query, but due to space limitations, we omit the details of
the subset and the set difference query. We note, however, that the treatment of the subset
and set difference queries is analogous to that of the intersection and union queries.

The parameters of an intersection or a union query are t indices i1, i2, . . . , it, with
1 ≤ t ≤ m. To simplify the notation, we assume without loss of generality that these
indices are 1, 2, . . . , t. Let ni denote the size of set Si (1 ≤ i ≤ t) and letN =

∑t
i=1 ni.

Note that the size δ of the intersection or union is always O(N) and that operations can
be performed with O(N) complexity, by using a generalized merge.

Intersection query. Let I = S1 ∩ S2 ∩ . . . ∩ St = {y1, y2, . . . , yδ}. We express the
correctness of the set intersection operation by means of the following two conditions:

Subset condition: I ⊆ S1 ∧ I ⊆ S2 ∧ . . . ∧ I ⊆ St ; (6)
Completeness condition: (S1 − I) ∩ (S2 − I) ∩ . . . ∩ (St − I) = Ø . (7)

The completeness condition in Equation 7 is necessary since set I must contain all
the common elements. Given an intersection I, and for every set Sj , 1 ≤ i ≤ t, we
define the degree-nj polynomial

Pj(s) =
∏

x∈Sj−I

(x+ s) . (8)

The following result is based on the extended Euclidean algorithm over polynomials
and provides our core verification test for checking the correctness of set intersection.

Lemma 5 Set I is the intersection of sets S1, S2, . . . , St if and only if there exist polyno-
mials q1(s), q2(s), . . . , qt(s) such that q1(s)P1(s)+q2(s)P2(s)+. . .+qt(s)Pt(s) = 1,
where Pj(s), j = 1, . . . , t, are defined in Equation 8. Moreover, the polynomials
q1(s), q2(s), . . . , qt(s) can be computed with O(N log2N log logN) complexity.

Using Lemmas 2 and 5 we next construct efficient proofs for both conditions in
Equations 6 and 7. In turn, the proofs are directly used to define the algorithms query
and verify of our ADS scheme ASC for intersection queries.

Proof of subset condition. For each set Sj , 1 ≤ j ≤ t, the subset witnesses WI,j =
gPj(s) = g

Q
x∈Sj−I(x+s) are computed, each withO(nj log nj) complexity, by Lemma 2.

(Recall, WI,j serves as a proof that I is a subset of set Sj .) Thus, the total complexity
for computing all t required subset witnesses is O(N logN), where N =

∑t
i=1 ni.

14

Proof of completeness condition. For each qj(s), 1 ≤ j ≤ t, as in Lemma 5 satisfying
q1(s)P1(s) + q2(s)P2(s) + . . . + qt(s)Pt(s) = 1, the completeness witnesses FI,j =
gqj(s) are computed, by Lemma 5 with O(N log2N log logN) complexity.

14 This is because
P
nj lognj ≤ logN

P
nj = N logN .
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Algorithm {Π(q), α(q)} ← query(q,Dh, auth(Dh), pk) (Intersection): Query q con-
sists of t indices {1, 2, . . . , t}, asking for the intersection I of S1, S2, . . . , St. Let I =
{y1, y2, . . . , yδ}. Then α(q) = I, and the proof Π(q) consists of the following parts.

1. Coefficients bδ, bδ−1, . . . , b0 of polynomial (y1 + s)(y2 + s) . . . (yδ + s) that is
associated with the intersection I = {y1, y2, . . . , yδ}. These are computed with
O(δ log δ) complexity (Lemma 2) and they have O(δ) group complexity.

2. Accumulation values acc(Sj), j = 1, . . . , t, which are associated with sets Sj ,
along with their respective correctness proofs Πj . These are computed by calling
algorithm queryTree(j,Dh, auth(Dh), pk), for j = 1, . . . , t, with O(tmε logm)
total complexity and they have O(t) total group complexity (Lemma 4).

3. Subset witnesses WI,j , j = 1, . . . , t, which are associated with sets Sj and inter-
section I (see proof of subset condition). These are computed with O(N logN)
complexity and have O(t) total group complexity (Lemma 2).

4. Completeness witnesses FI,j , j = 1, . . . , t, which are associated with polynomials
qj(s) of Lemma 5 (see proof of completeness condition). These are computed with
O(N log2N log logN) complexity and have O(t) group complexity (Lemma 5).

Algorithm {accept, reject} ← verify(q, α,Π, dh, pk) (Intersection): Verifying the
result of an intersection query includes the following steps.

1. First, the algorithm uses the coefficients b = [bδ, bδ−1, . . . , b0] and the answer
α(q) = {y1, y2, . . . , yδ} as an input to algorithm certify(b, α(q), pk), in order to
certify the validity of bδ, bδ−1, . . . , b0. If certify outputs reject, the algorithm also
outputs reject.15 This step has O(δ) complexity (Lemma 3).

2. Subsequently, the algorithm uses the proof Πj to verify the correctness of acc(Sj),
by running algorithm verifyTree(j, acc(Sj), Πj , dh, pk) for j = 1, . . . , t. If, for
some j, verifyTree running on acc(Sj) outputs reject, the algorithm also outputs
reject. This step has O(t) complexity (Lemma 4).

3. Next, the algorithm checks the subset condition:16

e

(
δ∏
i=0

(
gs
i
)bi

,WI,j

)
?= e (acc(Sj), g) , for j = 1, . . . , t. (9)

If, for some j, the above check on subset witness WI,j fails, the algorithm outputs
reject. This step has O(t+ δ) complexity.

4. Finally, the algorithm checks the completeness condition:

t∏
j=1

e (WI,j ,FI,j)
?= e(g, g) . (10)

If the above check on the completeness witnesses FI,j , 1 ≤ j ≤ t, fails, the algo-
rithm outputs reject. Or, if this relation holds, the algorithm outputs accept, i.e.,
it accepts α(q) as the correct intersection. This step has O(t) complexity.

15 Algorithm certify is used to achieve optimal verification and avoid an O(δ log δ) FFT compu-
tation from scratch.

16 Group element
Qδ
i=0 g

sibi = g(y1+s)(y2+s)...(yδ+s) is computed once with O(δ) complexity.
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Note that for Equation 10, it holds
∏t
j=1 e (WI,j ,FI,j) = e(g, g)

Pt
j=1 qj(s)Pj(s) =

e(g, g) when all the subset witnesses WI,j , all the completeness witnesses FI,j and all
the sets accumulation values acc(Sj) have been computed honestly, since q1(s)P1(s)+
q2(s)P2(s)+ . . .+qt(s)Pt(s) = 1. This is a required condition for proving the correct-
ness of our ADS scheme, as defined in Definition 2. We continue with the description
of algorithms query and verify for the union query.
Union query. Let U = S1∪S2∪. . .∪St = {y1, y2, . . . , yδ}. We express the correctness
of the set union operation by means of the following two conditions:

Membership condition: ∀yi ∈ U ∃j ∈ {1, 2, . . . , t} : yi ∈ Sj ; (11)
Superset condition: (U ⊇ S1) ∧ (U ⊇ S2) ∧ . . . ∧ (U ⊇ St) . (12)

The superset condition in Equation 12 is necessary since set U must exclude none of
the elements in sets S1, S2, . . . , St. We formally describe algorithms query and verify
of our ADS scheme ASC for union queries.
Algorithm {Π(q), α(q)} ← query(q,Dh, auth(Dh), pk) (Union): Query q asks for
the union U of t sets S1, S2, . . . , St. Let U = {y1, y2, . . . , yδ}. Then α(q) = U
and the proof Π(q) consists of the following parts. (1) Coefficients bδ, bδ−1, . . . , b0
of polynomial (y1 + s)(y2 + s) . . . (yδ + s) that is associated with the union U =
{y1, y2, . . . , yδ}. (2) Accumulation values acc(Sj), j = 1, . . . , t, which are associated
with sets Sj , along with their respective correctness proofsΠj , both output of algorithm
queryTree(j,Dh, auth(Dh), pk). (3) Membership witnesses Wyi,Sk of yi, i = 1, . . . , δ
(see Equation 1), which prove that yi belongs to some set Sk, 1 ≤ k ≤ t, and which
are computed with O(N logN) total complexity and have O(δ) total group complexity
(Lemma 2). (4) Subset witnesses WSj ,U, j = 1, . . . , t, which are associated with sets Si
and union U and prove that U is a superset of Sj , 1 ≤ k ≤ t, and which are computed
with O(N logN) total complexity and have O(t) total group complexity (Lemma 2).
Algorithm {accept, reject} ← verify(q, α,Π, dh, pk): (Union): Verifying the re-
sult of a union query includes the following steps. (1) First, the algorithm uses b =
[bδ, bδ−1, . . . , b0] and the answer U = α(q) = {y1, y2, . . . , yδ} as an input to algo-
rithm certify(b, α(q), pk), in order to certify the validity of bδ, bδ−1, . . . , b0. (2) Sub-
sequently, the algorithm uses the proofs Πj to verify the correctness of acc(Sj), by
using algorithm verifyTree(j, acc(Sj), Πj , dh, pk) for j = 1, . . . , t. If the verification
fails for at least one of acc(Sj), the algorithm outputs reject. (3) Next, the algorithm
verifies that each element yi, i = 1, . . . , δ, of the reported union belongs to some set
Sk, for some 1 ≤ k ≤ t (O(δ) complexity). This is done by checking that relation
e(Wyi,Sk , g

yigs) = e(acc(Sk), g) holds for all i = 1, . . . , δ; otherwise the algorithm
outputs reject. (4) Finally, the algorithm verifies that all sets specified by the query
are subsets of the union, by checking the following conditions:

e
(
WSj ,U, acc(Sj)

) ?= e

(
δ∏
i=0

(
gs
i
)bi

, g

)
, for j = 1, . . . , t.

If any of the above checks fails, the algorithm outputs reject, otherwise, it outputs
accept, i.e., U is accepted as the correct union.
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Subset and set difference query. For a subset query (positive or negative), we use the
property Si ⊆ Sj ⇔ ∀y ∈ Si, y ∈ Sj . For a set difference query we use the property

D = Si − Sj ⇔ ∃F : F ∪ D = Si ∧ F = Si ∩ Sj .

The above conditions can both be checked in an operation-sensitive manner using the
techniques we have presented before. We now give the main result in our work.

Theorem 1 Consider a collection of m sets S1, . . . , Sm and let M =
∑m
i=1 |Si| and

0 < ε < 1. For a query operation involving t sets, let N be the sum of the sizes of
the involved sets, and δ be the answer size. Then there exists an ADS scheme ASC =
{genkey, setup, update, refresh, query, verify} for a sets collection data structure D
with the following properties: (1)ASC is correct and secure according to Definitions 2
and 3 and based on the bilinear q-strong Diffie-Hellman assumption; (2) The access
complexity of algorithm (i) genkey is O(1); (ii) setup is O(m + M); (iii) update
is O(1) outputting information upd of O(1) group complexity; (iv) refresh is O(1);
(3) For all queries q (intersection/union/subset/difference), constructing the proof with
algorithm query has O(N log2N log logN + tmε logm) access complexity, algorithm
verify hasO(t+δ) access complexity and the proofΠ(q) hasO(t+δ) group complexity;
(4) The group complexity of the authenticated data structure auth(D) is O(m+M).

4 Security, protocols and applications

In this section we give an overview of the security analysis of our ADS scheme, describe
how it can be employed to provide verification protocols in the three-party [36] and
two-party [30] authentication models, and finally discuss some concrete applications.

Security proof sketch. We provide some key elements of the security of our verifica-
tion protocols focusing on set intersection queries. The security proofs of the other set
operations share similar ideas. LetD0 be a sets collection data structure consisting ofm
sets S1, S2, . . . , Sm,17 and consider our ADS scheme ASC = {genkey, setup, update,
refresh, query, verify}. Let k be the security parameter and let {sk, pk} ← genkey(1k).
The adversary is given the public key pk, namely {h(·), p,G,G, e, g, gs, . . . , gsq}, and
unlimited access to all the algorithms ofASC, except for setup and update to which he
only has oracle access. The adversary initially outputs the authenticated data structure
auth(D0) and the digest d0, through an oracle call to algorithm setup. Then the adver-
sary picks a polynomial number of updates ui (e.g., insertion of an element x into a
set Sr) and outputs the data structure Di, the authenticated data structure auth(Di)
and the digest di through oracle access to update. Then he picks a set of indices
q = {1, 2, . . . , t} (wlog), all between 1 and m and outputs a proof Π(q) and an an-
swer I 6= I = S1 ∩ S2 ∩ . . . ∩ St which is rejected by check as incorrect. Suppose
the answer α(q) contains d elements. The proof Π(q) contains (i) Some coefficients

17 Note here that since the sets are picked by the adversary, we have to make sure that no element
in any set is equal to s, the trapdoor of the scheme (see definition of the bilinear-map accumu-
lator domain). However, this event occurs with negligible probability since the sizes of the sets
are polynomially-bounded and s is chosen at random from a domain of exponential size.
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b0, b1, . . . , bd; (ii) Some accumulation values accj with some respective correctness
proofs Πj , for j = 1, . . . , t; (iii) Some subset witnesses Wj with some completeness
witnesses Fj , for j = 1, . . . , t (this is, what algorithm verify expects for input).

Suppose verify accepts. Then: (i) By Lemma 3, b0, b1, . . . , bd are indeed the coef-
ficients of the polynomial

∏
x∈I(x + s), except with negligible probability; (ii) By

Lemma 4, values accj are indeed the accumulation values of sets Sj , except with
negligible probability; (iii) By Lemma 1, values Wj are indeed the subset witnesses
for set I (with reference to Sj), i.e., Wj = gPj(s), except with negligible probabil-
ity; (iv) However, P1(s), P2(s), . . . , Pt(s) are not coprime since I is incorrect and
therefore I cannot contain all the elements of the intersection. Thus the polynomials
P1(s), P2(s), . . . , Pt(s) (Equation 8) have at least one common factor, say (r + s) and
it holds that Pj(s) = (r + s)Qj(s) for some polynomials Qj(s) (computable in poly-
nomial time), for all j = 1, . . . , t. By the verification of Equation 10 (completeness
condition), we have

e(g, g) =
t∏

j=1

e (Wj ,Fj) =
t∏

j=1

e
(
gPj(s),Fj

)
=

t∏
j=1

e
(
g(r+s)Qj(s),Fj

)

=
t∏

j=1

e
(
gQj(s),Fj

)(r+s)

=

 t∏
j=1

e
(
gQj(s),Fj

)(r+s)

.

Therefore we can derive an (r + s)-th root of e(g, g) as

e(g, g)
1
r+s =

t∏
j=1

e
(
gQj(s),Fj

)
.

This means that if the intersection I is incorrect and all the verification tests are satis-
fied, we can derive a polynomial-time algorithm that outputs a bilinear q-strong Diffie-
Hellman challenge (r, e(g, g)1/(r+s)) for an element r that is a common factor of the
polynomials P1(s), P2(s), . . . , Pt(s), which by Assumption 1 happens with probability
neg(k). This concludes an ouline of the proof strategy for the case of intersection.
Protocols. As mentioned in the introduction, our ADS scheme ASC can be used by a
verification protocol in the three-party model [36]. Here, a trusted entity, called source,
owns a sets collection data structure Dh, but desires to outsource query answering, in
a trustworthy (verifiable) way. The source runs genkey and setup and outputs the au-
thenticated data structure auth(Dh) along with the digest dh. The source subsequently
signs the digest dh, and it outsources auth(Dh), Dh, the digest dh and its signature to
some untrusted entities, called servers. On input a data structure query q (e.g., an in-
tersection query) sent by clients, the servers use auth(Dh) and Dh to compute proofs
Π(q), by running algorithm query, and they return to the clientsΠ(q) and the signature
on dh along with the answer a(q) to q. Clients can verify these proofs Π(q) by running
algorithm verify (since they have access to the signature of dh, they can verify that dh
is authentic). When there is an update in the data structure (issued by the source), the
source uses algorithm update to produce the new digest d′h to be used in next verifica-
tions, while the servers update the authenticated data structure through refresh.
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Additionally, our ADS scheme ASC can also be used by a non-interactive veri-
fication protocol in the two-party model [30]. In this case, the source and the client
coincide, i.e., the client issues both the updates and the queries, and it is required to
keep only constant state, i.e., the digest of the authenticated data structure. Whenever
there is an update by the client, the client retrieves a verifiable, constant-size portion of
the authenticated data structure that is used for locally performing the update and for
computing the new local state, i.e., the new digest. A non-interactive two-party protocol
that uses an ADS scheme for a data structure D is directly comparable with the recent
protocols for verifiable computing [1,12,16] for the functionalities offered by the data
structure D, e.g., computation of intersection, union, etc. Due to space limitations, we
defer the detailed description of these protocols to the full version of the paper.
Applications. First of all, our scheme can be used to verify keyword-search queries
implemented by the inverted index data structure [4]: Each term in the dictionary cor-
responds to a set in our sets collection data structure which contains all the documents
that include this term. A usual text query for terms m1 and m2 returns those documents
that are included in both the sets that are represented by m1 and m2, i.e., their inter-
section. Moreover, the derived authenticated inverted index can be efficiently updated
as well. However, sometimes in keyword searches (e.g., keyword searches in the email
inbox) it is desirable to introduce a “second” dimension: For example, a query could be
“return emails that contain terms m1 and m2 and which were received between time t1
and t2”, where t1 < t2. We call this variant a timestamped keyword-search. One solu-
tion for verifying such queries could be to embed a timestamp in the documents (e.g.,
each email message) and have the client do the filtering locally, after he has verified—
using our scheme—the intersection of the sets that correspond to terms m1 and m2.
However, this approach is not operation-sensitive: The intersection can be bigger than
the set output after the local filtering, making this solution inefficient. To overcome this
inefficiency, we can use a segment-tree data structure [35], verifying in this way times-
tamped keyword-search queries efficiently with O(t log r + δ) complexity, where r is
the total number of timestamps we are supporting. This involves building a binary tree
T on top of sets of messages sent at certain timestamps and requiring each internal node
of T be the union of messages stored in its children. Finally, our method can be used for
verifying equi-join queries over relational tables, which boil down to set intersections.

5 Conclusion

In this paper, we presented an authenticated data structure for the optimal verification
of set operations. The achieved efficiency is mainly due to new, extended security prop-
erties of accumulators based on pairing-based cryptography. Our solution provides two
important properties, namely public verifiability and dynamic updates, as opposed to ex-
isting protocols in the verifiable computing model that provide generality and secrecy,
but verifiability in a static, secret-key setting only.

A natural question to ask is whether outsourced verifiable computations with se-
crecy and efficient dynamic updates are feasible. Analogously, it is interesting to explore
whether other specific functionalities (beyond set operations) can be optimally and pub-
licly verified. Finally, according to a recently proposed definition of optimality [33], our
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construction is nearly optimal: verification and updates are optimal, but not queries. It
is interesting to explore whether an optimal authenticated sets collection data structure
exists, i.e., one that asymptotically matches the bounds of the plain sets collection data
structure, reducing the query time from O(N log2N) to O(N).
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