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Abstract. We propose a framework for analyzing classical sampling
strategies for estimating the Hamming weight of a large string from a few
sample positions, when applied to a multi-qubit quantum system instead.
The framework shows how to interpret the result of such a strategy and
how to define its accuracy when applied to a quantum system. Further-
more, we show how the accuracy of any strategy relates to its accuracy in
its classical usage, which is well understood for the important examples.
We show the usefulness of our framework by using it to obtain new and
simple security proofs for the following quantum-cryptographic schemes:
BB84 quantum-key-distribution, and quantum oblivious-transfer from
bit-commitment.

1 Introduction

Sampling allows to learn some information on a large population by merely
looking at a comparably small number of individuals. For instance it is possible
to predict the outcome of an election with very good accuracy by analyzing a
relatively small subset of all the votes. In this work, we study sampling in a
quantum population: we want to learn information about a large quantum state
by measuring only a small part. Specifically, we investigate the quantum version
of the following classical sampling problem (and of variants thereof). Given a
bit-string q = (q1, . . . , qn) ∈ {0, 1}n of length n, the task is to estimate the
Hamming weight of q by sampling and looking at only a few positions within q.
This classical sampling problem is well understood. For instance, the following
particular sampling strategy works well: sample (with or without replacement)
a linear number of positions uniformly at random, and compute an estimate
for the Hamming weight of q by scaling the Hamming weight of the sample
accordingly; Hoeffding’s bounds guarantee that the estimate is close to the real
Hamming weight except with small probability. In particular, one can use a
sampling strategy to test whether q is close to the all-zero string (0, . . . , 0) by
looking only at a relatively small number of positions, where the test is accepted
if and only if all the sample positions are zero, i.e., the estimated Hamming
weight vanishes.

In the quantum version of the sampling problem from above, the string q is
replaced by a n-qubit quantum system A. Obviously, a sampling strategy from



the classical can be applied to the quantum setting as well: pick a sample of
qubit positions within A, measure (in the computational basis) these sample
positions, and compute the estimate as dictated by the sampling strategy from
the observed values (i.e., typically, scale the Hamming weight of the measured
sample appropriately). However, due to the special nature of quantum states, it
is not clear and to the best of our knowledge so far not well understood, how to
formally interpret the computed estimate. Simply extending the classical results
in a straightforward way to the quantum setting does not work due to several
reasons (e.g., one reason being that it is not clear what the Hamming weight of
a quantum state should be).

In this work, we present a framework that addresses the above and fully
characterizes the behavior of a classical sampling strategy when applied to a
quantum population, i.e., to a n-qubit system or, more general, to n copies of an
arbitrary “atomic” system. Our framework incorporates the following. First, we
specify an abstract property on the state of A (after the measurements done by
the sampling strategy), with the intended meaning that this is the property one
should conclude from the outcome of the sampling strategy when applied to A.
We also demonstrate that this property has useful consequences: specifically,
that a suitable measurement will lead to a high-entropy outcome; this is handy
in particular for quantum-cryptographic purposes. Then, we define a meaningful
measure, sort of a “quantum error probability” (although technically speaking
it is not a probability), that tells how reliable it is to conclude the specified
property from the outcome of the sampling strategy. Finally, we show that for
any sampling strategy, the quantum error probability of the strategy, as we
define it, is bounded by the square-root of its classical error probability. This
means that in order to understand how well a sampling strategy performs in
the quantum setting, it suffices to analyze it in the classical setting, which is
typically much simpler. Furthermore, for typical sampling strategies, like when
picking the sample uniformly at random, there are well-known good bounds on
the classical error probability.

We demonstrate the usefulness of our framework by means of two applica-
tions. Our applications do not constitute actual new results, but they provide
new and simple(r) proofs for known results, both in the area of quantum cryp-
tography. We take this as strong indication for the usefulness of the framework,
and that the framework is likely to prove valuable in other applications as well.

The first application is to quantum key-distribution (QKD). We show how
our framework for analyzing sampling strategies in the quantum setting leads to
a conceptually very simple and easy-to-understand security proof for the BB84
QKD scheme.1 The main idea behind the proof is that the checking phase of
the BB84 scheme can be viewed as executing a specific sampling strategy. From
the framework, it then follows that the raw key has high min-entropy from the
adversary’s point of view, and the proof is concluded by applying the privacy
amplification theorem.

1 Actually, we prove security for an entanglement-based version of BB84 that implies
security for the original BB84 scheme.



QKD schemes initially came without security proofs, and proving QKD
schemes rigorously secure turned out to be an extremely challenging and sub-
tle task. Nowadays, though, the security of QKD schemes is better understood,
and we know of different ways of proving, say, BB84 secure, ranging from Shor
and Preskill’s proof based on quantum error-correcting codes [9] to Renner’s
approach using a quantum De Finetti theorem which allows to reduce security
against general attacks to security against the much weaker class of so-called
collective attacks [7]. Nonetheless, we think that our proof is interesting because
of the following reasons. It provides an explicit expression for the security of the
scheme, given in terms of an easy-to-compute function of the observed error-
rate, the parameters of the code used to do error correction, and the number
of extracted key-bits (and the parameters of the scheme). This is in contrast
to most proofs in the literature which merely provide an asymptotic analysis.
Furthermore, the proof is technically very accessible (e.g. compared to quantum-
De-Finetti-based proofs) and as such for instance particularly well-suited for
teaching. Finally, it does not require any “symmetrization of the qubits” (e.g.
by applying a random permutation) from the protocol, and it gives a direct
security proof, rather than a reduction to the security against collective attacks.

The second application is to quantum oblivious transfer (QOT). It is well
known that QOT is not possible from scratch, but one can build a secure
QOT scheme when given a bit-commitment (BC) primitive “for free”. Also for
this cryptographic primitive, our framework allows for a simple and easy-to-
understand security proof. Due to space restriction, this second application is
only given in the full version [2] of this paper. The security of QOT (when given
bit commitments) has also recently been rigorously proven in [4]. Although at
the technical level similar ideas are used, our work distinguishes from [4] in that
we introduce and rigorously study the concept of a general sampling strategy.
This not only gives a nice framework and makes the security of QOT easier
to understand, but it also opens the door for other applications (as we demon-
strate).

We find it particularly interesting that with our framework, the protocols for
QKD and QOT can be prover secure by means of very similar techniques, even
though they implement fundamentally different cryptographic primitives, and
are intuitively secure due to different reasons.

2 Notation, Terminology, and Some Tools

Strings and Hamming Weight. Throughout the paper, A denotes some fixed
finite alphabet with 0 ∈ A. It is safe to think of A as {0, 1}, but our claims also
hold for larger alphabets. For a string q = (q1, . . . , qn) ∈ An of arbitrary length
n ≥ 0, the Hamming weight of q is defined as: wt(q) :=

∣∣{i ∈ [n] : qi 6= 0}
∣∣,

where [n] is a short hand for {1, . . . , n}. The relative Hamming weight of q is
defined as ω(q) := wt(q)/n. By convention, the relative Hamming weight of the
empty string ⊥ is set to ω(⊥) := 0. For a subset J ⊂ [n], we write qJ := (qi)i∈J
for the restriction of q to the positions i ∈ J .



Quantum Systems and States. We assume the reader to be familiar with the basic
concepts of quantum information theory; we merely fix some specific terminology
and notation here.

By default, we write HA for the state space of system A, and ρA for the
density matrix and |ϕA〉 for the state vector (in case of a pure state) describing
the state of A. To simplify language we are sometimes a bit sloppy in distin-
guishing between a quantum system, its state, and the state vector or den-
sity matrix describing the state. A qubit is a quantum system A with state
space HA = C2. The computational basis {|0〉, |1〉} (for a qubit) is given by
|0〉 =

(
1
0

)
and |1〉 =

(
0
1

)
, and the Hadamard basis by H{|0〉, |1〉} = {H|0〉, H|1〉},

where H denotes the 2-dimensional Hadamard matrix H = 2−1/2
(

1 1
1 −1

)
. The

state space of an n-qubit system A = A1 · · ·An is given by HA = (C2)⊗n =
C2 ⊗ · · · ⊗ C2. For x = (x1, . . . , xn) and θ = (θ1, . . . , θn) in {0, 1}n, we write
|x〉 for |x〉 = |x1〉 · · · |xn〉 and Hθ for Hθ = Hθ1 ⊗ · · · ⊗ Hθn , and thus Hθ|x〉
for Hθ|x〉 = Hθ1 |x1〉 · · ·Hθn |xn〉. Finally, we write {|0〉, |1〉}⊗n = {|x〉 : x ∈
{0, 1}n} for the computational basis on an n-qubit system, and Hθ{|0〉, |1〉}⊗n =
{Hθ|x〉 : x ∈ {0, 1}n} = Hθ1{|0〉, |1〉} ⊗ · · · ⊗Hθn{|0〉, |1〉} for the basis that is
made up of the computational basis on the subsystems Ai with θi = 0 and of
the Hadamard basis on the subsystems Ai with θi = 1. To simplify notation,
we will sometimes abuse terminology and speak of the basis θ when we actually
mean Hθ{|0〉, |1〉}⊗n.

Measuring a system A in basis {|i〉}i∈I , where {|i〉}i∈I is an orthonormal basis
of HA, means applying the measurement described by the projectors {|i〉〈i|}i∈I ,
such that outcome i ∈ I is observed with probability pi = tr(|i〉〈i|ρA) (respec-
tively pi = |〈i|ϕA〉|2 in case of a pure state). If A is a subsystem of a bipartite
system AB, then it means applying the measurement described by the projectors
{|i〉〈i| ⊗ IB}i∈I , where IB is the identity operator on HB .

We measure closeness of two states ρ and σ by their trace distance: ∆(ρ, σ) :=
1
2 tr|ρ−σ|, where for any square matrix M , |M | denotes the positive-semi-definite
square-root of M†M . For pure states |ϕ〉 and |ψ〉, the trace distance of the
corresponding density matrices coincides with ∆(|ϕ〉〈ϕ|, |ψ〉〈ψ|) =

√
1− |〈ϕ|ψ〉|2.

If the states of two systems A and B are ε-close, i.e. ∆(ρA, ρB) ≤ ε, then A and
B cannot be distinguished with advantage greater than ε; in other words, A
behaves exactly like B, except with probability ε.

Classical and Hybrid Systems (and States). Subsystem X of a bipartite quantum
system XE is called classical, if the state of XE is given by a density matrix of
the form ρXE =

∑
x∈X PX(x)|x〉〈x| ⊗ ρxE , where X is a finite set of cardinality

|X | = dim(HX), PX : X → [0, 1] is a probability distribution, {|x〉}x∈X is some
fixed orthonormal basis ofHX , and ρxE is a density matrix onHE for every x ∈ X .
Such a state, called hybrid or cq (for classical-quantum) state, can equivalently
be understood as consisting of a random variable X with distribution PX , taking
on values in X , and a system E that is in state ρxE exactly when X takes on the
value x. This formalism naturally extends to two (or more) classical systems X,
Y etc.



If the state of XE satisfies ρXE = ρX ⊗ ρE , where ρX = trE(ρXE) =∑
x PX(x)|x〉〈x| and ρE = trX(ρXE) =

∑
x PX(x)ρxE , then X is independent of

E, and thus no information on X can be obtained from system E. Moreover, if
ρXE = 1

|X | IX⊗ρE , where IX denotes the identity onHX , then X is random-and-
independent of E. This is what is aimed for in quantum cryptography, when X
represents a classical cryptographic key and E the adversary’s potential quantum
information on X.

It is not too hard to see that for two hybrid states ρXE and ρXE′ with the
same (distribution of) X, the trace distance between ρXE and ρXE′ can be
computed as ∆(ρXE , ρXE′) =

∑
x PX(x)∆(ρxE , ρ

x
E′).

Min-Entropy and Privacy Amplification. We make use of Renner’s notion of the
conditional min-entropy Hmin(ρXE |E) of a system X conditioned on another
system E [7]. Although the notion makes sense for arbitrary states, we restrict
to hybrid states ρXE with classical X. If the hybrid state ρXE is clear from the
context, we may write Hmin(X|E) instead of Hmin(ρXE |E). The formal definition
is not very relevant to us, we merely rely on some elementary properties. For in-
stance, the chain rule guarantees that Hmin(X|Y E) ≥ Hmin(XY |E)−log(|Y|) ≥
Hmin(X|E) − log(|Y|) for classical X and Y with respective ranges X and Y.
Note that throughout this paper, log denotes the binary logarithm (we write ln
for the natural logarithm). Furthermore, it holds that if E′ is obtained from E
by measuring (part of) E, then Hmin(X|E′) ≥ Hmin(X|E).

Finally, we make use of Renner’s privacy amplification theorem [8, 7], as given
below. Recall that a function g : R × X → {0, 1}` is called a universal (hash)
function, if for the random variable R, uniformly distributed over R, and for any
distinct x, y ∈ X : Pr[g(R, x)=g(R, y)] ≤ 2−`.

Theorem 1 (Privacy amplification). Let ρXE be a hybrid state with classical
X. Let g : R×X → {0, 1}` be a universal hash function, and let R be uniformly
distributed over R, independent of X and E. Then K = g(R,X) satisfies

∆
(
ρKRE ,

1
|K| IK ⊗ ρRE

)
≤ 1

2
· 2− 1

2 (Hmin(X|E)−`) .

Informally, Theorem 1 states that if X contains sufficiently more than ` bits
of entropy when given E, then ` nearly random-and-independent bits can be
extracted from X.

3 Sampling in a Classical Population

As a warm-up, and in order to study some useful examples and introduce some
convenient notation, we start with the classical sampling problem, which is rather
well-understood.



3.1 Sampling Strategies

Let q = (q1, . . . , qn) ∈ An be a string of given length n. We consider the problem
of estimating the relative Hamming weight ω(q) by only looking at a substring
qt of q, for a small subset t ⊂ [n].2 Actually, we are interested in the equivalent
problem of estimating the relative Hamming weight ω(qt̄) of the remaining string
qt̄, where t̄ is the complement t̄ = [n]\t of t.3 A canonical way to do so would be to
sample a uniformly random subset (say, of a certain small size) of positions, and
compute the relative Hamming weight of the sample as estimate. Very generally,
we allow any strategy that picks a subset t ⊂ [n] according to some probability
distribution and computes the estimate for ω(qt̄) as some (possibly randomized)
function of t and qt, i.e., as f(t, qt, s) for a seed s that is sampled according to
some probability distribution from a finite set S. This motivates the following
formal definition.

Definition 1 (Sampling strategy). A sampling strategy Ψ consists of a triple
(PT , PS , f), where PT is a distribution over the subsets of [n], PS is a (indepen-
dent) distribution over a finite set S, and f is a function

f :
{

(t, v) : t ⊂ [n],v ∈ A|t|
}
× S → R.

We stress that a sampling strategy Ψ , as defined here, specifies how to choose the
sample subset as well as how to compute the estimate from the sample (thus a
more appropriate but lengthy name would be a “sample-and-estimate strategy”).

Remark 1. By definition, the choice of the seed s is specified to be independent
of t, i.e., PTS = PTPS . Sometimes, however, it is convenient to allow s to depend
on t. We can actually do so without contradicting Definition 1. Namely, to comply
with the independence requirement, we would simply choose a (typically huge)
“container” seed that contains a seed for every possible choice of t, each one
chosen with the corresponding distribution, and it is then part of f ’s task, when
given t, to select the seed that is actually needed out of the container seed.4

A sampling strategy Ψ can obviously also be used to test if q (or actually qt̄) is
close to the all-zero string 0 · · · 0: compute the estimate for ω(qt̄) as dictated by
Ψ , and accept if the estimate vanishes and else reject.

We briefly discuss a few example sampling strategies (two more examples,
including random sampling with replacement, can be found in the full version [2].

2 More generally, we may consider the problem of estimating the Hamming distance
of q to some arbitrary reference string q◦; but this can obviously be done simply by
estimating the Hamming weight of q′ = q − q◦.

3 In our applications, the sampled positions within q will be discarded, and thus we
will be interested merely in the remaining positions.

4 Alternatively, we could simply drop the independence requirement in Definition 1;
however, we feel it is conceptually easier to think of the seed as being independently
chosen.



Example 1 (Random sampling without replacement). In random sampling with-
out replacement, k distinct indices i1, . . . , ik within [n] are chosen uniformly
at random, where k is some parameter, and the relative Hamming weight of
q{i1,...,ik} is used as estimate for ω(qt̄). Formally, this sampling strategy is given
by Ψ = (PT , PS , f) where PT (t) = 1/

(
n
k

)
if |t| = k and else PT (t) = 0, S = {⊥}

and thus PS(⊥) = 1, and f(t, qt,⊥) = f(t, qt) = ω(qt). �
Example 2 (Uniformly random subset sampling). The sample set t is chosen as
a uniformly random subset of [n], and the estimate is computed as the relative
Hamming weight of the sample qt: PT (t) = 1/2n for any t ⊆ [n], and S = {⊥}
and f(t, qt,⊥) = f(t, qt) = ω(qt). �
The next example is a somewhat unnatural and in some sense non-optimal sam-
pling strategy, but it will be of use for the QKD proof in Section 5.

Example 3 (Pairwise one-out-of-two sampling, using only part of the sample).
For this example, it is convenient to consider the index set from which the subset
t is chosen, to be of the form [n]×{0, 1}. Namely, we consider the string q ∈ A2n

to be indexed by pairs of indices, q = (qij), where i ∈ [n] and j ∈ {0, 1}; in other
words, we consider q to consist of n pairs (qi0, qi1). The subset t ⊂ [n]× {0, 1}
is chosen as t = {(1, j1), . . . , (n, jn)} where every jk is picked independently at
random in {0, 1}. In other words, t selects one element from each pair (qi0, qi1).
Furthermore, the estimate for ω(qt̄) is computed from qt as f(t, qt, s) = ω(qs)
where the seed s is a random subset s ⊂ t of size k. �

3.2 The Error Probability

We formally define a measure that captures for a given sampling strategy how
well it performs, i.e., with what probability the estimate, f(t, qt, s), is how close
to the real value, ω(qt̄). For the definition and for later purposes, it will be
convenient to introduce the following notation. For a given sampling strategy
Ψ = (PT , PS , f), consider arbitrary but fixed choices for the subset t ⊂ [n] and
the seed s ∈ S with PT (t) > 0 and PS(s) > 0. Furthermore, fix an arbitrary
δ > 0. Define Bδt,s(Ψ) ⊆ An as

Bδt,s(Ψ) := {b ∈ An : |ω(bt̄)− f(t, bt, s)| < δ} ,

i.e., as the set of all strings q for which the estimate is δ-close to the real value,
assuming that subset t and seed s have been used. To simplify notation, if Ψ is
clear from the context, we simply write Bδt,s instead of Bδt,s(Ψ). By replacing the
specific values t and s by the corresponding (independent) random variables T
and S, with distributions PT and PS , respectively, we obtain the random variable
BδT,S , whose range consists of subsets of An. By means of this random variable,
we now define the error probability of a sampling strategy as follows.

Definition 2 (Error probability). The (classical) error probability of a sam-
pling strategy Ψ = (PT , PS , f) is defined as the following value, parametrized by
0 < δ < 1:

εδclass(Ψ) := max
q∈An

Pr
[
q /∈ BδT,S(Ψ)

]
.



By definition of the error probability, it is guaranteed that for any string q ∈
An, the estimated value is δ-close to the real value except with probability at
most εδclass(Ψ). When used as a sampling strategy to test closeness to the all-
zero string, εδclass(Ψ) determines the probability of accepting even though qt̄ is
“not close” to the all-zero string, in the sense that its relative Hamming weight
exceeds δ. Whenever Ψ is clear from the context, we will write εδclass instead of
εδclass(Ψ).

Below, we analyze the error probability of the sampling strategy discussed
in Example 3, because this sampling strategy is used in our QKD security proof
(Section 5). The error probabilities of the other examples can be found in the
full version of this paper [2]. To bound the error probability, we use Hoeffding’s
inequality [5]. The following theorem summarizes this inequality, tailored to our
needs.

Theorem 2 (Hoeffding). Let b ∈ {0, 1}n be a bit string with relative Ham-
ming weight µ = ω(b). Let the random variables X1, X2, . . . , Xk be obtained by
sampling k random entries from b with replacement, i.e., the Xi’s are indepen-
dent and PXi(1) = µ. Furthermore, let the random variables Y1, Y2, . . . , Yk be
obtained by sampling k random entries from b without replacement. Then, for
any δ > 0, the random variables X̄ := 1

k

∑
iXi and Ȳ := 1

k

∑
i Yi satisfy

Pr
[
|Ȳ − µ| ≥ δ

]
≤ Pr

[
|X̄ − µ| ≥ δ

]
≤ 2 exp(−2δ2k) .

Error Probability of Example 3. For A = {0, 1}, a bound on the error probability
εδclass is obtained as follows. Let q be arbitrary, indexed as discussed earlier. First,
we show that ω(qT̄ ) is likely to be close to ω(qT ). For this, consider the pairs
(qi0, qi1) for which qi0 6= qi1. Let there be ` such pairs (where obviously ` ≤ n.)
We denote the restrictions of qT and qT̄ to these indices i with qi0 6= qi1 by q̃T
and q̃T̄ , respectively. It is easy to see that wt(q̃T ) + wt(q̃T̄ ) = `. It follows that
for any ε > 0 we have

Pr
[
|ω(qT̄ )−ω(qT )| ≥ ε

]
= Pr

[
|wt(qT )− wt(qT̄ )| ≥ nε

]
= Pr

[
|wt(q̃T )− wt(q̃T̄ )| ≥ nε

]
= Pr

[
|2wt(q̃T )− `| ≥ nε

]
≤ 2 exp

(
−2
(
nε
2`

)2
`
)

= 2 exp
(
−nε

2

2 ·
n
`

)
≤ 2 exp

(
− 1

2ε
2n
)
,

where the third equality follows from replacing wt(q̃T̄ ) by ` − wt(q̃T ), and the
first inequality follows from Hoeffding’s inequality (as each entry of wt(q̃T ) is 0
with independent probability 1

2 ).
Furthermore, for any γ > 0 we have the following relation involving qS :

Pr
[
|ω(qT )− ω(qS)| ≥ γ

]
≤ 2 exp

(
−2kγ2

)
,

which follows from directly applying Hoeffding’s inequality. Applying the union
bound and letting δ = ε+ γ, we obtain

εδclass = Pr
[
|ω(qT̄ )− ω(qS)| ≥ δ

]
< 2 min

ε∈(0,δ)

[
exp

(
− 1

2ε
2n
)

+ exp
(
−2k(δ − ε)2

)]
≤ 4 exp

(
− 2knδ2

(2
√
k+
√
n)2

)
≤ 4 exp

(
− 1

3δ
2k
)
,



where the last line follows from choosing ε such that the two exponents coincide,
and from doing some simplifications while assuming k ≤ n/2.

4 Sampling in a Quantum Population

We now want to study the behavior of a sampling strategy when applied to
a quantum population. More specifically, let A = A1 · · ·An be an n-partite
quantum system, where the state space of each system Ai equals HAi = Cd with
d = |A|, and let {|a〉}a∈A be a fixed orthonormal basis of Cd. We allow A to
be entangled with some additional system E with arbitrary finite-dimensional
state-space HE . We may assume the joint state of AE to be pure, and as such
be given by a state vector |ϕAE〉 ∈ HA ⊗HE ; if not, then it can be purified by
increasing the dimension of HE .

Similar to the classical sampling problem of testing closeness to the all-zero
string, we can consider here the problem of testing if the state of A is close to the
all-zero reference state |ϕ◦A〉 = |0〉 · · · |0〉 by looking at, which here means mea-
suring, only a few of the subsystems of A. More generally, we will be interested
in the sampling problem of estimating the “Hamming weight of the state of A”,
although it is not clear at the moment what this should mean. Actually, like
in the classical case, we are interested in testing closeness to the all-zero state,
respectively estimating the Hamming weight, of the remaining subsystems of A.

It is obvious that a sampling strategy Ψ = (PT , PS , f) can be applied in a
straightforward way to the setting at hand: sample t according to PT , measure
the subsystems Ai with i ∈ t in basis {|a〉}a∈A to observe qt ∈ A|t|, and com-
pute the estimate as f(t, qt, s) for s chosen according to PS (respectively, for
testing closeness to the all-zero state, accept or reject depending on the value
of the estimate). However, it is a-priori not clear, how to interpret the outcome.
Measuring a random subset of the subsystems of A and observing 0 all the time
indeed seems to suggest that the original state of A, and thus the remaining
subsystems, must be in some sense close to the all-zero state; but in what formal
sense is this true? And what can we conclude about the remaining state in case
of a general sampling strategy for estimating the (relative) Hamming weight?

We give in this section a rigorous analysis of sampling strategies when ap-
plied to a n-partite quantum system A. Our analysis completely answers above
questions. Later in the paper, we demonstrate the usefulness of our analysis of
sampling strategies for studying and analyzing quantum-cryptographic schemes.

4.1 Analyzing Sampling Strategies in the Quantum Setting

We start by suggesting the property on the remaining subsystems of A that one
should expect to be able to conclude from the outcome of a sampling strategy.
A somewhat natural approach is as follows.

Definition 3. For system AE, and similarly for any subsystem of A, we say
that the state |ϕAE〉 of AE has relative Hamming weight β within A if it is of
the form |ϕAE〉 = |b〉|ϕE〉 with b ∈ An and ω(b) = β.



Now, given the outcome f(t, qt, s) of a sampling strategy when applied to A, we
want to be able to conclude that, up to a small error, the state of the remaining
subsystem At̄E is a superposition of states with relative Hamming weight close to
f(t, qt, s) within At̄. To analyze this, we extend some of the notions introduced in
the classical setting. Recall the definition of Bδt,s, consisting of all strings b ∈ An
with |ω(bt̄)− f(t, bt, s)| < δ. By slightly abusing notation, we extend this notion
to the quantum setting and write

span
(
Bδt,s

)
:= span

(
{|b〉 : b ∈ Bδt,s}

)
= span

(
{|b〉 : |ω(bt̄)− f(t, bt, s)| < δ}

)
.

Note that if the state |ϕAE〉 of AE happens to be in span(Bδt,s)⊗HE for some
t and s, and if exactly these t and s are chosen when applying the sampling
strategy to A, then with certainty the state of At̄E (after the measurement) is
in a superposition of states with relative Hamming weight δ-close to f(t, qt, s)
within At̄, regardless of the measurement outcome qt.

Next, we want to extend the notion of error probability (Definition 2) to the
quantum setting. For this, we consider the hybrid system TSAE, consisting of the
classical random variables T and S with distribution PTS = PTPS , describing
the choices of t and s, respectively, and of the actual quantum systems A and
E. The state of TSAE is given by

ρTSAE =
∑
t,s

PTS(t, s)|t, s〉〈t, s| ⊗ |ϕAE〉〈ϕAE | .

Note that TS is independent of AE: ρTSAE = ρTS ⊗ ρAE ; indeed, in a sampling
strategy t and s are chosen independently of the state of AE. We compare this
real state of TSAE with an ideal state which is of the form

ρ̃TSAE =
∑
t,s

PTS(t, s)|t, s〉〈t, s| ⊗ |ϕ̃tsAE〉〈ϕ̃tsAE | with

|ϕ̃tsAE〉 ∈ span(Bδt,s)⊗HE ∀ t, s
(1)

for some given δ > 0. Thus, T and S have the same distribution as in the real
state, but here we allow AE to depend on T and S, and for each particular
choice t and s for T and S, respectively, we require the state of AE to be in
span(Bδt,s)⊗HE . Thus, in an “ideal world” where the state of the hybrid system
TSAE is given by ρ̃TSAE , it holds with certainty that the state |ψAt̄E〉 of At̄E,
after having measured At and having observed qt, is in a superposition of states
with relative Hamming weight δ-close to β := f(t, qt, s) within At̄. We now
define the quantum error probability of a sampling strategy by looking at how
far away the closest ideal state ρ̃TSAE is from the real state ρTSAE .

Definition 4 (Quantum error probability). The quantum error probabil-
ity of a sampling strategy Ψ = (PT , PS , f) is defined as the following value,
parametrized by 0 < δ < 1:

εδquant(Ψ) = max
HE

max
|ϕAE〉

min
ρ̃TSAE

∆(ρTSAE , ρ̃TSAE) ,



where the first max is over all finite-dimensional state spaces HE, the second
max is over all state vectors |ϕAE〉 ∈ HA ⊗ HE, and the min is over all ideal
states ρ̃TSAE as in (1).5

As with Bδt,s and εδclass, we simply write εδquant when Ψ is clear from the context.
We stress the meaningfulness of the definition: it guarantees that on average
over the choice of t and s, the state of At̄E is εδquant-close to a superposition
of states with Hamming weight δ-close to f(t, qt, s) within At̄, and as such it
behaves like a superposition of such states, except with probability εδquant. We
will argue below and demonstrate in the subsequent sections that being (close
to) a superposition of states with given approximate (relative) Hamming weight
has some useful consequences.

Remark 2. Similarly to footnote 2, also here the results of the section immedi-
ately generalize from the all-zero reference state |0〉 · · · |0〉 to an arbitrary refer-
ence state |ϕ◦A〉 of the form |ϕ◦A〉 = U1|0〉 ⊗ · · · ⊗ Un|0〉 for unitary operators Ui
acting on Cd. Indeed, the generalization follows simply by a suitable change of
basis, defined by the Ui’s. Or, in the special case where A = {0, 1} and

|ϕ◦A〉 = H θ̂|x̂〉 = H θ̂1 |x̂1〉 ⊗ · · · ⊗H θ̂n |x̂n〉

for a fixed reference basis θ̂ ∈ {0, 1}n and a fixed reference string x̂ ∈ {0, 1}n,
we can, alternatively, replace in the definitions and results the computational
by the Hadamard basis whenever θ̂i = 1, and speak of the (relative) Hamming
distance to x̂ rather than of the (relative) Hamming weight.

4.2 The Quantum vs. the Classical Error Probability

It remains to discuss how difficult it is to actually compute the quantum error
probability for given sampling strategies, and how the quantum error probability
εδquant relates to the corresponding classical error probability εδclass. To this end,
we show the following simple relationship between εδquant and εδclass.

Theorem 3. For any sampling strategy Ψ and for any δ > 0:

εδquant(Ψ) ≤
√
εδclass(Ψ).

As a consequence of this theorem, it suffices to analyze a sampling strategy in the
classical setting, which is much easier, in order to understand how it behaves
in the quantum setting. In particular, sampling strategies that are known to
behave well in the classical setting, like Example 1 to 3, are also automatically
guaranteed to behave well in the quantum setting. We will use this for our
applications.

Our bound on εδquant is in general tight. Indeed, in [2] we show tightness
for an explicit class of sampling strategies, which e.g. includes Example 1 and
Example 3. Here, we just mention the tightness result.
5 It is not too hard to see, in particular after having gained some more insight via the

proof of Theorem 3 below, that these min and max exist.



Proposition 1. There exist natural sampling strategies for which the inequality
in Theorem 3 is an equality.

Proof (of Theorem 3). We need to show that for any |ϕAE〉 ∈ HA ⊗ HE , with
arbitraryHE , there exists a suitable ideal state ρ̃TSAE with ∆(ρTSAE , ρ̃TSAE) ≤
(εδclass)

1/2. We construct ρ̃TSAE as in (1), where the |ϕ̃tsAE〉’s are defined by the
following decomposition.

|ϕAE〉 = 〈ϕ̃tsAE |ϕAE〉|ϕ̃tsAE〉+ 〈ϕ̃ts⊥AE |ϕAE〉|ϕ̃ts⊥AE 〉,

with |ϕ̃tsAE〉 ∈ span(Bδt,s)⊗HE , |ϕ̃ts⊥AE 〉 ∈ span(Bδt,s)
⊥ ⊗HE and |〈ϕ̃tsAE |ϕAE〉|2 +

|〈ϕ̃ts⊥AE |ϕAE〉|2 = 1. In other words, |ϕ̃tsAE〉 is obtained as the re-normalized pro-
jection of |ϕAE〉 into span(Bδt,s)⊗HE . Note that |〈ϕ̃ts⊥AE |ϕAE〉|2 equals the prob-
ability Pr

[
Q /∈ Bδt,s

]
, where the random variable Q is obtained by measuring

subsystem A of |ϕAE〉 in basis {|a〉}⊗na∈A. Furthermore,∑
t,s

PTS(t, s) |〈ϕ̃ts⊥AE |ϕAE〉|2 =
∑
t,s

PTS(t, s) Pr
[
Q /∈Bδt,s

]
= Pr

[
Q /∈BδT,S

]
=
∑
q

PQ(q) Pr
[
q /∈BδT,S

]
,

where by definition of εδclass, the latter is upper bounded by εδclass. From elemen-
tary properties of the trace distance, and using Jensen’s inequality, we can now
conclude that

∆
(
ρTSAE , ρ̃TSAE

)
=
∑
t,s

PTS(t, s)∆
(
|ϕAE〉〈ϕAE |, |ϕ̃tsAE〉〈ϕ̃tsAE |

)
=
∑
t,s

PTS(t, s)
√

1− |〈ϕ̃tsAE |ϕAE〉|2 =
∑
t,s

PTS(t, s)|〈ϕ̃ts⊥AE |ϕAE〉|

≤
√∑

t,s

PTS(t, s)|〈ϕ̃ts⊥AE |ϕAE〉|2 ≤
√
εδclass,

which was to be shown. ut

As a side remark, we point out that the particular ideal state ρ̃TSAE constructed
in the proof minimizes the distance to ρTSAE ; this follows from the so-called
Hilbert projection theorem.

4.3 Superpositions with a Small Number of Terms

We give here some argument why being (close to) a superposition of states with
a given approximate Hamming weight may be a useful property in the analyses
of quantum-cryptographic schemes. For simplicity, and since this will be the
case in our applications, we now restrict to the binary case where A = {0, 1}.
Our argument is based on the following lemma, which follows immediately from



Lemma 3.1.13 in [7]; we give a direct proof of Lemma 1 in the full version [2].
Informally, it states that measuring (part of) a superposition of a small number
of orthogonal states produces a similar amount of uncertainty as when measuring
the mixture of these orthogonal states.

Lemma 1. Let A and E be arbitrary quantum systems, let {|i〉}i∈I and {|w〉}w∈W
be orthonormal bases of HA, and let |ϕAE〉 and ρmix

AE be of the form

|ϕAE〉 =
∑
i∈J

αi|i〉|ϕiE〉 ∈ HA ⊗HE and ρmix
AE =

∑
i∈J
|αi|2|i〉〈i| ⊗ |ϕiE〉〈ϕiE |

for some subset J ⊆ I. Let ρWE and ρmix
WE describe the hybrid systems obtained

by measuring subsystem A of |ϕAE〉 and ρmix
AE , respectively, in basis {|w〉}w∈W

to observe outcome W . Then, Hmin(ρWE |E) ≥ Hmin

(
ρmix
WE |E

)
− log |J |.

We apply Lemma 1 to an n-qubit system A where |ϕAE〉 is a superposition of
states with relative Hamming weight δ-close to β within A:6

|ϕAE〉 =
∑

b∈{0,1}n
|ω(b)−β|≤δ

|b〉|ϕbE〉 .

It is well known that
∣∣{b ∈ {0, 1}n : |ω(b) − β| ≤ δ}

∣∣ ≤ 2h(β+δ)n for β + δ ≤ 1
2 ,

where h(p) := −
(
p log(p)+(1−p) log(1−p)

)
denotes the binary entropy function.

Since measuring qubits within a state |b〉 in the Hadamard basis produces
uniformly random bits, we can conclude the following.

Corollary 1. Let A be an n-qubit system, let the state |ϕAE〉 of AE be a su-
perposition of states with relative Hamming weight δ-close to β within A, where
δ + β ≤ 1

2 , and let the random variable X be obtained by measuring A in basis
Hθ{|0〉, |1〉}⊗n for θ ∈ {0, 1}n. Then

Hmin(X|E) ≥ wt(θ)− h(β + δ)n .

Consider now the following quantum-cryptographic setting. Bob prepares and
hands over to Alice an n-qubit quantum system A, which ought to be in state
|ϕ◦A〉 = |0〉 · · · |0〉. However, since Bob might be dishonest, the state of A could
be anything, even entangled with some system E controlled by Bob. Our results
now imply the following: Alice can apply a suitable sampling strategy to con-
vince herself that the joint state of the remaining subsystem of A and of E is
(close to) a superposition of states with bounded relative Hamming weight. From
Corollary 1, we can then conclude that with respect to the min-entropy of the
measurement outcome, the state of A behaves similarly to the case where Bob
honestly prepares A to be in state |ϕ◦A〉. By Remark 2, i.e., by doing a suitable
change of basis, the same holds if |ϕ◦A〉 = H θ̂|x̂〉 for arbitrary fixed θ̂, x̂ ∈ {0, 1}n,
where wt(θ) is replaced by the Hamming distance between θ and θ̂. We will make
use of this in the application in the upcoming section.
6 System A considered here corresponds to the subsystem At̄ in the previous section,

after having measured At of the ideal state.



5 Application: Quantum Key Distribution (QKD)

In quantum key distribution (QKD), Alice and Bob want to agree on a secret
key in the presence of an adversary Eve. Alice and Bob are assumed to be able
to communicate over a quantum channel and over an authenticated classical
channel. Eve may eavesdrop the classical channel (but not insert or modify
messages), and she has full control over the quantum channel. The first and
still most prominent QKD scheme is the famous BB84 QKD scheme due to
Bennett and Brassard [1].

In this section, we show how our sampling-strategy framework leads to a sim-
ple security proof for the BB84 QKD scheme. Proving QKD schemes rigorously
secure is a highly non-trivial task, and as such our new proof nicely demonstrates
the power of the sampling-strategy framework. Furthermore, our new proof has
some nice features. For instance, it allows us to explicitly state (a bound on) the
error probability of the QKD scheme for any given choices of the parameters.
Additionally, our proof does not seem to take unnecessary detours or to make use
of “loose bounds”, and therefore we feel that the bound on the error probability
we obtain is rather tight (although we have no formal argument to support this).
Our proof strategy can also be applied to other QKD schemes that are based
on the BB84 encoding. For example, Lo et al.’s QKD scheme7 [6] can be proven
secure by following exactly our proof, except that one needs to analyze a slightly
different sampling strategy. On the other hand, it is yet unknown whether our
framework can be used to prove e.g. the six-state QKD protocol [3] secure.

As a matter of fact, the QKD scheme we analyze is an entanglement-based
version of the BB84 scheme. However, it is very well known and not too hard
to show that security of the entanglement-based version implies security of the
original BB84 QKD scheme.

The entanglement-based QKD scheme, QKD, is parametrized by the total
number n of qubits sent in the protocol and the number k of qubits used to
estimate the error rate of the quantum channel (where we require k ≤ n/2).
Additional parameters, which are determined during the course of the protocol,
are the observed error rate β and the number ` ∈ N ∪ {0} of extracted key bits.
QKD makes use of a universal hash function g : R × {0, 1}n−k → {0, 1}` and
a linear binary error correcting code of length n − k that allows to correct up
to a β′-fraction of errors (except maybe with negligible probability) for some
β′ > β. The choice of how much β′ exceeds β is a trade-off between keeping the
probability that Alice and Bob end up with different keys small and increasing
the size of the extractable key. We will write m for the bit size of the syndrome
of this error-correcting code. Protocol QKD can be found below.

It is not hard to see that k = k̂ except with negligible probability (in n).
Furthermore, if no Eve interacts with the quantum communication in the qubit
distribution phase then x = y in case of a noise-free quantum channel, or more
generally, ω(x − y) ≈ φ in case the quantum channel is noisy and introduces

7 In this scheme, Alice and Bob bias the choice of the bases so that they measure a
bigger fraction of the qubits in the same basis.



Protocol QKD

1. (Qubit distribution) Alice prepares n EPR pairs of the form (|0〉|0〉 + |1〉|1〉)/
√

2,
and sends one qubit of each pair to Bob, who confirms the receipt of the qubits.
Then, Alice picks random θ ∈ {0, 1}n and sends it to Bob, and Alice and Bob
measure their respective qubits in basis θ to obtain x on Alice’s side and y on
Bob’s side.

2. (Error estimation) Alice chooses a random subset s ⊂ [n] of size k and sends it to
Bob. Then, Alice and Bob exchange xs and ys and compute β := ω(xs ⊕ ys).

3. (Error correction) Alice sends the syndrome syn of xs̄ to Bob with respect to a
suitable linear error correcting code (as described above). Bob uses syn to correct
the errors in ys̄ and obtains x̂s̄. Let m be the bit-size of syn.

4. (Key distillation) Alice chooses a random seed r for a universal hash function g
with range {0, 1}`, where ` satisfies ` < (1−h(β))n− k −m (or ` = 0 if the right-
hand side is not positive), and sends it to Bob. Then, Alice and Bob compute
k := g(r,xs̄) and k̂ := g(r, x̂s̄), respectively.

an error probability 0 ≤ φ < 1
2 . It follows that β ≈ φ, so that using an error

correcting code that approaches the Shannon bound, Alice and Bob can extract
close to (1 − 2h(φ))(n − k) bits of secret key, which is positive for φ smaller
than approximately 11%. The difficult part is to prove security against an active
adversary Eve. We first state the formal security claim.

Note that we cannot expect that Eve has (nearly) no information on K, i.e.
that ∆

(
ρKE ,

1
|K| IK ⊗ ρE

)
is small, since the bit-length ` of K is not fixed but

depends on the course of the protocol, and Eve can influence and thus obtain
information on ` (and thus on K). Theorem 4 though guarantees that the bit-
length ` is the only information Eve learns on K, in other words, K is essentially
random-and-independent of E when given `.

Theorem 4 (Security of QKD). Consider an execution of QKD in the presence
of an adversary Eve. Let K be the key obtained by Alice, and let E be Eve’s
quantum system at the end of the protocol. Let K̃ be chosen uniformly at random
of the same bit-length as K. Then, for any δ with β + δ ≤ 1

2 :

∆
(
ρKE , ρK̃E

)
≤ 1

2
· 2−

1
2

((
1−h(β+δ)

)
n−k−m−`

)
+ 2 exp

(
− 1

6δ
2k
)
.

From an application point of view, the following question is of interest. Given the
parameters n and k, and given a course of the protocol with observed error rate
β and where an error-correcting code with syndrome length m was used, what
is the maximal size ` of the extractable key K if we want ∆(ρKE , ρK̃E) ≤ ε for
a given ε? From the bound in Theorem 4, it follows that for every choice of δ
(with β+δ ≤ 1

2 ), one can easily compute a possible value for ` simply by solving
for `. In order to compute the optimal value, one needs to maximize ` over the
choice of δ.

The formal proof of Theorem 4 is given below. Informally, the argument
goes as follows. The error estimation phase can be understood as applying a



sampling strategy. From this, we can conclude that the state from which the
raw key, xs̄, is obtained, is a superposition of states with bounded Hamming
weight, so that Corollary 1 guarantees a certain amount of min-entropy within
xs̄. Privacy amplification then finishes the proof.

To indeed be able to model the error estimation procedure as a sampling
strategy, we will need to consider a modified but equivalent way for Alice and
Bob to jointly obtain xs and ys from the initial joint state, which will allow
them to obtain the xor-sum xs ⊕ ys, and thus to compute β, before they mea-
sure the remaining part of the state, whose outcome then determines xs̄. This
modification is based on the so-called cnot operation, Ucnot, acting on C2⊗C2,
and its properties that

Ucnot(|b〉|c〉) = |b〉|b⊕ c〉 and Ucnot(H|b〉H|c〉) = H|b⊕ c〉H|c〉 , (2)

where the first holds by definition of Ucnot, and the second is trivial to verify.

Proof. Throughout the proof, we use capital letters, Θ, X etc. for the random
variables representing the corresponding choices of θ, x etc. in protocol QKD. Let
the state, shared by Alice, Bob and Eve right after the quantum communication
in the qubit distribution phase, be denoted by |ψABE◦〉;8 without loss of gen-
erality, we may indeed assume the shared state to be pure. For every i ∈ [n],
Alice and Bob then measure the respective qubits Ai and Bi from |ψABE◦〉 in
basis Θi, obtaining Xi and Yi. This results in the hybrid state ρΘXY E◦ . For
the proof, it will be convenient to introduce the additional random variables
W = (W1, . . . ,Wn) and Z = (Z1, . . . , Zn), defined by

Wi :=
{
Xi if Θi = 0
Yi if Θi = 1 and Zi := Xi ⊕ Yi . (3)

Note that, when given Θ, the random variables W and Z are uniquely deter-
mined by X and Y and vice versa, and thus we may equivalently analyze the
hybrid state ρΘWZE◦ .

For the analysis, we will consider a slightly different experiment for Alice
and Bob to obtain the very same state ρΘWZE◦ ; the advantage of the modified
experiment is that it can be understood as a sampling strategy. The modified
experiment is as follows. First, the cnot transformation is applied to every
qubit pair AiBi within |ψABE◦〉 for i ∈ [n], such that the state |ϕABE◦〉 =
(U⊗ncnot⊗IE◦)|ψABE◦〉 is obtained. Next, Θ is chosen at random as in the original
scheme, and for every i ∈ [n] the qubit pair AiBi of the transformed state is
measured as in the original scheme depending on Θi; however, if Θi = 0 then the
resulting bits are denoted by Wi and Zi, respectively, and if Θi = 1 then they
are denoted by Zi and Wi, respectively, such that which bit is assigned to which
variable depends on Θi. This is illustrated in Figure 1 (left and middle), where

8 E◦ represents Eve’s quantum state just after the quantum communication stage,
whereas E represents Eve’s entire state at the end of the protocol (i.e., her quantum
information and all classical information gathered during execution of QKD).



light and dark colored ovals represent measurements in the computational and
Hadamard basis, respectively. It now follows immediately from the properties (2)
of the CNOT transformation and from the relation (3) between X,Y and W ,Z
that the state ρΘWZE◦ (or, equivalently, ρΘXY E◦) obtained in this modified
experiment is exactly the same as in the original.

...
...

|ψABE〉

E

Y2

Y3

Y1

Yn

X1

X2

Xn

X3

0
1
1

0

...

Θ

...
...

|ϕABE〉

E

X1 = W1

W2 = Y2

W3 = Y3

Xn = Wn

Z1 = X1⊕Y1

X2⊕Y2 = Z2

X3⊕Y3 = Z3

Zn = Xn⊕Yn

...
...

|ϕABE〉

E

Z1 = X1⊕Y1

Zn = Xn⊕Yn

X2⊕Y2 = Z2

X3⊕Y3 = Z3

Fig. 1. Original and modified experiments for obtaining the same state ρΘWZE◦ .

An additional modification we may do without influencing the final state is
to delay some of the measurements: we assume that first the qubits are mea-
sured that lead to the Zi’s, and only at some later point, namely after the error
estimation phase, the qubits leading to the Wi’s are measured (as illustrated in
Figure 1, right). This can be done since the relative Hamming weight of XS⊕YS
for a random subset S ⊂ [n] (of size k) can be computed given Z alone.

The crucial observation is now that this modified experiment can be viewed
as a particular sampling strategy Ψ , as a matter of fact as the sampling strategy
discussed in Example 3, being applied to systems A and B of the state |ϕABE◦〉.
Indeed: first, a subset of the 2n qubit positions is selected according to some
probability distribution, namely of each pairAiBi one qubit is selected at random
(determined by Θi). Then, the selected qubits are measured to obtain the bit
string Z = (Z1, . . . , Zn). And, finally, a value β is computed as a (randomized)
function of Z: β = ω(ZS) for a random S ⊂ [n] of size k. We point out that here
the reference basis (as explained in Remark 2) is not the computational basis
for all qubits, but is the Hadamard basis on the qubits in system A and the
computational basis in system B; however, as discussed in Remark 2, we may
still apply the results from Section 4 (appropriately adapted).

It thus follows that for any fixed δ > 0, the remaining state, from which W
is then obtained, is (on average over Θ and S) εδquant-close to a state which is
(for any possible values for Θ, Z and S) a superposition of states with rela-
tive Hamming weight in a δ-neighborhood of β. Note that the latter has to be
understood with respect to the fixed reference basis (i.e., the Hadamard basis
on A and the computational basis on B). In the following, we assume that the
remaining state equals such a superposition, but we remember the error

εδquant ≤
√
εδclass ≤ 2 exp

(
− 1

6δ
2k
)
.

where the bound on εδclass was derived in Section 3.2.



Recall that W is now obtained by measuring the remaining qubits; however,
the basis used is opposite to the reference basis, namely the computational basis
on the qubits Ai and the Hadamard basis on the qubits Bi. Hence, by Corollary 1
(and the subsequent discussion) we get a lower bound on the min-entropy of W :

Hmin(W |ΘZSE◦) ≥ (1− h(β + δ))n .

Since W is uniquely determined by X (and vice versa) when given Θ and Z, the
same lower bound also holds for Hmin(X|ΘZSE◦). Note that in QKD, the k qubit-
pairs that are used for estimating β are not used anymore in the key distillation
phase, so we are actually interested in the min-entropy of XS̄ . Additionally, we
should take into account that Alice sends an m-bit syndrome SYN during the
error correction phase. Hence, by using the chain rule, we obtain

Hmin(XS̄ |ΘZXSSYNE◦) ≥ (1− h(β + δ))n− k −m.9

Finally, we apply privacy amplification (Theorem 1) to conclude the proof. ut
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