
Computer-Aided Security Proofs

for the Working Cryptographer⋆

Gilles Barthe1, Benjamin Grégoire2, Sylvain Heraud2, and
Santiago Zanella Béguelin1

1 IMDEA Software Institute, Madrid, Spain
2 INRIA Sophia Antipolis-Méditerranée, France

Abstract. We present EasyCrypt, an automated tool for elaborating
security proofs of cryptographic systems from proof sketches—compact,
formal representations of the essence of a proof as a sequence of games
and hints. Proof sketches are checked automatically using off-the-shelf
SMT solvers and automated theorem provers, and then compiled into
verifiable proofs in the CertiCrypt framework. The tool supports most
common reasoning patterns and is significantly easier to use than its pre-
decessors. We argue that EasyCrypt is a plausible candidate for adop-
tion by working cryptographers and illustrate its application to security
proofs of the Cramer-Shoup and Hashed ElGamal cryptosystems.

Keywords: Provable security, verifiable security, game-based proofs,
Cramer-Shoup cryptosystem, ElGamal encryption.

1 Introduction

The game-playing technique [8, 17, 20] is an established methodology for struc-
turing cryptographic proofs. Its essence lies in giving precise mathematical de-
scriptions, referred to as games, of the interaction between adversaries and oracle
systems. Proofs are organized as sequences of games, starting from a game that
represents a security goal (e.g. indistinguishability against chosen-ciphertext at-
tacks), and proceeding to games that represent security assumptions (e.g. Deci-
sion Diffie-Hellman) by successive transformations that can be shown to preserve,
or alter only slightly the overall security. In a typical step in a game-based proof
the goal is to relate the probability of an event A in a game G to the probability
of a possibly different event A′ in a game G′. For example, the goal may be
to establish an inequality of the form Pr [G : A] ≤ Pr [G′ : A′] +∆, where ∆ is
an arithmetic expression that depends on the number of oracle queries made
by an adversary. The prevailing practice for proving the validity of such proof
steps is to use standard mathematical tools, which interleave reasoning about
the semantics of games with information-theoretic or arithmetical arguments.

⋆ Partially funded by European Project FP7-256980 NESSoS, French project ANR
SESUR-012 SCALP, Spanish project TIN2009-14599 DESAFIOS 10, and Madrid
Regional project S2009TIC-1465 PROMETIDOS.

In the code-based approach to the game-playing technique [8, 17] games are
cast as probabilistic algorithms. The adoption of programming idioms allows to
give precise definitions of games, and paves the way for applying programming
language methods to justify proof steps rigorously. As anticipated by their pro-
ponents, code-based game-playing proofs are amenable to formal verification,
and a number of tools provide support for building them. CryptoVerif [11] is a
tool for conducting security proofs in a game-based setting in which games are
modeled as processes and transitions are justified by means of process-algebraic
concepts such as bisimulations. One strength of CryptoVerif, apart from being
the first tool to have supported game-based proofs, is that it applies both to
protocols and primitives; it has been successfully applied to verify Kerberos [10]
and the Full-Domain Hash (FDH) signature scheme [12]. CertiCrypt [6] is another
framework that allows for the interactive construction of game-based proofs in
the Coq proof assistant [22]. One specificity of CertiCrypt is that proofs can
be verified independently and automatically by a small trustworthy checker; it
has been successfully applied to verify prominent cryptographic constructions,
including OAEP [5], FDH [24], and zero-knowledge protocols [7].

While the developments based on CryptoVerif and CertiCrypt make a convinc-
ing case that computer-aided cryptographic proofs are indeed plausible, neither
tool has reached a wide audience among cryptographers. In [5], we contrast the
high guarantees given by CertiCrypt with the effort and expertise required to
build machine-checked proofs, and conclude that cryptographers are unlikely to
adopt verifiable security in its current form. In this sense, it can be considered
that CryptoVerif and CertiCrypt only provide a partial realization of Halevi’s pro-
gramme of systematically building computer-aided cryptographic proofs [17].

The thesis of this article is that verifiable security can dramatically benefit
from automation using state-of-the-art verification technology, and that verifi-
able game-based proofs can be constructed with only a moderate effort. The the-
sis is realized with the presentation of EasyCrypt, an automated tool that builds
machine-checked proofs from proof sketches, which offer a machine-processable
representation of the essence of a security proof. We argue that EasyCrypt is
significantly easier to use than previous tools, making an important step to-
wards the adoption of computer-aided security proofs by working cryptographers
and hence towards fulfilling Halevi’s programme. To substantiate our claim, we
present computer-aided proofs of security of Hashed ElGamal encryption and
the Cramer-Shoup cryptosystem.

EasyCrypt adopts the principled approach mandated by CertiCrypt to conduct
game-based proofs and imposes a clear separation between program verification
and information-theoretic reasoning. Transitions between games are justified in
two steps: first, one proves logical relations between the games using probabilis-
tic Relational Hoare Logic (pRHL); second, one applies information-theoretic
reasoning to derive claims about the probability of events from pRHL judg-
ments. We provide for each step highly effective mechanisms that build upon
a combination of off-the-shelf and purpose-specific tools. Specifically, EasyCrypt
implements an automated procedure that computes for any pRHL judgment a set

of sufficient conditions for its validity, known as verification conditions. The out-
standing feature of this procedure, and the key to the effectiveness of EasyCrypt,
is that verification conditions are expressed in the language of first-order logic,
without any mention of probability, and can be discharged automatically by
state-of-the-art tools such as SMT solvers and theorem provers. The verifica-
tion condition generator is proof-producing, in the sense that it generates Coq

files that can be machine-checked using the CertiCrypt framework. Moreover, the
connection to CertiCrypt makes it possible to benefit from the expressivity and
flexibility of a general-purpose proof assistant for advanced verification goals
that fall out of the scope of automated techniques. Additionally, EasyCrypt im-
plements an automated mechanism for proving claims about probability. The
mechanism combines some elementary rules to compute (bounds on) probabili-
ties of events—e.g. the probability of a uniformly sampled element to belong to a
list—with rules to derive (in)equalities between probabilities of events in games
from judgments in pRHL. The combination of these tools with other more mun-
dane features such as a limited form of specification inference for procedures
provides substantial leverage towards making verifiable security practical and
makes EasyCrypt a plausible candidate for adoption by working cryptographers.

2 Introductory Example: Hashed ElGamal Encryption

This section illustrates the application of EasyCrypt to a proof of IND-CPA secu-
rity of Hashed ElGamal encryption in the Random Oracle Model. The example
serves to introduce the notion of proof sketch and to give the reader an idea
of the input that the tool expects. It also allows for a preliminary comparison
between EasyCrypt and CertiCrypt. We refer the reader to [4] for a proof of the
same result in CertiCrypt.

Hashed ElGamal is a variant of ElGamal encryption that does not require
plaintexts to be elements of a group. Instead, plaintexts are bitstrings of a certain
length k and group elements are mapped into bitstrings using a hash function
H : G → {0, 1}k. Let G be a multiplicative cyclic group of order q with generator
g. Formally, the scheme is defined by the following triple of algorithms:

KG() def

= x $← Zq; return (gx, x)
E(α,m) def

= y $← Zq; h← H(αy); return (gy, h⊕m)
D(x, (β, ζ)) def

= h← H(βx); return (ζ ⊕ h)

The security of Hashed ElGamal can be reduced to the Computational Diffie-
Hellman (CDH) assumption on the underlying group family. This is the assump-
tion that it is hard to compute gxy given gx and gy where x and y are uniformly
random elements in Zq. To match the existing proof in CertiCrypt, we exhibit a
reduction to the LCDH assumption, the set version of the CDH assumption—the
reduction from LCDH to CDH is immediate.

Figure 1 shows the sequence of games used to justify the security reduction.
This is an essential part of the proof sketch that is input to EasyCrypt, and which
is composed of five ingredients:3

1. Type, constant and operator declarations, which introduce the objects ma-
nipulated by the scheme. In this case, they include a type for elements of the
cyclic group G, constants representing the length of messages k, the order of
the group q and a generator g, and operators denoting the group law and
exponentiation, and exclusive or on bitstrings;

2. Axioms, which capture mathematical properties of these objects, and are
used by automated tools to check the validity of the proof sketch. We use
axioms to state properties of the group law and exponentiation, and the
exclusive or operator;

3. Game definitions, where adversaries are specified as abstract procedures with
access to oracles. In all games in the figure the hash function H is modeled as
a random oracle and the adversary is represented as two procedures A1 and
A2 that share state. The procedures representing the adversary are given
access to a wrapper HA for the hash oracle that just stores queries in a list
LA before forwarding them to H :

H(x) def

= if x /∈ dom(L) then h $← {0, 1}k;L[x]← h end if; return L[x]
HA(x)

def

= LA ← x :: LA; m← H(x); return m

4. Judgments in pRHL. The general form of judgments is |= G1 ∼ G2 : Ψ ⇒ Φ,
where G1 and G2 are games, and the pre-condition Ψ and the post-condition
Φ are relations on program memories (memories map program variables to
values). Pre- and post-conditions are first-order formulae built from rela-
tional expressions, in which language expressions are tagged with 〈1〉 or 〈2〉
to denote their interpretation in the first or second game. We often consider
equivalence of memories on a set of variables X ; we use =X as a shorthand
for the formula ∀x ∈ X. x〈1〉 = x〈2〉;

5. Claims about probability, built from probability quantities (the probability
of an event in a game), arithmetic operators, and mathematical relations
(e.g. =, <,≤). The final statement that expresses the overall security guar-
antee brought by the proof sketch is usually a claim that upper bounds the
probability of adversary success in an initial attack game in terms of the
probabilities of one or more adversaries breaking security assumptions.

We briefly comment on the sequence of games in Figure 1. The first and last
games encode the IND-CPA and LCDH experiments, respectively. We obtain G1

by inlining the key generation and encryption procedures in the initial game and
rearranging instructions so that random choices are made upfront. We prove that
games IND-CPA and G1 yield identical distributions on the result of the game
(denoted by the keyword res). We deduce from this that the probability of the
event b = b′ is the same in both games.

3 The first two are omitted from the figure. We include an extract of the actual input
file for reference in Appendix A.

Game IND-CPA :
(α, x)← KG();
(m0,m1)← A1(α);
b $← {0, 1};
(β, γ)← E(α,mb);
b′ ← A2(β, γ);
return (b = b′)

Game G1 :
x $← Zq ; α← gx;
y $← Zq ; ŷ ← αy ;
(m0,m1)← A1(α);
b $← {0, 1};
h← H(ŷ);
b′ ← A2(g

y, h⊕mb);
return (b = b′)

|= IND-CPA ∼ G1 : true⇒ ={res}

Pr [IND-CPA : b = b′] = Pr [G1 : b = b′]

Game G1 :
x $← Zq ; α← gx;
y $← Zq ; ŷ ← αy ;
(m0,m1)← A1(α);
b $← {0, 1};
h← H(ŷ);
b′ ← A2(g

y, h⊕mb);
return (b = b′)

Game G2 :
x $← Zq ; α← gx;
y $← Zq ; ŷ ← αy ;
(m0,m1)← A1(α);
b $← {0, 1};

h $← {0, 1}
k;

b′ ← A2(g
y, h⊕mb);

return (b = b′)

|= G1 ∼ G2 : true⇒ (ŷ ∈ LA)〈1〉 ↔ (ŷ ∈ LA)〈2〉 ∧
(

(ŷ /∈ LA)〈1〉 → ={res}

)

|Pr [G1 : b = b′]− Pr [G2 : b = b′] | ≤ Pr [G2 : ŷ ∈ LA]

Game G2 :
x $← Zq ; α← gx;
y $← Zq ; ŷ ← αy ;
(m0,m1)← A1(α);
b $← {0, 1};
h $← {0, 1}k;
b′ ← A2(g

y, h⊕mb);
return (b = b′)

Game G3 :
x $← Zq ; α← gx;
y $← Zq ; ŷ ← αy ;
(m0,m1)← A1(α);

γ $← {0, 1}
k;

b′ ← A2(g
y, γ);

b $← {0, 1};
return (b = b′)

|= G2 ∼ G3 : true⇒ ={res,ŷ,LA}

Pr [G2 : b = b′] = Pr [G3 : b = b′] = 1/2 Pr [G2 : ŷ ∈ LA] = Pr [G3 : ŷ ∈ LA]

Game G3 :
x $← Zq ; α← gx;
y $← Zq ; ŷ ← αy ;
(m0,m1)← A1(α);

γ $← {0, 1}
k;

b′ ← A2(g
y, γ);

b $← {0, 1};
return (b = b′)

Game LCDH :
x $← Zq ; y $← Zq;
L← B(gx, gy);
return (gxy ∈ L)

Adversary B(α, β) :
(m0,m1)← A1(α);
γ $← {0, 1}k;
b′ ← A2(β, γ);
return LA

|= G3 ∼ LCDH : true⇒ (ŷ ∈ LA)〈1〉 ↔ res〈2〉
Pr [G3 : ŷ ∈ LA] = Pr [LCDH : gxy ∈ L]

∣

∣Pr [IND-CPA : b = b′]− 1

2

∣

∣ ≤ Pr [LCDH : gxy ∈ L]

Fig. 1. Proof sketch of Hashed ElGamal security

In game G2 we substitute the value H(ŷ) used to compute the challenge
ciphertext by a uniformly chosen value. This only makes a difference ifA1 queries
ŷ to H , and this happens with the same probability in either game. Thus, the
difference in the probability of any event in these games is bounded by the
probability of ŷ ∈ LA in G2. This can be seen as a semantic variant of the
Fundamental Lemma of Game-Playing; the logic allows to dispense with the
code instrumentation needed to apply the syntactic counterpart of the lemma.

The transition from G2 to G3 uses a code transformation known as optimistic

sampling: instead of sampling h and defining a value γ as h⊕mb, we sample γ
and define h = γ ⊕mb; we then remove the definition of h as dead code. This
transformation is proven admissible within the logic and removes the dependency
of the adversary’s output from the challenge bit b.

The final transition performs the reduction to LCDH by exhibiting an adver-
sary B that uses A as a sub-procedure and for which the semantics of games
LCDH and G3 coincide. Finally, from the preceding claims, the advantage of A
can be bounded by the probability of B in solving LCDH. The resulting proof
sketch is about 250 lines long, about 5 times shorter than the proof in CertiCrypt

reported in [4]—and arguably much simpler and close to a pen-and-paper proof.

3 An Overview of EasyCrypt

Programming Language Games are modeled as programs in a typed, proba-
bilistic, procedural, imperative language. Types include Booleans, integers, bit-
strings, pairs, lists, maps, and user-defined types. Expressions are built from
variables and operators in the usual way; for instance, Boolean-valued operators
include the usual connectives, equality, list membership, arithmetic comparisons.
The commands of the language are defined by the following grammar:

I ::= V ← E assignment
| V $← DE random sampling
| if E then C else C conditional
| V ← P(E , . . . , E) procedure call

C ::= skip nop
| I; C sequence

where V is a set of variables, P is a set of procedures, and DE is a set of
distribution expressions. For the purpose of this article, distribution expressions
are restricted to uniform distributions over specific domains, for instance integers
in Zq or (non-neutral) elements of some group G. Adversaries are modeled as
abstract procedures with an interface that specifies the oracles they may query.

Games can be given a semantics as memory distribution transformers, in
the style of [6]. Formally, memories are well-typed mappings from variables to
values, and the semantics of a game G is a function, denoted JGK, that returns
for an initial memory m the (sub-)distribution on final memories resulting from
executing G in m. Given an initial memory m and an event A (a Boolean ex-
pression), we let Pr [G,m : A] denote the probability of A w.r.t. the distribution
JGK m; we simply write Pr [G : A] when the initial memory is not relevant.

Relational Judgments Pre- and post-conditions in pRHL judgments are first-
order formulae built from relational expressions. Relational expressions are ar-
bitrary Boolean expressions over logical variables and program variables tagged
with 〈1〉, 〈2〉; the only restriction is that logical variables may only appear quanti-
fied. By abuse of notation, we write e〈i〉 for the expression e in which all variables
have been tagged with 〈i〉. Let b stand for an arbitrary Boolean expression over
tagged and logical variables, then logical formulae are defined by the following
grammar:

Ψ, Φ ::= b | ¬Φ | Ψ ∧ Φ | Ψ ∨ Φ | Ψ → Φ | Ψ ↔ Φ | (Φ) | ∀x. Φ | ∃x. Φ

A logical formula is interpreted as a relation on program memories. For example,
the formula x〈1〉+ y〈2〉 ≤ z〈1〉 is interpreted as the relation

R = {(m1,m2) | m1(x) +m2(y) ≤ m1(z)}

A pRHL judgment |= G1 ∼ G2 : Ψ ⇒ Φ is valid iff for any pair of initial memories
m1,m2 satisfying the pre-condition Ψ , the distributions JG1K m1 and JG2K m2

satisfy the lifting of post-condition Φ, (JG1K m1)L(Φ) (JG2K m2). The lifting of
a relation to a distribution is defined as a max-cut min-flow problem, in the
style of [18]. Formally, let µ1 be a probability distribution on a set A and µ2 a
probability distribution on a set B. We define the lifting µ1 L(R)µ2 of a relation
R ⊆ A×B to µ1 and µ2 as follows:4

∃µ : D(A×B). π1(µ) = µ1 ∧ π2(µ) = µ2 ∧ ∀(a, b) : A×B. µ(a, b) > 0 =⇒ a R b

where the projections π1(µ) and π2(µ) of µ are defined as

π1(µ)(a)
def

=
∑

b∈B

µ(a, b) π2(µ)(b)
def

=
∑

a∈A

µ(a, b)

Claims about probability can be derived from valid relational judgments by
means of the following rules:

m1 Ψ m2 |= G1 ∼ G2 : Ψ ⇒ Φ Φ→ (A〈1〉 ↔ B〈2〉)

Pr [G1,m1 : A] = Pr [G2,m2 : B]
[PrEq]

m1 Ψ m2 |= G1 ∼ G2 : Ψ ⇒ Φ Φ→ (A〈1〉 → B〈2〉)

Pr [G1,m1 : A] ≤ Pr [G2,m2 : B]
[PrLe]

Automated Proofs of Relational Judgments Most practical verification tools
adopt a similar methodology: a weakest precondition (wp) calculus is used to
compute from a program and its specification a set of sufficient conditions, known
as verification conditions, and these conditions are discharged by automated

4 For the clarity of presentation, we assume that A and B are discrete and cast our
definitions using the usual representation of distributions. However, the tool builds
on a monadic representation of distributions, as in [6].

tools. Extending the methodology to the logic pRHL is a significant challenge,
for two reasons: first, generating verification conditions for a relational program
logic is an open topic of research, and second, there is no prior application of
the methodology to procedural nor probabilistic programs.

There are at least two natural strategies for defining a wp calculus in a rela-
tional setting. The calculus can either operate on both games in lockstep, or else
it can operate on each game separately, in the style of self-composition [2]. Both
strategies are incomplete: the lockstep wp calculus fails on programs that are not
structurally equivalent, whereas self-composition fails to handle random assign-
ments and adversary calls. In order to circumvent these limitations, EasyCrypt
implements an alternative approach that mixes both strategies:

1. Calls to non-adversary procedures are eliminated from the games by succes-
sive inlining their definitions. In the absence of recursion, the transformation
terminates successfully and only adversary calls remain;

2. Random assignments are moved upfront. The resulting code consists of a
sequence of random assignments followed by deterministic code, possibly
with adversary calls;

3. A relational weakest precondition calculus is applied to the deterministic
fragment of the game, using relational specifications to deal with adversary
calls. Each adversary specification induces a proof obligation, expressed as a
pRHL judgment, on the oracles in its interface. Self-composition is applied
to verify the code of oracles with respect to these pRHL judgments. This
results in a judgment of the form

|= x1
$← T1; . . . xl

$← Tl ∼ y1 $← U1; . . . yn $← Un : Ψ ⇒ Φ

4. A mapping f : T1×· · ·×Tl → U1×· · ·×Un is selected, and used to generate
the verification condition Φ⇒f Ψ , defined as5

∀m1 m2 t1 . . . tl . m1 Ψ m2 =⇒ m1

{

~t/~x
}

Φ m2 {f(t1, . . . , tl)/~y}

Under specific conditions on f , see [23], the validity of Φ ⇒f Ψ entails the
validity of the corresponding pRHL judgment. In practice, it is generally
sufficient to require that f is a 1-1 mapping, and taking f as the identity
function works most of the time. However, in some cases other mappings
must be used. For example, to prove the equivalence between games G2 and
G3 in the proof of Hashed ElGamal described in the previous section, it is
necessary to prove a judgment like the following:

|= h $← {0, 1}k; γ ← h⊕mb ∼ γ $← {0, 1}k; h← γ ⊕mb : ={mb} ⇒ ={h,γ}

The wp will stop after computing the weakest precondition for the deter-
ministic fragment of the two programs, yielding

|= h $← {0, 1}
k ∼ γ $← {0, 1}

k : ={mb} ⇒ (h〈1〉 = γ〈2〉 ⊕mb〈2〉)

5 The memory m1

{

~t/~x
}

maps xi to ti for i = 1 . . . l and y to m1(z) for z 6∈ {x1 . . . xl}.
Likewise, m2 {f(t1, . . . , tl)/~y} is the memory that maps yi to πi(f(t1, . . . , tl)) for
i = 1 . . . n and z to m2(z) for z 6∈ {y1 . . . yn}.

This equivalence is proved in EasyCrypt by providing the bijective function
f(x) = x ⊕ mb as a witness. The fact that f is bijective is established
automatically since f is idempotent. In the general case this is proved by
providing also the inverse mapping.

5. Since Φ ⇒f Ψ is a first-order formula, its validity can be established by
off-the-shelf tools. In order to target multiple tools, EasyCrypt generates its
verification conditions in the intermediate format of the Why tool [16]. We
then use the Simplify prover [15] and the alt-ergo SMT solver [13] to discharge
the conditions (although many others provers are supported, including in-
teractive theorem provers such as Coq).

Verification condition generation is incomplete (in the logical sense), and would
fail on pRHL judgments where games perform calls to adversaries in a different
order. Pleasingly, the strategy is extremely effective in practice—so that we have
found no need to implement alternatives for dealing with programs not handled
by our approach.

A Mechanized Probabilistic Relational Hoare Logic EasyCrypt implements a sim-
ple tactic language to prove the validity of judgments using rules of the logic and
program transformations. The tactics allow the application of two-sided rules,
which require that the two commands of a judgment have the same shape, and
one-sided rules, which operate on only one of the games in a judgment. All lan-
guage constructs admit both one-sided and two-sided rules, except for random
assignments and adversary calls, for which only two-sided rules exist.

The lack of one-sided rules for random assignments and adversary calls limits
the applicability of the logic: e.g., it cannot relate the programs x $← X ; y ← A(z)
and y ← A(z);x $← X , because instructions are executed in a different order.
To mitigate this limitation, EasyCrypt implements program transformations for
code motion, allowing to swap instructions that are independent. Moreover, Easy-
Crypt implements tactics for inlining procedure calls and eagerly/lazily sample
random values. Basic tactics can be combined using tacticals to increase au-
tomation. The tactic language provides the necessary infrastructure for making
most components of EasyCrypt proof-producing, as discussed below.

Reasoning about Failure Events Game-based proofs often include steps in which
it is argued that two games G1 and G2 behave identically unless a designated fail-
ure event F occurs. Such transitions are justified using the so-called Fundamental
Lemma [8, 20], which allows to bound the difference between the probability of
an event A in game G1 and a possibly different event B in game G2 by the
probability of F in either game. Although a syntactical characterization of this
lemma is often used, in which the failure event is represented by a Boolean flag
in the code of the games, we state a more general version of the lemma using
relational logic.

Lemma 1 (Fundamental Lemma). Let G1, G2 be two games and A,B, and

F be events such that

|= G1 ∼ G2 : Ψ ⇒ (F 〈1〉 ↔ F 〈2〉) ∧ (¬F 〈1〉 → (A〈1〉 ↔ B〈2〉))

Then, if m1 Ψ m2,

1. Pr [G1,m1 : A ∧ ¬F] = Pr [G2,m2 : B ∧ ¬F],

2. |Pr [G1,m1 : A]− Pr [G2,m2 : B] | ≤ Pr [G1,m1 : F] = Pr [G2,m2 : F]

The hypothesis of the lemma can be checked using the pRHL prover. The key to
proving the validity of the judgment is finding an appropriate specification for
adversaries. EasyCrypt infers for each adversary call x← A(~e) a relation Θ and
checks the validity of the judgment

|= A ∼ A : (¬F 〈1〉 ∧ ¬F 〈2〉 ∧ =args(A) ∧ Θ)⇒
(F 〈1〉 ↔ F 〈2〉) ∧

(

¬F 〈1〉 → ={res} ∧ Θ
)

where args(A) denotes the set of formal parameters of A. This in turn, requires
inferring and checking similar specifications for oracles. Although these heuris-
tically inferred specifications suffice in most cases, the user can choose to prove
their own specifications for one or more oracles or adversaries when needed,
leaving the tool to infer the rest.

Computing Probabilities EasyCrypt can prove claims about the probability of
events in games using properties of probability (e.g. inclusion-exclusion princi-
ple), arithmetic laws, and the rules [PrEq] and [PrLe] above, which allow deriving
probability claims from valid relational judgments. We also implement a simple
mechanism for computing probability bounds. This mechanism can establish,
for instance, that the probability that a value uniformly chosen from a set T is
equal to an arbitrary expression is 1/|T |, or the probability it belongs to a list
of n values is at most n/|T |.

Generating Verifiable Evidence EasyCrypt implements a compiler that turns
proof sketches into Coq files that are compatible with the CertiCrypt framework
and can be verified using the type checker of Coq. The compiler serves two pur-
poses: first, it significantly increases confidence in proof sketches by producing
independently verifiable proofs, and providing means of checking the consistency
of the set of axioms used in a proof sketch. Second, it opens the possibility to
conduct in a general-purpose proof assistant proof steps that fall out of the scope
of automated methods.

We briefly describe the workings of the compiler. The declarations, definitions
of games, and axioms of a proof sketch admit an immediate translation into
CertiCrypt. The recommended practice is to prove the axioms used by EasyCrypt

in CertiCrypt. In most cases, the axioms already exist in CertiCrypt, or are simple
consequences of proven facts. Then, using the proof-producing option of the
pRHL prover, all judgments of a proof sketch are compiled into pRHL derivations
in CertiCrypt. Finally, the compiler generates for each claim in a proof sketch a
Coq lemma that may need to be completed manually with justifications of the
probability reasoning performed by EasyCrypt.

4 Advanced Application: Cramer-Shoup Cryptosystem

The Cramer-Shoup cryptosystem is a public-key encryption scheme based on
ElGamal encryption that gained fame for being the first efficient asymmetric
encryption scheme to be proven secure against adaptive chosen-ciphertext at-
tacks under standard assumptions—the length of ciphertexts is just twice the
length of ElGamal ciphertexts. Given a cyclic group (family) G of order q and a
keyed hash function {Hk : G3 → Zq}k∈K mapping triples of group elements into
integers in Zq, key generation, encryption, and decryption are defined as follows:

KG() def

=
g, ĝ $← G \ {1};
x1, x2, y1, y2, z1, z2 $← Zq; k $← K;
e← gx1 ĝx2 ;
f ← gy1 ĝy2 ;
h← gz1 ĝz2;
pk← (k, g, ĝ, e, f, h);
sk ← (k, g, ĝ, x1, x2, y1, y2, z1, z2);
return (pk, sk)

E((k, g, ĝ, e, f, h),m) def

=
u $← Zq; a← gu; â← ĝu; c← hu ·m;
v ← Hk(a, â, c); d← eu · fuv;
return (a, â, c, d)

D((k, g, ĝ, x1, x2, y1, y2, z1, z2), (a, â, c, d))
def

=
v ← Hk(a, â, c);
if d = ax1+vy1 · âx2+vy2 then

return c/(az1 · âz2)
else return ⊥

We prove that the Cramer-Shoup cryptosystem is secure against adaptive chosen-
ciphertext attacks (IND-CCA secure) in the standard model assuming the DDH

problem is hard in the underlying group family and the hash function H is target
collision-resistant (i.e., universal one-way).

Definition 1 (Target Collision-Resistance). Let {Hk : A → B}k∈K be a

keyed family of hash functions. The advantage of an adversary C against the

target collision-resistance of H is defined as

AdvC
TCR

def

= Pr [TCR : Hk(x) = Hk(y) ∧ x 6= y]

where the experiment TCR is defined by means of the following game:

Game TCR : x← C1(); k $← K; y ← C2(k)

Definition 2 (CCA-advantage). Let (KG, E ,D) be an asymmetric encryption

scheme. The CCA-advantage of an adversary A limited to qD decryption queries

against the adaptive chosen-ciphertext security of the scheme is defined as

AdvA
CCA

(qD)
def

=

∣

∣

∣

∣

Pr [IND-CCA : b = b′]−
1

2

∣

∣

∣

∣

where the experiment IND-CCA is defined by means of the following game:

Game IND-CCA :
(pk, sk)← KG();
(m0,m1)← A1(pk);
b $← {0, 1};
γ∗ ← E(pk,mb); γ∗

def ← true;
b′ ← A2(γ

∗);
return (b = b′)

Oracle DA(γ) :
if |LD| < qD ∧ ¬(γ

∗

def ∧ γ = γ∗) then

LD ← γ :: LD;
return D(sk, γ)

else return ⊥

Theorem 1 (Security of Cramer-Shoup). Let A be an adversary against

the IND-CCA security of Cramer-Shoup limited to qD decryption queries. Then,

there exists an algorithm B for solving the DDH problem in G and an adversary

C against the target collision-resistance of the hash function H such that

AdvA
CCA(qD) ≤ AdvB

DDH +AdvC
TCR +

q4D
q4

+
qD + 2

q

Figure 2 shows a proof sketch of the above theorem in EasyCrypt. The proof
follows closely the one presented in [17]; we give only a high-level description
here. Game G1 in the figure is obtained directly from the IND-CCA game instan-
tiated for Cramer-Shoup by inlining the definitions of the key generation and
encryption procedures, propagating assignments, and replacing expressions by
equivalent ones. We observe that all verification conditions that ensure the valid-
ity of this transformation can be discharged automatically using an SMT solver.
This surpasses Halevi’s expectations [17], who suggested this transformation be
split in three steps so that it could be handled by an automated tool.

We then build a DDH distinguisher B such that the output distribution on
the value of (b = b′) is identical in games DDH0 (where B receives valid DDH

triples) and G1, on the one hand, and in games DDH1 (where B receives random
triples) and G2, on the other. In addition, we instrument the decryption oracle in
G2 to raise a flag bad whenever A queries for the decryption of a valid ciphertext
with loga â 6= logg ĝ. We then show using our semantic characterization of the
Fundamental Lemma that the difference in the probability of (b = b′) in this
game and in game G3, where D rejects such ciphertexts, is bounded by the
probability of bad in the latter game. We also change the way e, f and h are
computed in a semantics-preserving way. Up to this point, by the triangular
inequality we have

|Pr [IND-CCA : b = b′]− Pr [G3 : b = b′]| ≤ AdvB
DDH + Pr [G3 : bad]

The next game in the sequence, G4, removes the dependency of the adver-
sary’s output from bit b by choosing uniformly r and setting c = gr. This requires
to be able to compute z2 from logg(c) = uz + (u − u′)wz2 + logg(mb), which is
not possible if u = u′, but this happens only with probability 1/q. We use again
the semantic formulation of the Fundamental Lemma to bound the difference
in the probability of (b = b′) between G3 and G4 by 1/q. After straightforward
information-theoretic reasoning we get

|Pr [IND-CPA : b = b′]− 1/2| ≤ AdvB
DDH + 2/q + Pr [G4 : bad ∧ u 6= u′]

We can now move most of the code of the game before the call to A1. This in
turn allows to make d random by uniformly choosing r′ = logg(d) and defining
x2 in terms of it, rather than the other way around. Since now the game com-
putes the challenge ciphertext in advance, we can instrument D to raise a flag
bad1 when the challenge is queried during the first phase of the game. Note that
at this point the challenge ciphertext is a 4-tuple of uniformly random elements,

Game G1 :
g, ĝ $← G \ {1}; x1, x2, y1, y2, z1, z2 $← Zq ;
k $← K;
e← gx1 ĝx2 ; f ← gy1 ĝy2 ; h← gz1 ĝz2 ;
(m0,m1)← A1(k, g, ĝ, e, f, h); b $← {0, 1};
u $← Zq; a← gu; â← ĝu;
c← az1 · âz2 ·mb;
v ← Hk(a, â, c); d← ax1+vy1 · âx2+vy2 ;
γ∗ ← (a, â, c, d); γ∗

def ← true;
b′ ← A2(γ

∗); return (b = b′)

Oracle D(a, â, c, d) :
if |LD| < qD ∧ ¬(γ

∗

def ∧ (a, â, c, d) = γ∗)
then

LD ← γ :: LD;
v ← Hk(a, â, c);
if d = ax1+vy1 · âx2+vy2 then

return c/(az1 · âz2)
else return ⊥

else return ⊥

|= G1 ∼ DDH0 : true⇒ ={res} Pr [G1 : b = b′] = Pr [DDH0 : b = b′]

Game DDH0 DDH1 :
g $← G \ {1}; x $← Z

∗
q ; y $← Zq;

z ← xy z $← Zq ;

return B(g, gx, gy, gz)

Adversary B(g, ĝ, a, â) :
x1, x2, y1, y2, z1, z2 $← Zq ; k $← K;
e← gx1 ĝx2 ; f ← gy1 ĝy2 ; h← gz1 ĝz2 ;
(m0,m1)← A1(k, g, ĝ, e, f, h); b $← {0, 1};
c← az1 · âz2 ·mb;
v ← Hk(a, â, c); d← ax1+vy1 · âx2+vy2 ;
γ∗ ← (a, â, c, d); γ∗

def ← true;
b′ ← A2(γ

∗); return (b = b′)

Oracle D(a, â, c, d) :
if |LD| < qD ∧ ¬(γ

∗

def ∧ (a, â, c, d) = γ∗)
then

LD ← γ :: LD;
v ← Hk(a, â, c);
if d = ax1+vy1 · âx2+vy2 then

return c/(az1 · âz2)
else return ⊥

else return ⊥

|= DDH1 ∼ G2 : true⇒ ={res} Pr [DDH1 : b = b′] = Pr [G2 : b = b′]

Game G2 :
g $← G \ {1}; w $← Z

∗
q ; ĝ ← gw;

u, u′ $← Zq; a← gu; â← ĝu
′

;
x1, x2, y1, y2, z1, z2 $← Zq ; k $← K;
e← gx1 ĝx2 ; f ← gy1 ĝy2 ; h← gz1 ĝz2 ;
(m0,m1)← A1(k, h, ĝ, e, f, h); b $← {0, 1};
c← az1 · âz2 ·mb;
v ← Hk(a, â, c); d← ax1+vy1 · âx2+vy2 ;
γ∗ ← (a, â, c, d); γ∗

def ← true;
b′ ← A2(γ

∗);
return (b = b′)

Oracle D(a, â, c, d) :
if |LD| < qD ∧ ¬(γ

∗

def ∧ (a, â, c, d) = γ∗)
then

LD ← γ :: LD; v ← Hk(a, â, c);
if â = aw then ;

if d = ax1+vy1 · âx2+vy2 then

return c/(az1 · âz2)
else return ⊥

elsif d = ax1+vy1 · âx2+vy2 then

bad← true; return c/(az1 · âz2)
else return ⊥

else return ⊥

Fig. 2. Proof sketch of the IND-CCA security of the Cramer-Shoup cryptosystem

therefore, the probability of bad1 is bounded by (qD/q)
4—this is achieved by

means of an intermediate game, not shown in the figure, that stores the 4 compo-
nents of queried ciphertexts in different lists, and by independently bounding the
probability of each component of the challenge appearing in the corresponding
list. Hence, we have

Pr [G4 : bad ∧ u 6= u′] ≤ Pr [G5 : bad ∧ u 6= u′] + (qD/q)
4

Game G3 :
g $← G \ {1}; w $← Z

∗
q ; ĝ ← gw; k $← K;

x, x2
$← Zq; x1 ← x− wx2; e← gx;

y, y2 $← Zq; y1 ← y − wy2; f ← gy;
z, z2 $← Zq ; z1 ← z − wz2; h← gz;
(m0,m1)← A1(k, h, ĝ, e, f, h); b $← {0, 1};

u, u′ $← Zq; a← gu; â← ĝu
′

;
c← az1 · âz2 ·mb;
v ← Hk(a, â, c); d← ax1+vy1 · âx2+vy2 ;
γ∗ ← (a, â, c, d); γ∗

def ← true;
b′ ← A2(γ

∗); return (b = b′)

Oracle D(a, â, c, d) :
if |LD| < qD ∧ ¬(γ

∗

def ∧ (a, â, c, d) = γ∗)
then

LD ← γ :: LD; v ← Hk(a, â, c);
if â = aw then

if d = ax+vy then return c/az

else return ⊥
elsif d = ax1+vy1 · âx2+vy2 then

bad← true; return ⊥
else return ⊥

else return ⊥

|= G3 ∼ G4 : true⇒ (u = u′)〈1〉 ↔ (u = u′)〈2〉 ∧
(

(u 6= u′)〈1〉 →={res,bad}

)

Pr [G4 : b = b′] = 1/2 |Pr [G3 : b = b′]− Pr [G4 : b = b′]| ≤ Pr [G3 : u = u′] = 1/q

Game G4 :
g $← G \ {1}; w $← Z

∗
q ; ĝ ← gw; k $← K;

x, x2
$← Zq; x1 ← x− wx2; e← gx;

y, y2 $← Zq; y1 ← y − wy2; f ← gy;
z $← Zq; h← gz;

u, u′ $← Zq; a← gu; â← ĝu
′

;
r $← Zq; c← gr;
v ← Hk(a, â, c); d← ax1+vy1 · âx2+vy2 ;
(m0,m1)← A1(k, h, ĝ, e, f, h); b $← {0, 1};
γ∗ ← (a, â, c, d); γ∗

def ← true;
b′ ← A2(γ

∗); return (b = b′)

Oracle D(a, â, c, d) :
if |LD| < qD ∧ ¬(γ

∗

def ∧ (a, â, c, d) = γ∗)
then

LD ← γ :: LD; v ← Hk(a, â, c);
if â = aw then

if d = ax+vy then return c/az

else return ⊥
elsif d = ax1+vy1 · âx2+vy2 then

bad← true; return ⊥
else return ⊥

else return ⊥

|= G4 ∼ G′
4 : true⇒ (u = u′)〈1〉 ↔ (u = u′)〈2〉 ∧

(

(u 6= u′)〈1〉 → ={bad}

)

|= G′
4 ∼ G5 : true⇒ ={bad1} ∧

(

¬bad1〈1〉 → ={bad,u,u′}

)

Pr [G4 : bad ∧ u 6= u′] ≤ Pr [G5 : bad ∧ u 6= u′] + (qD/q)4

Fig. 2. Proof sketch of the IND-CCA security of the Cramer-Shoup cryptosystem

The decryption oracle in game G5 also raises a flag bad2 when a valid ciphertext
with Hk(a, â, c) = Hk(g

u, ĝu
′

, gr) is queried. Since this leads to a collision, we
can build an adversary C against the TCR of H such that its success probability
is lower bounded by the probability of bad2 being raised in G5. Thus,

Pr [G5 : bad ∧ u 6= u′] ≤ AdvC
TCR + Pr [G5 : bad ∧ u 6= u′ ∧ ¬bad2]

The proof concludes by showing that the probability in G5 of bad being set while
bad2 is not is bounded by qD/q. This is done by reformulating the test under
which bad2 is set so that it does not depend on x1, x2, y1, y2. Therefore, the
probability of this test succeeding in any decryption query (under the condition
that u 6= u′) is the probability of the adversary guessing a random value in
the group, at most qD/q summing over all queries. The bound in the statement
follows.

Game G′
4 G5 :

g $← G \ {1}; w $← Z
∗
q ; ĝ ← gw; k $← K;

u, u′ $← Zq; a← gu; â← ĝu
′

;
y, y2 $← Zq; y1 ← y − wy2; f ← gy;

x $← Zq; e← gx; r′ $← Zq; d← gr
′

;
x2 ← (r′ − u(x+ vy))/(w(u′ − u))− vy2;
x1 ← x− wx2; z $← Zq;h← gz;
r $← Zq; c← gr;
v ← Hk(a, â, c); γ∗ ← (a, â, c, d);
(m0,m1)← A1(k, h, ĝ, e, f, h);
γ∗

def ← true; b′ ← A2(γ
∗); return (b = b′)

Oracle D(a, â, c, d) :
if |LD| < qD ∧ ¬γ

∗

def ∧ (a, â, c, d) = γ∗

then bad1 ← true;

if |LD| < qD ∧ (¬γ∗

def∨ (a, â, c, d) 6= γ∗)

then LD ← γ :: LD; v ← Hk(a, â, c);
if â = aw then

if d = ax+vy then return c/az

else return ⊥
elsif d = ax1+vy1 · âx2+vy2 then

bad← true;

if v = Hk(g
u, ĝu

′

, gr) then
bad2 ← true

else return ⊥
else return ⊥

|= G5 ∼ TCR : true⇒ bad2〈1〉 → res〈2〉
Pr [G5 : bad ∧ u 6= u′] ≤
Pr [TCR : Hk(m0) = Hk(m1) ∧m0 6= m1] + Pr [G5 : bad ∧ u 6= u′ ∧ ¬bad2]

Game TCR :
m0 ← C1(); k $← K; m1 ← C2(k);
return (Hk(m0) = Hk(m1) ∧m0 6= m1)

Adversary C1() :
g $← G \ {1}; w $← Z

∗
q ; ĝ ← gw;

u, u′ $← Zq; a← gu; â← ĝu
′

;
r $← Zq; c← gr; return (a, â, c)

Adversary C2(k) :
r′, x, y, z $← Zq;

d← gr
′

; e← gx; f ← gy; h← gz;

y2 $← Zq ; y1 ← y − wy2; k̂ ← k;
v ← Hk(a, â, c);
x2 ← (r′ − u(x+ vy))/(w(u′ − u))− vy2;
x1 ← x− wx2;
(m0,m1)← A1(h, ĝ, e, f, h);
γ∗ ← (a, â, c, d); b′ ← A2(γ

∗); return m̂

Oracle D(a, â, c, d) :
if |LD| < qD ∧ (a, â, c, d) 6= γ∗ then

LD ← γ :: LD;
v ← Hk̂(a, â, c);
if â = aw then

if d = ax+vy then return c/az

else return ⊥
elsif d = ax1+vy1 · âx2+vy2 then

if v = Hk̂(g
u, ĝu

′

, gr) then
m̂← (a, â, c);
return ⊥

else return ⊥
else return ⊥

Fig. 2. Proof sketch of the IND-CCA security of the Cramer-Shoup cryptosystem

5 Limitations and Extensions

EasyCrypt is in its early stages of development; we briefly comment on some of
its main limitations and possible extensions:

– Programming language: in comparison with CertiCrypt, the language of Easy-
Crypt lacks loops, recursive procedures, and drawing from skewed distribu-
tions. We do not see the need for extending the current language with recur-

sive procedures. In contrast, we believe that more general forms for sampling
and bounded loops are useful and foresee no specific difficulty in adding them
to the language (note that annotating loops with invariants may be required
for verification condition generation);

– Verifiable evidence: EasyCrypt only generates partial verifiable evidence. As
there is currently no SMT solver that generates Coq proofs, the verification
conditions are admitted in order to make the output derivations checkable
by the Coq proof assistant. Making SMT solvers proof-producing is an ac-
tive subject of research [21], and advances towards this goal shall benefit
immediately to EasyCrypt;

– Computation of probability: EasyCrypt generates proof skeletons for claims
about probability rather than fully machine-checked proofs. While it is en-
tirely feasible to extend the compiler for justifying more reasonings, a more
principled solution would require a tool that can symbolically compute the
probability of an event in a distribution.

Further research into the theory of cryptographic proofs, in the line of [3], is
needed to broaden the scope of applications and effectiveness of EasyCrypt. Es-
sential goals include providing a formal account of useful reasoning principles,
such as rewinding arguments or coin-fixing, and notions, such as statistical dis-
tance, that have not yet been considered in our setting.

There remain ample opportunities to apply methods from programming lan-
guages and formal verification to computer-aided cryptographic proofs. We men-
tion two exciting avenues for improving automation in EasyCrypt. The first av-
enue is to improve our mechanism for inferring relational specifications of adver-
saries: there is a large body of knowledge on inferring invariants, and it would be
beneficial to transpose them to our setting. More speculatively, program synthe-
sis could be used to discover part of the sequence of games needed to conclude a
proof, and to build adversaries that justify reductions to cryptographic assump-
tions. Both specification inference and program synthesis rely on verification
condition generation and SMT solving, hence the basic blocks for such an inves-
tigation are in place.

Finally, Halevi [17] stresses that “the usefulness of (a) tool will depend cru-
cially on the willingness of the customers (in this case the cryptographic commu-
nity) to use it”, and suggests on this account that an appropriate user interface
will be a crucial component of the tool. We fully adhere to his view, and see
building such an interface as an important objective for further work.

5.1 Comparison with CertiCrypt

Table 1 compares CertiCrypt and EasyCrypt on various security proofs formalized
in both systems. Times are measured on a 2.8GHz Intel Core 2 Duo processor
with 4GB of RAM under Mac OS X 10.6.7. For comparison, we show the size
and checking time of CertiCrypt proofs extracted from EasyCrypt proof sketches.
This is not an altogether fair comparison, because extracted proofs assume as
axioms proof obligations checked by automated provers. As an experiment, we

completed interactively the extracted proof of security of ElGamal encryption,
thus obtaining a full proof verifiable under Coq. The resulting proof is 1173 long
(meaning that only 43 lines are needed to prove in Coq the proof obligations
checked by automated provers) and takes 25s to check.

Table 1. Comparison of proof size and checking time between CertiCrypt and EasyCrypt.

CertiCrypt EasyCrypt Extracted

Lines Time Lines Time Lines Time

ElGamal (IND-CPA) 565 45s 190 12s 1130 23s
Hashed ElGamal (IND-CPA) 1255 1m05s 243 33s 1772 41s
Full-Domain Hash (EF-CMA) 2035 5m46s 509 1m26s 2724 1m11s
Cramer-Shoup (IND-CCA) n/a n/a 1637 5m12s 5504 3m14s
OAEP (IND-CPA) 2451 3m27s n/a n/a n/a n/a
OAEP (IND-CCA) 11162 37m32s n/a n/a n/a n/a

6 Conclusion

Computer-aided verification of cryptographic protocols in the symbolic model is
an established field of research: robust tools are available and have been used
successfully to analyze realistic protocols (e.g. [1,9,14,19]). In contrast, there is
little prior work on computer-aided cryptographic proofs in the computational
model. The importance of such proofs was suggested independently by Bellare
and Rogaway [8] and, more explicitly, by Halevi [17], who convincingly argues
that they can be viewed as the “natural next step along the way of viewing
cryptographic proofs as a sequence of probabilistic games”. To date, there are
two main tools for computer-aided cryptographic proofs: CertiCrypt, which fa-
vors generality and verifiable proofs, and CryptoVerif, which favors automation.
We have presented EasyCrypt, a new tool which provides the first flexible and
automated framework for building machine-checkable cryptographic proofs, and
illustrated its use through computer-aided security proofs of Hashed ElGamal
encryption in the Random Oracle Model and the Cramer-Shoup cryptosystem in
the standard model. These examples demonstrate that proofs in EasyCrypt are
significantly easier and faster to build than in any previous tool, while provid-
ing guarantees similar to CertiCrypt. Overall, we believe that EasyCrypt makes
an important step towards the adoption of computer-aided proofs by working
cryptographers.

Acknowledgments We are grateful to Daniel Hedin and Anne Pacalet for their
participation in the initial phases of the project, to Yassine Lakhnech and David
Pointcheval for useful discussions, and to the anonymous reviewers for their
insightful comments.

References

1. Backes, M., Maffei, M., Unruh, D.: Computationally sound verification of source
code. In: 17th ACM conference on Computer and Communications Security, CCS
2010. pp. 387–398. ACM, New York (2010)

2. Barthe, G., D’Argenio, P., Rezk, T.: Secure information flow by self-composition.
In: 17th IEEE workshop on Computer Security Foundations, CSFW 2004. pp.
100–114. IEEE Computer Society, Washington (2004)

3. Barthe, G., Daubignard, M., Kapron, B., Lakhnech, Y.: Computational indistin-
guishability logic. In: 17th ACM conference on Computer and Communications
Security, CCS 2010. pp. 375–386. ACM, New York (2010)

4. Barthe, G., Grégoire, B., Heraud, S., Zanella Béguelin, S.: Formal certification of
ElGamal encryption. A gentle introduction to CertiCrypt. In: 5th International
workshop on Formal Aspects in Security and Trust, FAST 2008. Lecture Notes in
Computer Science, vol. 5491, pp. 1–19. Springer, Berlin (2009)

5. Barthe, G., Grégoire, B., Lakhnech, Y., Zanella Béguelin, S.: Beyond provable
security. Verifiable IND-CCA security of OAEP. In: Topics in Cryptology – CT-
RSA 2011. Lecture Notes in Computer Science, vol. 6558, pp. 180–196. Springer,
Berlin (2011)

6. Barthe, G., Grégoire, B., Zanella Béguelin, S.: Formal certification of code-based
cryptographic proofs. In: 36th ACM SIGPLAN-SIGACT symposium on Principles
of Programming Languages, POPL 2009. pp. 90–101. ACM, New York (2009)

7. Barthe, G., Hedin, D., Zanella Béguelin, S., Grégoire, B., Heraud, S.: A machine-
checked formalization of Sigma-protocols. In: 23rd IEEE Computer Security Foun-
dations symposium, CSF 2010. pp. 246–260. IEEE Computer Society, Los Alami-
tos, Calif. (2010)

8. Bellare, M., Rogaway, P.: The security of triple encryption and a framework for
code-based game-playing proofs. In: Advances in Cryptology – EUROCRYPT
2006. Lecture Notes in Computer Science, vol. 4004, pp. 409–426. Springer, Berlin
(2006)

9. Bhargavan, K., Fournet, C., Gordon, A.D.: Modular verification of security proto-
col code by typing. In: 37th ACM SIGPLAN-SIGACT symposium on Principles
of programming languages, POPL 2010. pp. 445–456. ACM (2010)

10. Blanchet, B., Jaggard, A.D., Scedrov, A., Tsay, J.K.: Computationally sound mech-
anized proofs for basic and public-key Kerberos. In: 15th ACM conference on Com-
puter and Communications Security, CCS 2008. pp. 87–99. ACM, New York (2008)

11. Blanchet, B.: A computationally sound mechanized prover for security protocols.
In: 27th IEEE symposium on Security and Privacy, S&P 2006. pp. 140–154. IEEE
Computer Society (2006)

12. Blanchet, B., Pointcheval, D.: Automated security proofs with sequences of games.
In: Advances in Cryptology – CRYPTO 2006. Lecture Notes in Computer Science,
vol. 4117, pp. 537–554. Springer, Berlin (2006)

13. Conchon, S., Contejean, E., Kanig, J., Lescuyer, S.: CC(X): Semantic combina-
tion of congruence closure with solvable theories. Electronic Notes in Theoretical
Computer Science 198(2), 51–69 (2008)

14. Cremers, C.: The Scyther Tool: Verification, falsification, and analysis of security
protocols. In: 20th International Conference on Computer Aided Verification, CAV
2008. Lecture Notes in Computer Science, vol. 5123, pp. 414–418. Springer, Berlin
(2008)

15. Detlefs, D., Nelson, G., Saxe, J.B.: Simplify: A theorem prover for program check-
ing. Tech. Rep. HPL-2003-148, HP Laboratories Palo Alto (2003)

16. Filliâtre, J.C.: The WHY verification tool: Tutorial and Reference Manual Version
2.28. Online – http://why.lri.fr (2010)

17. Halevi, S.: A plausible approach to computer-aided cryptographic proofs. Cryptol-
ogy ePrint Archive, Report 2005/181 (2005)

18. Jonsson, B., Yi, W., Larsen, K.G.: Probabilistic extensions of process algebras.
In: Bergstra, J., Ponse, A., Smolka, S. (eds.) Handbook of Process Algebra, pp.
685–710. Elsevier, Amsterdam (2001)

19. Paulson, L.C.: The inductive approach to verifying cryptographic protocols. J. of
Comput. Secur. 6(1-2), 85–128 (1998)

20. Shoup, V.: Sequences of games: a tool for taming complexity in security proofs.
Cryptology ePrint Archive, Report 2004/332 (2004)

21. Stump, A.: Proof checking technology for satisfiability modulo theories. Electr.
Notes Theor. Comput. Sci. 228, 121–133 (2009)

22. The Coq development team: The Coq Proof Assistant Reference Manual Version
8.3. Online – http://coq.inria.fr (2010)

23. Zanella Béguelin, S.: Formal Certification of Game-Based Cryptographic Proofs.
Ph.D. thesis, Ecole Nationale Supérieure des Mines de Paris – Mines ParisTech
(2010)

24. Zanella Béguelin, S., Grégoire, B., Barthe, G., Olmedo, F.: Formally certifying the
security of digital signature schemes. In: 30th IEEE symposium on Security and
Privacy, S&P 2009. pp. 237–250. IEEE Computer Society, Los Alamitos, Calif.
(2009)

A Input File for the Proof of Security of Hashed ElGamal

The following is an extract taken from the EasyCrypt input file corresponding to
the proof of IND-CPA security of Hashed ElGamal described in Section 2:

100 type group
101

102 cnst q : i n t
103 cnst g : group
104 cnst k : i n t
105 cnst ze ro : b i t s t r i n g {k}
106

107 type skey = in t
108 type pkey = group
109 type key = skey ∗ pkey
110 type message = b i t s t r i n g {k}
111 type c i phe r = group ∗ b i t s t r i n g {k}
112

113 op (∗) : group , group → group = mul
114 op (ˆ) : group , i n t → group = pow
115 op (ˆˆ) : b i t s t r i n g {k} , b i t s t r i n g {k} → b i t s t r i n g {k} = xor
116

117 axiom pow mul : ∀ (x : in t , y : i n t) . { (gˆx)ˆy = gˆ(x∗y) }
118 axiom xor comm : ∀ (x : b i t s t r i n g {k} , y : b i t s t r i n g {k }) . { (xˆˆy) = (yˆˆx) }
119

120 . . .
121

122 adversary A1(pk : pkey) : message ∗ message { group → message}
123 adversary A2(pk : pkey) : bool { group → message}
124

125 game INDCPA = {
126 var L : (group , b i t s t r i n g {k}) map

127 var LA : group l i s t
128

129 fun H(x : group) : message = {

130 var h : message = {0, 1}k;
131 i f (¬ i n dom (x ,L)) { L [x] = h ; } ;
132 return L [x] ;
133 }
134

135 fun H A(x : group) : message = {
136 var m : message ;
137 LA = x : : LA;
138 m = H(x) ;
139 return m;
140 }
141

142 . . .
143

144 abs A1 = A1 {H A}
145 abs A2 = A2 {H A}
146

147 fun Main () : bool = {
148 var sk : skey ;
149 var pk : pkey ;
150 var m0, m1 : message ;
151 var c : c i phe r ;
152 var b , b ’ : bool ;
153

154 L = empty map () ;
155 LA = [] ;
156 (sk , pk) = KG() ;
157 (m0,m1) = A1(pk) ;
158 b = {0 ,1} ;
159 c = Enc(pk , b ? m0 : m1) ;
160 b ’ = A2(c) ;
161 return (b = b ’) ;
162 }
163 }
164

165 game G1 = INDCPA
166 var y ’ : group
167 where Main = {
168 var m0, m1 : message ;
169 var c : c i phe r ;
170 var b , b ’ : bool ;
171 var x , y : i n t ;
172 var hy : message ;
173 var α : group ;
174

175 L = empty map () ;
176 LA = [] ;
177 x = [0 . . q−1] ; α = gˆx ;
178 y = [0 . . q−1] ; y ’ = αˆy ;
179 (m0,m1) = A1(α) ;
180 b = {0 ,1} ;
181 hy = H(y ’) ;
182 b ’ = A2((gˆy , hy ˆˆ (b ? m0 : m1))) ;
183 return (b = b ’) ;
184 }
185

186 equiv Fact1 : INDCPA.Main ∼ G1 .Main : { t rue } =⇒ ={ r e s }
187 i n l i n e KG, Enc ; derandomize ;
188 auto inv ={L ,LA} ;
189 pop〈2〉 1 ; repeat rnd ; t r i v i a l ; ;
190 save ; ;
191

192 claim Pr1 : INDCPA.Main [r e s] = G1 .Main [r e s] using Fact1
193 . . .

