
Time-Lock Puzzles in the Random Oracle Model

Mohammad Mahmoody1, Tal Moran2, and Salil Vadhan?2

1 Department of Computer Science, Cornell University
mohammad@cs.cornell.edu; http://www.cs.cornell.edu/˜mohammad/

2 School of Engineering and Applied Sciences and
Center for Research on Computation and Society, Harvard University

{talm,salil}@seas.harvard.edu; http://seas.harvard.edu/˜{talm,salil}/

Abstract. A time-lock puzzle is a mechanism for sending messages “to the fu-
ture”. The sender publishes a puzzle whose solution is the message to be sent,
thus hiding it until enough time has elapsed for the puzzle to be solved. For time-
lock puzzles to be useful, generating a puzzle should take less time than solving it.
Since adversaries may have access to many more computers than honest solvers,
massively parallel solvers should not be able to produce a solution much faster
than serial ones.
To date, we know of only one mechanism that is believed to satisfy these prop-
erties: the one proposed by Rivest, Shamir and Wagner (1996), who originally
introduced the notion of time-lock puzzles. Their puzzle is based on the serial na-
ture of exponentiation and the hardness of factoring, and is therefore vulnerable
to advances in factoring techniques (as well as to quantum attacks).
In this work, we study the possibility of constructing time-lock puzzles in the
random-oracle model. Our main result is negative, ruling out time-lock puzzles
that require more parallel time to solve than the total work required to generate
a puzzle. In particular, this should rule out black-box constructions of such time-
lock puzzles from one-way permutations and collision-resistant hash-functions.
On the positive side, we construct a time-lock puzzle with a linear gap in parallel
time: a new puzzle can be generated with one round of n parallel queries to the
random oracle, but n rounds of serial queries are required to solve it (even for
massively parallel adversaries).

1 Introduction

In this paper we revisit the subject of “timed-release crypto” based on “time-lock puz-
zles”. The goal of timed-release crypto, introduced by May [22], is to encrypt a message
in such a way that it will be readable at some specified time in the future (even without
additional help from the sender), but not before then.

In addition to the basic use of “sending messages to the future”, there are many
other potential uses of timed-release crypto. Rivest, Shamir and Wagner [25] suggest,
among other uses, delayed digital cash payments, sealed-bid auctions and key escrow.
Boneh and Naor [9] define timed commitments and timed signatures and show that they
can be used for fair contract signing, honesty-preserving auctions and more.

? Supported by NSF grant CNS-0831289.

A natural approach to building a timed-release crypto scheme is the use of time-
lock puzzles: puzzles that take a prespecified amount of time to solve (which should be
significantly longer than the time to generate the puzzle). Intuitively, using the solution
of a time-lock puzzle as the key to an encryption scheme would force anyone wanting
to decrypt the message to perform the computation for the time required to solve the
puzzle. By tuning the difficulty of the solution according to the time we would like the
message to remain secure, we can ensure that decryption will take at least that amount
of time.

Inverting a (suitably weak) one-way function seems like an obvious candidate for
a time-lock puzzle. However, as Rivest et al. observed, for many uses a generic one-
way function would not suffice. This is because a potential adversary may have access
to much larger computational resources than an honest party. Even if the processors
available to the adversary are not be significantly faster than those available to the honest
parties, it is reasonable to assume that a well-funded adversary could have access to
many more processors (that could be used in parallel). Thus, we require that time-lock
puzzles be “essentially sequential” in nature: having many parallel processors should
not give a large advantage over a single processor in solving the puzzle.

The puzzles proposed in [25] are based on the conjecture that exponentiation (mod-
ulo an RSA integer) is such a task. In particular, if the factorization of the modulus is
not known, the best known method for exponentiation is repeated squaring (which is
conjectured to be essentially sequential). Given the factors of the modulus, however,
there is a shortcut that allows the exponentiation to be performed much faster (so that
the puzzles can be generated efficiently). Thus, there seems to be a super-polynomial
gap between the work required to generate the puzzle and the parallel time required to
solve it (for a polynomial number of parallel processors).

To the best of our knowledge, this construction of time-lock puzzles is the only one
currently known that is resistant to parallel attack. The construction of Boneh and Naor
[9] uses essentially the same idea. This leads to the natural question of whether we can
construct time-lock puzzles based on other assumptions, preferably weaker and more
general ones.

Biham, Goren and Ishai [5] suggest an additional motivation as well: obtaining
(weak) key-agreement protocols based on one-way functions that resist quantum attack.
They show that in the classical world there do exist weak key-agreement protocols
based on one-way functions (of exponential strength) that force an adversary to work
in time quadratic in the time of the honest parties, based on a variant of Merkle puzzles
[23]. However, both their construction and the original Merkle puzzles are vulnerable
to quantum attack via Grover’s search algorithm [20]. Biham et al. note that Grover’s
speedup only applies to parallel search, and leave as an open problem whether such
puzzles exist that are resistant to parallel attack (and thus, potentially, to quantum attack
as well).

In this paper, we study time-lock puzzles in the random oracle model. In the random
oracle model, we assume all parties have access to an oracle, H, modeled as a random
function. In a real implementation, the random oracle is usually “instantiated” with a
cryptographic hash function. We assume the adversary in this model is computationally

unbounded, and measure the difficulty of the time-lock puzzle by the number of queries
the adversary is required to make to the random oracle in order to solve it.

The random oracle model is interesting for several reasons. First, negative results in
this model rule out “black-box” constructions from one-way permutations and collision-
resistant hash functions (since a random function is collision-resistant and indistin-
guishable from a random permutation using only a small number of queries; see e.g.,
[21,19,3] for details). Second, most “natural” protocols that have been proven secure in
the random oracle model appear to be secure in practice as well (even though some “ar-
tificial” protocols are secure in this model but insecure for any explicit instantiation of
the random oracle [11]), and constructing a protocol in this model is sometimes a first
step towards constructing a provably-secure protocol in the plain model (e.g., the first
efficient IBE scheme was proven secure in the random oracle model [8], after which
constructions were found in the standard model as well [12,6,7]). Finally, the random
oracle model is much simpler to analyze than models that incorporate computational
complexity, and better understanding the problem in this setting may give insight into
the complexity-theoretic case.

We can think of a time-lock puzzle generator as a randomized oracle algorithm f .
The output of f H(rA) (where rA is the random input and H the random oracle) is a pair
(M,V): the puzzle M and a solution validator V. The solver, given M, must output a
solution x such that V(x) = 1. When a time-lock puzzle has a single solution, such
as when it is used to hide an encrypted message, V just compares its input to that
constant value. In general, however,V may perform more complex verification and our
negative results hold even whenV is not efficient (note thatV does not have access to
the random oracle). For this to be a good time-lock puzzle, we would like f to be easy
to compute but moderately hard to solve, even for a parallel adversary. More precisely,
if we can compute (M,V)← f H(rA) using n queries to H, we would like f to satisfy:

Completeness.

– There exists a (randomized) polynomial-time algorithm g (the honest solver) that
solves puzzles generated by f : with high probability (over the random coins of
f and g and the random oracle H), if we generate (M,V) ← f H(rA) and x ←
gH(rB,M) then V(x) = 1. We use the shorthand notation [(M,V) ← f H(rA); x ←
gH(rB,M);V(x) = 1] to denote the event that the puzzle was generated as described
above, the solver was run and its solution was valid. We denote by m > n the
number of queries g makes to H. m measures the difficulty for the honest solver
and should be moderately larger than n, e.g., a large polynomial in n.

Soundness.

– Any algorithm that solves f and makes up to q � m queries to H must use at
least m′ ≈ m levels of adaptivity. For example, we might take q = nω(1) and m′ =

m/2. The number of levels of adaptivity measures the complexity for a parallelized
adversary; this requirement means that unless the adversary makes a very large
number of queries, using parallelism won’t give it an advantage over the honest
solver.

1.1 Our Results

Time-lock puzzles with large difficulty gap are impossible. Our main result is a negative
one. We show that for every time-lock puzzle there exists a parallel adversary that can
solve the puzzle in no more time than it takes to generate and makes only polynomially
more queries to the random oracle than the best honest (serial) solver. Thus, construct-
ing time-lock puzzles with a “gap” between the work of the puzzle generator and the
parallel time of the solver cannot be done in the random-oracle model.

Concretely, we prove two similar theorems but with incomparable parameters. The
first provides an adversary that makes an optimal number of parallel query rounds, but
may require super-polynomial time to run, even if the honest solver is efficient. Our
second theorem gives a much simpler adversary construction that runs in polynomial
time if the honest solver does, but has slightly worse adaptivity.

Formally, we prove the following two theorems:

Theorem 1 (Optimally Adaptive but Inefficient Adversary). Let f be an oracle al-
gorithm that makes at most n queries to a random oracle H and g an oracle algorithm
that makes at most m > n queries to H. If

Pr
[
(M,V)← f H(rA); x← gH(rB,M);V(x) = 1

]
≥ 1 − ν

(i.e., when a puzzle is randomly generated after which the solver g is executed, its output
is a valid solution with probability at least 1−ν over the random coins rA, rB and H) then
for all ε ∈ (0, 1) there exists an adversary, Ivy, that makes Õ(nm/ε) queries to H, uses
only n levels of adaptivity and satisfies Pr

[
(M,V)← f H(rA); x← hH(rI ,M);V(x) = 1

]
≥

1 − ν − ε (where rI is the variable denoting the random coins used by Ivy).

Theorem 2 (Efficient but Non-Optimal Adversary). Let f be an oracle algorithm
that makes at most n queries to a random oracle H and g an oracle algorithm that makes
at most m > n queries to H. If Pr

[
(M,V)← f H(rA); x← gH(rB,M);V(x) = 1

]
≥ 1 −

ν then for all ε ∈ (0, 1) there exists a deterministic adversary Javier (denoted by J)
who makes at most nm/ε queries to H, uses only n/ε levels of adaptivity and satisfies
Pr
[
(M,V)← f H(rA); x← JH(M);V(x) = 1

]
≥ 1 − ν − ε. Moreover, the running time

of J is O(n/ε) times the running time of g.

Some intuition for the proofs of both theorems, as well as the full proof of Theo-
rem 2, can be found in Section 2. Due to space considerations, the proof of Theorem 1
is deferred to the full version.

By combining Theorem 1 with the result of [4], we partially resolve the open ques-
tion of Biham et al. [5] by showing that every key-agreement protocol in the random-
oracle model can be broken by a parallel attack that makes polynomially many queries
to the random-oracle: Biham et al. were interested in whether there exist key-agreement
protocols that resist quantum attack, but as a step towards this goal asked the question
of whether there exist such protocols secure against a parallel classical attacker, and
specifically whether such protocols could be based on random functions.

Corollary 1. LetΠ be a two-party protocol in the random oracle model such that when
executingΠ the two parties Alice and Bob make at most n queries each and their outputs

are identical with probability at least 1 − ν. Then for every 0 < ε < 1 there exists an
adversary that, given the public transcript of the protocol, outputs a value that agrees
with Bob’s output with probability 1 − ν − ε using 2n levels of adaptivity and making
Õ(n3/ε3) total queries to H.

Proof. Let f H(rA, rB) = (M,V), where M is the complete public transcript of Π when
Alice uses the random coins rA and Bob the random coins rB. Define the corresponding
solution validator to be

V(x) =

1 if x is Bob’s output in the execution of Π in f H(rA, rB)
0 otherwise

.

By the result of [4], there exists an adversary that makes at most O(n2/ε2) queries to
H and outputs a “correct” solution to this puzzle (i.e., an output that agrees with Bob)
with probability 1 − ν − ε/2. Think of this adversary as the solver, g. By Theorem 1,
this implies that there exists a solver that succeeds with probability 1 − ν − ε, makes
Õ((2n/ε) · n2/ε2) = Õ(n3/ε3) total queries to H and uses only 2n levels of adaptivity
(the 2n is because the total number of queries made by f is bounded by the total number
of queries made by both Alice and Bob).

A time-lock puzzle with a linear gap in parallel time. Although our negative results
rule out “strong” time-lock puzzles, they still leave open the possibility for a weaker
version: one that can be generated with n parallel queries to the oracle but requires n
rounds of adaptive queries to solve.

In a positive result, we show that such a puzzle can indeed be constructed. More
formally, we prove:

Theorem 3. Let k be a security parameter. There exist oracle functions f and g that
satisfy:

1. (Efficiency) (M,VM) ← f H(k, r) can be computed using n parallel (non-adaptive)
queries to H.

2. (Completeness) x ← gH(k,M) can be computed using n serial (adaptive) queries
to H and the output of g always satisfiesVM(x) = 1 (g is deterministic).

3. (Soundness) For every oracle function h that makes less than n serial rounds of
queries to H and poly(k) queries overall to H in total,
Pr
[
(M,VM)← f H(k, r); x← hH(k, rJ ,M);VM(x) = 1

]
= neg(k) (where neg is some

negligible function in k).

The idea behind the construction is to force the solver to make sequential queries by
“encrypting” each successive query with the result of an oracle call on its predecessor.
The full construction and a sketch of its security proof appear in Section 3.

1.2 Related Work

Timed-Release Crypto Constructions. The notion of timed-release crypto was intro-
duced by May [22]. May’s proposal was to publish an encrypted message and distribute

the decryption key between several trusted agents. The agents would be instructed to
publish their shares of the key at a specified future date. Rivest, Shamir and Wagner
[25] introduced the idea of using time-lock puzzles instead of requiring a sender to
trust an external entity and also developed May’s “trusted-agent” approach, suggesting
a scheme where the trusted agents’ storage does not grow with the number of timed-
release messages (as it does in May’s scheme).

These two approaches, one based on puzzles and the other on trusted agents, have
remained the basis of all new timed-release crypto schemes that we know of. There have
been many improvements in the agent-based approach, focusing on reducing interaction
between the agents and the users, achieving various verifiability and privacy properties
([8,13,14], among others). On the other hand, to the best of our knowledge, all existing
time-lock puzzle constructions (that are resistant to parallel attack) are based on the
problem originated by Rivest et al., namely that of exponentiation modulo an RSA
integer.

Puzzles. The term “puzzle” to describe a cryptographic construction that is “meant to
be broken” was first used by Merkle in the context of key agreement protocols [23].
Merkle’s key-exchange protocol allows two users to exchange a key by solving a single
puzzle, while forcing an adversary to solve multiple puzzles in order to discover it. The
protocol does not require much structure from the puzzles, and can be instantiated with
black-box use of one-way functions. The computation gap between the honest users and
the adversary is quadratic in Merkle’s scheme: if an honest user requires O(N) time to
recover the key, an adversary can recover it in O(N2) time.

Barak and Mahmoody showed that this is essentially optimal [4], improving a previ-
ous result by Impagliazzo and Rudich [21]. Both of these works give an upper bound for
the computation gap of arbitrary key-exchange protocols in the random oracle model
(including protocols that require multiple rounds of interaction between the two hon-
est parties). Our work considers only one-message protocols, but bounds the parallel
complexity of the adversary (in contrast to [21,4], who analyze the complexity of serial
adversaries).

Puzzles have also been proposed as proof-of-work mechanisms for controlling spam
and preventing denial-of-service-attacks. The idea was first introduced by Dwork and
Naor [17], and was developed in multiple subsequent works [1,2,16,18]. Rivest and
Shamir even suggest one variant for use as a micropayment system [24].

One major difference between these types of puzzles and those we consider in this
work is that resistance to parallel attack is not as critical: for example, an adversary
generating spam messages can always parallelize at the message level rather than by at-
tacking a specific puzzle. Proofs-of-work, on the other hand, must be resistant to amor-
tization (solving one puzzle should not help in solving others), whereas this is usually
not a concern for time-lock puzzles.

For both types of puzzles, it is still important to take into account the gap between
the computational capability of an honest user and that of the adversary. Abadi, Bur-
rows, Manasse and Wobbler suggest basing the difficulty of a puzzle on memory access
time [1], under the assumption that this has less variance among users than CPU speed.
In a subsequent work, Dwork, Goldberg and Naor [16] construct such a function in the
random oracle model that uses “pointer-chasing” in a large random table. This has a

very similar flavor to our time-lock puzzle construction in Section 3, although the goal
is somewhat different and the analysis focuses on bounding memory accesses (to the
table) rather than layers of adaptivity or queries to the random oracle.

2 Negative Results for Time-Lock Puzzles

In this section we give the intuition behind the proofs of our main results (Theorems 1
and 2) as well as the full proof of Theorem 2.

Following the seminal work of Impagliazzo and Rudich [21] on key agreement
protocols in the random oracle model, our adversaries (for both theorems) attempt to
find all intersection queries between the puzzle-generator f (Alice) and the solver g
(Bob) — all queries made by both Alice and Bob. If successful, the adversary can then
simulate an honest solver without asking additional queries. The novelty of our work is
that we care not just about the total number of queries made by the adversary, but about
the number of levels of adaptivity.

Both adversary constructions work in rounds, and query the random oracle only at
the end of a round. Our aim is to reduce the total number of rounds (this is the “adaptiv-
ity level” of the adversary). The constructions differ in how they choose which queries
to ask in each round, and in the corresponding proofs that the adversary succeeds in
learning all of the intersection queries with high enough probability.

2.1 Intuition for Theorem 1

For the proof of Theorem 1, we use ideas (and a construction) of Impagliazzo and
Rudich [21] (and later improvements by Barak and Mahmoody [4]), but modified to
minimize the number of query rounds used by the adversary. Our attacker, Ivy, selects
her queries to the random oracle in n rounds (n is the number of queries made by Alice).
In round j, Ivy computes a set of heavy queries on which she will query the oracle at
the end of the round. Heavy queries are those that have a high probability (given Ivy’s
view) of having been made by Alice, where “high” is a parameter that depends on n,
m (the number of queries made by the honest solver) and ε (the probability with which
Ivy is allowed to fail).

The intuition for why Ivy’s attack works is that, as long as Bob has not hit any of
Alice’s “private” queries (those not made by Ivy), Bob doesn’t know any more than Ivy
about Alice’s view. Thus, any private query must be “light” conditioned on his view. By
definition, the probability that Bob hits a light query is small. We can then take a union
bound over all of Bob’s queries, and conclude that the total probability that Bob hits a
private query is small.

Unfortunately, the intuition above isn’t entirely correct: even querying an index that
was not queried by Alice may give Bob information about Alice’s view: the fact that
Alice didn’t query a particular index. We observe, however, that this is the only infor-
mation about Alice’s view that Bob can gain from making a non-intersection query.
Thus, if we condition on Bob not having made any private intersection queries so far,
our intuition still holds.

The main technical difficulty in the proof is making sure that Ivy can ask many
queries in parallel, in order to bound the number of rounds of adaptivity. Our solution
to this is to have Ivy condition her probability space after each query on the event that
this query was not an intersection query (rather than on the response to the query). Since
this event does not require Ivy to query the oracle in order to compute the new query
probabilities, she can ask multiple parallel queries in each round. Loosely speaking,
Ivy’s query strategy ensures that if there are any remaining heavy queries, then one of
her queries will be an intersection query with high probability. Since the number of
intersection queries can be at most n, within n rounds Ivy can ensure that there are no
remaining heavy queries.

Note that in order to find heavy queries, Ivy uses her unbounded computational
power (e.g., if Alice queries the oracle on an index i and sends Bob an encryption of i,
the index i is heavy conditioned on Ivy’s view, but Ivy may have to break the encryption
to find it).

2.2 Proof of Theorem 2

Javier, the adversary constructed in the proof of Theorem 2, works by running the hon-
est solver in each round, but replacing its queries to the random oracle with a simulated
oracle (so no queries to the real oracle are made during an execution). After the simu-
lation, Javier updates the simulated oracle by querying the real oracle (in parallel) on
every index that was queried during the simulated execution. The main idea in the proof
is that, since the puzzle generator asks only n queries, there can be at most n rounds in
which the simulated execution “hits” an intersection query that was not already known
to Javier. In the remaining rounds, Javier does know all the intersection queries, and
hence the simulated solver will behave just like the real honest solver (and output a
correct solution to the puzzle with the same probability). Formally:

Proof (of Theorem 2). The adversary Javier follows Alg. 1. In the algorithm description,
Qi(J) is the set of queries Javier made to H up to (but not including) round i, while Q(Bi)
is the set of queries the simulated Bob made to Hi in Javier’s ith round.

Algorithm 1 Javier’s query algorithm on message M and oracle H with parameter ε
1: Randomly choose i∗ ∈ [n/ε].
2: for i ∈ {1, . . . , i∗} do
3: Run Bob to get: xi ← gHi (rB,M) where Hi is an oracle that answers any query x ∈ Q(J)

the same as H does, and Hi answers any new query q < Q(J) uniformly at random. Note
that to run gHi (rB,M) we do not need to ask any new query to H because all the answers
to queries in Q(J) are already known and the rest are answered at random.

4: Query H on all indices in Q(Bi) \ Qi(J) where Q(Bi) is the queries Bob made to Hi.
5: Output xi∗ .

The total number of queries made by Javier is at most nm/ε and Javier’s running
time is O(n/ε) times the running time of Bob. It remains to show that the probability
that Javier’s output is accepted by the solution validator is at least 1 − ν − ε.

Denote the event that Javier’s output is accepted by the solution validator:

Success
de f
= (M,V)← f H(rA) ∧ xi∗ ← gHi∗ (rB,M) ∧V(xi∗) = 1 .

Call a round i good if Javier did not ask any new intersection queries in round i (i.e.,
Q(Bi)∩Q(A) ⊆ Qi(J)). Denote Goodi the event that round i was good. Since Alice asks
at most n queries, there can be at most n rounds that are not good. Thus, Pr [Goodi∗] ≥
1− ε. Note that if Goodi∗ holds, the tuple (f H(rA), gHi∗ (rB,M)) is distributed identically
to (f H(rA), gH(rB,M)), because as long as Bob’s queries in round i∗ were not queried by
Alice, H and Hi∗ both choose their answers at random and independently of all previous
queries and answers. Therefore, for an arbitrary event E defined over the joint view of
f H(rA) and that of Javier till the end of round i∗, to know the quantity Pr [E ∧ Goodi∗] it
does not matter weather we use the oracle H or Hi∗ in round i∗, and the probabilities will
remain the same. By misusing the notation, we also use Goodi∗ to refer to the similar
event when Javier uses the oracle H in his simulation of Bob in round i∗. Thus, we
finally conclude:

Pr [Success] ≥ Pr [Success ∧ Goodi∗]

= Pr
[
(M,V)← f H(rA); xi∗ ← gHi∗ (rB,M);V(xi∗) = 1 ∧ Goodi∗

]
= Pr
[
(M,V)← f H(rA); x← gH(rB,M);V(x) = 1 ∧ Goodi∗

]
≥ Pr
[
(M,V)← f H(rA); x← gH(rB,M);V(x) = 1

]
− (1 − Pr [Goodi∗])

≥ 1 − ν − ε.

3 A Time-Lock Puzzle with a Linear Difficulty Gap

In this section we give the construction and proof for Theorem 3.
In the description below, we omit the security parameter k: the security parameter is

only used to determine the range of the random oracle — we assume w.l.o.g. that H(q)
returns k bits (if the random oracle returns fewer bits, we can interpret a query H(q)
as concatenation of multiple queries (e.g., H(kq) � H(kq + 1) � · · · � H(kq + k − 1)).
To further simplify notation, our definition of f only generates the message M. The
(implicit) solution validator VM checks whether its input is equal to f ’s input (our
soundness proof is slightly stronger — we show that no adversary making less than n
serial rounds of queries to H can find any valid preimage of M under f).

We define the puzzle-generating function f to be:

f H(x0, . . . , xn)
de f
= (x0,H(x0) ⊕ x1, . . . ,H(xn−1) ⊕ xn)

(where the input is interpreted as n + 1 k-bit query indices).
The honest solver g inverts f by running Algorithm 2:

Proof (Sketch for Theorem 3). By inspection, f can be computed with n non-adaptive
queries: the values H(x1), . . . ,H(xn) can be obtained in parallel. The correctness of the
honest inverter (Alg. 2) and the fact that it uses n serial queries is also easy to see.

Algorithm 2 Honest solver g on input M = (M0, . . . ,Mn) and oracle H
1: x0 ← M0 // x0 is not “encrypted”.
2: for i ∈ {1, . . . , n} do
3: xi ← H(xi−1) ⊕ Mi // “decrypting” xi requires an oracle query on index xi−1.
4: Output (x0, . . . , xn)

The main part of the proof is to show that every inverter making poly(k) queries
to H needs to use at least n rounds of adaptive queries. To prove this, we first claim
that any algorithm that outputs xi+1 with non-negligible probability must query H on
xi. This is because, even taken together, the value of f H(x0, . . . , xn), the values of
{x0, . . . , xn} \ {xi+1} and the responses of the random oracle on all queries except xi

give no information (in the information-theoretic sense) about xi+1. Thus, the probabil-
ity that an algorithm outputs xi+1 without querying H on xi is negligible in k (the output
size of H). Note that this remains true if we allow the algorithm to output a polynomial
number of guesses for xi+1.

Now, consider an algorithm h making multiple rounds of queries to the oracle H,
such that in each round the indices queried depend only on the responses from previous
rounds. We can think of h as also outputting the indices it queries in each round (and
the total number of indices output by h is polynomial in k). If h correctly inverts f on
input M = f H(x0, . . . , xn), it must output xn at some round (since f is injective). By
induction (and using the reasoning above), the probability that h first outputs (queries)
xi and xi+1 in the same round is negligible (since we showed it must query xi before
xi+1). Therefore, the algorithm must use at least n rounds of adaptivity.

3.1 Increasing the Computation/Communication Ratio

Note that while our positive construction of a time-lock puzzle in the random-oracle
model is optimal with respect to query complexity, the description of a puzzle that
requires n adaptive queries to solve is also linear in n. When the cost of communica-
tion is comparable to an oracle query, simply communicating the puzzle takes O(n)
time, negating the benefit of parallel queries. We improve this ratio arbitrarily by re-
placing each oracle call with d composed calls (i.e., each call querying the oracle on
the response to the previous call). This will increase both the (parallel) generation and
solution time by a factor of d without changing the size of the puzzle description. For-

mally, let H(1) de f
= H and for d > 1 let H(d)(q)

de f
= H(H(d−1)(q)). Then the function

f H(d)
(x0, . . . , xn) can be computed with d rounds of n non-adaptive queries, and the

soundness condition from Theorem 3 holds with the increased parameters:

Claim. For every oracle function h that makes less than dn serial rounds of queries to
H and poly(k) queries overall to H in total,

Pr
[
(M,VM)← f H(d)

(k, r); x← hH(k, rJ ,M);VM(x) = 1
]

= neg(k)

(where neg is some negligible function in k).

Proof (Sketch). The main idea is that any algorithm that outputs H(i)(x) with non-
negligible probability must query H on H(i−1)(x) (otherwise the algorithm has no in-
formation about H(i)(x)). By induction, it follows that an algorithm that makes only a
polynomial number (in k) of queries to H needs d adaptive rounds to compute H(d)(x).
Composing this idea with the induction in the proof of Theorem 3, we get the required
parameters.

4 Discussion and Open Questions

The most obvious open question relating to time-lock puzzles is finding constructions
based on assumptions other than the difficulty of factoring. Although this work rules out
black-box constructions (with a super-constant gap) from one-way permutations and
collision-resistant hash functions, we have no reason to believe that time-lock puzzles
based on other concrete problems (e.g., lattice-based problems) do not exist. Extend-
ing our approach to other general assumptions (e.g., trapdoor permutations) is also an
interesting open problem.

One of the motivations for looking at time-lock puzzles in the random-oracle model
is the search for puzzles that are resistant to quantum attack. In this direction there
still remains work to be done: on the positive side, our construction may not be secure
against adversaries with quantum access to the random oracle (e.g., Dagdelen et al.
show protocols that are secure in the random oracle model but can be broken by attack-
ers with quantum access to the random oracle [15]). On the other hand, when the honest
parties are quantum, the lower bound question is still open as well (Brassard and Salvail
[10] and, independently, Biham et al [5], give a quantum version of Merkle puzzles that
require the adversary to make n3/2 queries in order to recover the shared key, but do not
prove optimality).

Acknowledgements

We thank the anonymous reviewers for their helpful comments and suggestions.

References

1. M. Abadi, M. Burrows, M. S. Manasse, and T. Wobber. Moderately hard, memory-bound
functions. ACM Trans. Internet Techn., 5(2):299–327, 2005.

2. A. Back. Hashcash — a denial of service counter-measure, 2002. http://www.hashcash.
org/papers/hashcash.pdf.

3. B. Barak and M. Mahmoody. Lower bounds on signatures from symmetric primitives. In
FOCS ’07, pages 680–688. IEEE Computer Society.

4. B. Barak and M. Mahmoody. Merkle puzzles are optimal - an O(n2)-query attack on any key
exchange from a random oracle. In CRYPTO ’09, volume 5677 of LNCS, pages 374–390.

5. E. Biham, Y. J. Goren, and Y. Ishai. Basing weak public-key cryptography on strong one-way
functions. In TCC ’08, volume 4948 of LNCS, pages 55–72.

6. D. Boneh and X. Boyen. Efficient selective-id secure identity-based encryption without
random oracles. In EUROCRYPT ’04, volume 3027 of LNCS, pages 223–238.

http://www.hashcash.org/papers/hashcash.pdf
http://www.hashcash.org/papers/hashcash.pdf

7. D. Boneh and X. Boyen. Secure identity based encryption without random oracles. In
CRYPTO ’04, volume 3152 of LNCS, pages 443–459.

8. D. Boneh and M. K. Franklin. Identity-based encryption from the weil pairing. SIAM J.
Comput., 32(3):586–615, 2003.

9. D. Boneh and M. Naor. Timed commitments. In CRYPTO ’00, volume 1880 of Lecture
Notes in Computer Science, pages 236–254.

10. G. Brassard and L. Salvail. Quantum merkle puzzles. In ICQNM, pages 76–79. IEEE Com-
puter Society, 2008.

11. R. Canetti, O. Goldreich, and S. Halevi. The random oracle methodology, revisited. J. ACM,
51(4):557–594, 2004.

12. R. Canetti, S. Halevi, and J. Katz. A forward-secure public-key encryption scheme. In
EUROCRYPT ’03, volume 2656 of LNCS, pages 255–271.

13. J. Cathalo, B. Libert, and J.-J. Quisquater. Efficient and non-interactive timed-release en-
cryption. In ICICS, volume 3783 of LNCS, pages 291–303, 2005.

14. G. D. Crescenzo, R. Ostrovsky, and S. Rajagopalan. Conditional oblivious transfer and
timed-release encryption. In EUROCRYPT ’99, volume 1592 of LNCS, pages 74–89.

15. O. Dagdelen, M. Fischlin, A. Lehmann, and C. Schaffner. Random oracles in a quantum
world. Cryptology ePrint Archive, Report 2010/428, 2010. http://eprint.iacr.org/
2010/428.pdf.

16. C. Dwork, A. Goldberg, and M. Naor. On memory-bound functions for fighting spam. In
CRYPTO ’03, volume 2729 of LNCS, pages 426–444.

17. C. Dwork and M. Naor. Pricing via processing or combatting junk mail. In CRYPTO ’92,
volume 740 of LNCS, pages 139–147.

18. C. Dwork, M. Naor, and H. Wee. Pebbling and proofs of work. In CRYPTO ’05, volume
3621 of LNCS, pages 37–54.

19. R. Gennaro, Y. Gertner, J. Katz, and L. Trevisan. Bounds on the efficiency of generic cryp-
tographic constructions. SIAM J. Comput., 35(1):217–246, 2005.

20. L. K. Grover. A fast quantum mechanical algorithm for database search. In STOC ’96, pages
212–219. ACM.

21. R. Impagliazzo and S. Rudich. Limits on the provable consequences of one-way permuta-
tions. In STOC ’89, pages 44–61. ACM.

22. T. C. May. Timed-release crypto. http://www.hks.net/cpunks/cpunks-0/1460.html,
February 1993.

23. R. C. Merkle. Secure communications over insecure channels. Commun. ACM, 21(4):294–
299, 1978.

24. R. L. Rivest and A. Shamir. Payword and micromint: Two simple micropayment schemes.
In Security Protocols Workshop, volume 1189 of LNCS, pages 69–87, 1996.

25. R. L. Rivest, A. Shamir, and D. A. Wagner. Time-lock puzzles and timed-release crypto.
Technical Report MIT/LCS/TR-684, MIT, February 1996.

http://eprint.iacr.org/2010/428.pdf
http://eprint.iacr.org/2010/428.pdf
http://www.hks.net/cpunks/cpunks-0/1460.html

	Time-Lock Puzzles in the Random Oracle Model

