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Abstract. Due to its universality oblivious transfer (OT) is a primitive
of great importance in secure multi-party computation. OT is impos-
sible to implement from scratch in an unconditionally secure way, but
there are many reductions of OT to other variants of OT, as well as
other primitives such as noisy channels. It is important to know how
efficient such unconditionally secure reductions can be in principle, i.e.,
how many instances of a given primitive are at least needed to imple-
ment OT. For perfect (error-free) implementations good lower bounds
are known, e.g. the bounds by Beaver (STOC ’96) or by Dodis and Mi-
cali (EUROCRYPT ’99). However, in practice one is usually willing to
tolerate a small probability of error and it is known that these statisti-
cal reductions can in general be much more efficient. Thus, the known
bounds have only limited application. In the first part of this work we
provide bounds on the efficiency of secure (one-sided) two-party compu-
tation of arbitrary finite functions from distributed randomness in the
statistical case. From these results we derive bounds on the efficiency
of protocols that use (different variants of) OT as a black-box. When
applied to implementations of OT, our bounds generalize known results
to the statistical case. Our results hold in particular for transformations
between a finite number of primitives and for any error. Furthermore, we
provide bounds on the efficiency of protocols implementing Rabin OT.

In the second part we study the efficiency of quantum protocols imple-
menting OT. Recently, Salvail, Schaffner and Sotakova (ASIACRYPT ’09)
showed that most classical lower bounds for perfectly secure reductions
of OT to distributed randomness still hold in a quantum setting. We
present a statistically secure protocol that violates these bounds by an
arbitrarily large factor. We then present a weaker lower bound that does
hold in the statistical quantum setting. We use this bound to show that
even quantum protocols cannot extend OT. Finally, we present two lower
bounds for reductions of OT to commitments and a protocol based on
string commitments that is optimal with respect to both of these bounds.

Keywords. Unconditional Security, Oblivious Transfer, Lower Bounds,
Quantum Cryptography, Two-Party Computation.



1 Introduction

Secure multi-party computation allows two or more distrustful players to
jointly compute a function of their inputs in a secure way [48]. Security
here means that the players compute the value of the function correctly
without learning more than what they can derive from their own input
and output.

A primitive of central importance in secure multi-party computation
is oblivious transfer (OT), as it is sufficient to execute any multi-party
computation securely [25, 27]. The original form of OT ((1

2)-RabinOT1)
has been introduced by Rabin in [35]. It allows a sender to send a bit
x, which the receiver will get with probability 1

2 . Another variant of OT,

called one-out-of-two bit-OT (
(

2
1

)
-OT1) was defined in [23] (see also [39]).

Here, the sender has two input bits x0 and x1. The receiver gives as input
a choice bit c and receives xc without learning x1−c. The sender gets no
information about the choice bit c. Other important variants of OT are(
n
t

)
-OTk where the inputs are strings of k bits and the receiver can choose

t < n out of n secrets and (p)-RabinOTk where the inputs are strings of
k bits and the erasure probability is p ∈ [0, 1].

If the players have access to noiseless (classical or quantum) communi-
cation only, it is impossible to implement unconditionally secure OT, i.e.
secure against an adversary with unlimited computing power. It has been
shown in [13] that (p)-RabinOTk and

(
2
1

)
-OT1 are equally powerful, i.e.,

one can be implemented from the other. Numerous reductions between
different variants of

(
n
1

)
-OTk are known as well:

(
2
1

)
-OTk can be imple-

mented from
(

2
1

)
-OT1 [5, 15, 9, 8], and

(
n
1

)
-OTk can be implemented from(

2
1

)
-OTk

′
[7, 9, 21, 44]. There has also been a lot of interest in reductions

of OT to weaker primitives. It is known that OT can be realized from
noisy channels [12, 14, 18, 47], noisy correlations [42, 33], or weak variants
of OT [12, 10, 20, 8, 19, 46].

In the quantum world, it has been shown in [6, 49, 17, 38] that OT can
be implemented from black-box commitments, something that is impos-
sible in the classical setting.

Given these positive results it is natural to ask how efficient such re-
ductions can be in principle, i.e., how many instances of a given primitive
are needed to implement OT.

1.1 Previous Results

In the classical setting, several lower bounds for OT reductions are known.
The first impossibility result for unconditionally secure reductions of OT
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has been presented in [2]. There it has been shown that the number of(
2
1

)
-OT1 cannot be extended3, i.e., there does not exist a protocol using n

instances of
(

2
1

)
-OT1 that perfectly implements m > n instances. Lower

bounds for the number of instances of OT needed to perfectly implement
other variants of OT have been presented in [21] (see also [31]) and gen-
eralized in [44, 43]. These bounds apply to both the semi-honest (where
dishonest players follow the protocol) and the malicious (where dishonest
players behave arbitrarily) model. If we restrict ourselves to the malicious
model these bounds can be improved, as shown in [28]. Lower bounds on
the number of ANDs needed to implement general functions have been
presented in [4].

All these results only consider perfect protocols and do not give much
insight into the case of statistical implementations. As pointed out in [28],
their result only applies to the perfect case, because there is a statistical
protocol that is more efficient [16]. The bounds for perfect and statistical
protocols can in fact be very far apart, as shown in [4]: The amount of
OTs needed to compute the equality function is exponentially bigger in
the perfect case than in the statistical case. Therefore, it is not true in
general that a bound in the perfect case implies a similar bound in the
statistical case.

So far very little is known in the statistical case. In [1] a proof sketch
of a lower bound for statistical implementations of

(
2
1

)
-OTk has been

presented. However, this result only holds in the asymptotic case, where
the number n of resource primitives goes to infinity and the error goes
to zero as n goes to infinity. In [4] a non-asymptotic lower bound on
the number of ANDs needed for one-sided secure computation of arbi-
trary functions with boolean output has been shown. This result directly
implies lower bounds for protocols that use

(
n
t

)
-OTk as a black-box. How-

ever, besides being restricted to boolean-valued functions this result is
not strong enough to show optimality of several known reductions and it
does not provide bounds for reductions to randomized primitives such as
(1

2)-RabinOT1.

In the quantum setting almost all negative results known show that a
certain primitive is impossible to implement from scratch. Commitment
has been shown to be impossible in the quantum setting in [32, 30]. Using a
similar proof, it has been shown in [29] that general one-sided two-party
computation and in particular oblivious transfer are also impossible to
implement securely in the quantum setting.

3 Note that in the computational setting, OT can be extended, see [2, 26].
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To our knowledge, the only lower bounds for quantum protocols where
the players have access to resource primitives (such as different variants of
OT) have been presented in [36] where Theorem 4.7 shows that important
lower bounds for classical protocols also apply to perfectly secure quantum
reductions.

1.2 Contribution

Classical Reductions. In Section 2 we consider statistically secure pro-
tocols in the semi-honest model that compute a function between two
parties from trusted randomness distributed to the players. We provide
two bounds on the efficiency of such reductions that allow in particular to
derive bounds on the minimal number of

(
n
t

)
-OTk or (p)-RabinOTk needed

to compute any given function securely. Our bounds do not involve any
asymptotics, i.e., we consider a finite number of resource primitives and
our results hold for any error.

In Section 2.3 we provide an additional bound for the special case of
statistical implementations of

(
n
1

)
-OTk. Note that for implementations of

OT bounds in the semi-honest model imply similar bounds in the mali-
cious model 4. The bounds for implementations of

(
n
1

)
-OTk (Theorem 3)

imply the following corollary that gives a general bound on the conversion
rate between different variants of OT.

Corollary 1. For any reduction that implements M instances of
(
N
1

)
-OTK

from m instances of
(
n
1

)
-OTk in the semi-honest model with an error of

at most ε, we have

m

M
≥ max

(
(N − 1)K

(n− 1)k
,
K

k
,
logN

log n

)
− 7NK · (ε+ h(ε)) .

Corollary 1 generalizes the lower bounds from [21, 44, 43] to the statis-
tical case and is strictly stronger than the impossibility bounds from [1].
If we let M = m + 1, N = n = 2 and K = k = 1, we obtain a stronger
version of Theorem 3 from [2] which states that OT cannot be extended.

In the full version of this paper [40], we also derive new bounds in the
statistical case for protocols implementing (p)-RabinOTk, and show that
our bounds imply bounds for implementations of oblivious linear function
evaluation (OLFE).

4 For implementations of OT (and any other so-called deviation revealing functional-
ity) security in the malicious model implies security in the semi-honest model [34].
In [40] we show this implication for

(
n
1

)
-OTk and (p)-RabinOTk with explicit bounds

on the simulation errors.
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Our lower bounds show that the following protocols are (close to)
optimal in the sense that they use the minimal number of instances of
the given primitive.

– The protocol in [9, 21] which uses N−1
n−1 instances of

(
n
1

)
-OTk to imple-

ment
(
N
1

)
-OTk is optimal.

– The protocol in [44] which uses t instances of
(
n
1

)
-OTkn

t−1
to imple-

ment
(
nt

1

)
-OTk is optimal.

– In the semi-honest model, the trivial protocol that implements
(

2
1

)
-OTk

from k instances of
(

2
1

)
-OT1 is optimal. In the malicious case, the

protocol in [16] uses asymptotically (as k goes to infinity) the same
amount of instances and is therefore asymptotically optimal.

– The protocol in [37] that implements
(

2
1

)
-OTk from (1

2)-RabinOT1 in
the malicious model is asymptotically optimal.

Quantum Reductions. While previous result show that quantum proto-
cols show similar limits as classical protocols for reductions between dif-
ferent variants of oblivious transfer, we present in Section 3.1 a statisti-
cally secure protocol that violates the classical bounds and the bound for
perfectly secure quantum protocols by an arbitrarily large factor. More
precisely, we prove that, in the quantum setting, string oblivious transfer
can be reversed much more efficiently than by any classical protocol.

Theorem 4. There exists a protocol that implements
(

2
1

)
-OTk

′
with an

error ε from κ = O(log 1/ε) instances of
(

2
1

)
-OTk in the opposite direction

where k′ = Ω(k) if k = Ω(κ).

For classical and perfect quantum protocols k′ is essentially upper bounded
by κ. In Theorem 5 we show that a weaker lower bound for quantum re-
ductions holds also for quantum protocols in the statistical setting. The-
orem 5 implies that quantum protocols cannot extend oblivious transfer,
i.e., we show that there exists a constant c > 0 such that any quantum
reduction of m+ 1 instances of

(
2
1

)
-OT1 to m instances of

(
2
1

)
-OT1 must

have an error of at least c
m .

Furthermore, Theorem 5 implies a lower bound for reductions between
different variants of OT.

Corollary 2. For any quantum reduction that implements
(

2
1

)
-OTK from

m instances of
(
n
1

)
-OTk with an error smaller than ε, we have

m ≥ K

2nk + 2 log n
− 3K

√
ε− 13h(

√
ε) .
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Finally, we also derive a lower bound on the number of commitments
(Theorem 7) and on the total number of bits the players need to commit
to (Theorem 6) in any ε-secure implementation of

(
2
1

)
-OTk from commit-

ments.

Corollary 3. A protocol that implements
(

2
1

)
-OTk, using commitments

only, with an error of at most ε must use at least log(1/ε)−6 commitments
and needs to commit to at least k/2− 12k

√
ε− 7h(

√
ε) bits in total.

Corollary 3 implies that bit commitments cannot be extended. More
precisely, there exists a constant c > 0 such that any protocol that im-
plements m + 1 bit commitments out of m bit commitments must have
an error of at least c

m . Finally, in Section 8 we show that there exists
a protocol that is essentially optimal with respect to Corollary 3. We
use the protocol from [6, 17], but let the receiver commit to blocks of
measurements at once, to prove the following theorem.

Theorem 8. There exists a quantum protocol that implements
(

2
1

)
-OTk

with an error of at most ε, using κ = O(log 1/ε) commitments to strings
of size b, where κb = O(k + log 1/ε).

All proofs are in the full version of this work [40].

1.3 Notation

We use calligraphic letters to denote sets. We denote the distribution of a
random variable X over X by PX . A conditional distribution PX|Y (x, y)
over X × Y defines for every y ∈ Y a distribution PX|Y=y. PX|Y can
be seen as a randomized function that has input y and output x. The
conditional Shannon entropy of X given Y is defined as5

H(X | Y ) := −
∑
x,y

PXY (x, y) logPX|Y (x, y) ,

and the mutual information of X and Y as I(X;Y ) = H(X)−H(X | Y ).
We use the notation h(p) = −p log p − (1 − p) log(1 − p) for the binary
entropy function. Furthermore, we write [k] to denote the set {1, . . . , k}.
If x = (x1, . . . , xn) and T := {i1, . . . , ik} ⊆ [n], then x|T denotes the
substring (xi1 , xi2 , . . . , xik) of x. If x, y ∈ {0, 1}n, then x⊕ y denotes the
bitwise XOR of x and y.

5 All logarithms are binary, and we use the convention that 0 · log 0 = 0.
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1.4 Primitives and Randomized Primitives

In the following we consider two-party primitives that take inputs x from
Alice and y from Bob and outputs x̄ to Alice and ȳ to Bob, where (x̄, ȳ)
are distributed according to PX̄Ȳ |XY . For simplicity, we identify such a
primitive with PX̄Ȳ |XY . If the primitive has no input and outputs values
(u, v) distributed according to PUV , we may simply write PUV . If the
primitive is deterministic and only Bob gets an output, i.e., if there exists
a function f : X × Y → Z such that PX̄Ȳ |X=x,Y=y(⊥, f(x, y)) = 1 for all
x, y, then we identify the primitive with the function f .

Examples of such primitives are
(
n
t

)
-OTk, (p)-RabinOTk, EQn and IPn.

–
(
n
t

)
-OTk is the primitive where Alice has an input x = (x0, . . . , xn−1) ∈

{0, 1}k·n, and Bob has an input c ⊆ {0, . . . , n − 1} with |c| = t. Bob
receives y = x|c ∈ {0, 1}tk.

– (p)-RabinOTk is the primitive where Alice has an input x ∈ {0, 1}k.
Bob receives y which is equal to x with probability p and ∆ otherwise.

– The equality function EQn : {0, 1}n × {0, 1}n → {0, 1} is defined as
EQn(x, y) = 1 if x = y and EQn(x, y) = 0 otherwise.

– The inner product modulo two function IPn : {0, 1}n × {0, 1}n →
{0, 1}n is defined as IPn(x, y) = ⊕ni=1xiyi.

We often allow a protocol to use a primitive PUV that does not
have any input. This is enough to model reductions to

(
n
t

)
-OTk and

(p)-RabinOTk, since these primitives are equivalent to distributed ran-
domness PUV , i.e., there exist two protocols that are secure in the semi-
honest model: one that generates the distributed randomness using one
instance of the primitive, and one that implements one instance of the
primitive using the distributed randomness as input to the two par-
ties. The fact that

(
2
1

)
-OT1 is equivalent to distributed randomness has

been presented in [6, 3]. The generalization to
(
n
t

)
-OTk is straightforward.

The randomized primitives are obtained by simply choosing all inputs
uniformly at random. For (p)-RabinOTk the implementation is straight-
forward. Hence, any protocol that uses some instances of

(
n
t

)
-OTk or

(p)-RabinOTk can be converted into a protocol that only uses a primitive
PUV without any input.

2 Lower Bounds for Classical Two-Party Computation

2.1 Protocols and Security in the Semi-Honest Model

We will consider the semi-honest model, where both players behave hon-
estly, but may save all the information they get during the protocol to
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obtain extra information about the other player’s input or output. A pro-
tocol securely implements PX̄Ȳ |XY with an error of ε, if the entire view

of each player can be simulated6 with an error of at most ε in an ideal
setting, where the players only have black-box access to the primitive
PX̄Ȳ |XY . Note that this simulation is not allowed to change neither the
input nor the output. (See the full version [40] for a formal definition.)
This definition of security follows Definition 7.2.1 from [24], but is adapted
to the case of computationally unbounded adversaries and statistical in-
distinguishability.

2.2 Lower Bounds for Secure Function Evaluation

We will now give lower bounds for ε-secure implementations of functions
f : X×Y → Z from a primitive PUV in the semi-honest model. A function
f has no redundant inputs for Alice if

∀x 6= x′ ∈ X ∃y ∈ Y : f(x, y) 6= f(x′, y) . (2.1)

Clearly, a function f can be computed from a primitive PUV with an
error ε in the semi-honest model if and only if the function f ′ obtained
by combining all redundant inputs for Alice can be computed with the
same error.

Let Alice’s and Bob’s inputs X and Y be independent and uniformly
distributed and letM be the whole communication in the protocol. Loosely
speaking, Alice must enter (almost) all the information about X into the
protocol as follows: If Bob’s input is y, then he must be able to compute
f(X, y). But, as Alice must not learn y, she has to enter all information
about f(X, y) into the protocol independent of Bob’s input. Thus, Alice
must input all information about f(X, y) into the protocol for all y. If f
satisfies (2.1), then {f(x, y) : y ∈ Y} allows to compute x. Thus, Alice
must enter all information about X into the protocol. More precisely, it
can be shown that

H(X | UM,Y = y) ≤ (3|Y| − 2)(ε log |Z|+ h(ε)) .

Since the protocol is secure against Bob, one can prove that for all y

H(X | VM,Y = y) ≥ H(X | f(X, y))− ε log |X | − h(ε) .

The following theorem that gives a lower bound on the conditional entropy
of PUV can then be obtained from these two inequalities.

6 The simulation is not required to be efficient.
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Theorem 1. Let f : X ×Y → Z be a function that satisfies (2.1). Let a
protocol having access to PUV be an ε-secure implementation of f in the
semi-honest model. Then

H(U | V ) ≥ max
y

H(X | f(X, y))− 3|Y|(ε log |Z|+ h(ε))− ε log |X | .

Note that for some functions the bound of Theorem 1 can be improved
by maximizing over all restrictions of the function f , i.e., over all functions
f ′(x, y) : X ′ × Y ′ → Z ′ where X ′ ⊂ X , Y ′ ⊂ Y and Z ′ ⊂ Z with
f ′(x, y) = f(x, y) that still satisfy condition (2.1).

Any lower bound for f ′ implies a lower bound for f . The following
corollaries follow immediately from Theorem 1.

Corollary 4. Let a protocol having access to PUV be an ε-secure imple-
mentation of

(
n
t

)
-OTk in the semi-honest model. Then

H(U | V ) ≥ (n− t)k − 3dn/te(εtk + h(ε))− εnk .

Corollary 5. Let a protocol having access to PUV be an ε-secure imple-
mentation of EQn in the semi-honest model. Then

H(U |V ) ≥ max
0<k≤n

((1− ε)k − 3 · 2k(ε+ h(ε))− 1 .

There exists a secure reduction of EQn to EQk [4]: Alice and Bob compare
k inner products of their inputs with random strings using EQk. This
protocol is secure in the semi-honest model with an error7 of at most
2−κ. Since there exists a circuit to implement EQk with k XOR and k
AND gates, it follows from [25] that EQk can be securely implemented
using k instances to

(
4
1

)
-OT1 or 3k instances of

(
2
1

)
-OT1 in the semi-honest

model. Since m instances of
(

2
1

)
-OT1 are equivalent to a primitive PUV

with H(U |V ) = m, the bound of Corollary 5 is optimal up to a factor
of 3. This implies that the term |Y| in the statement of the bound given
in Theorem 1 cannot be reduced significantly, i.e., it is not possible to
replace |Y| with log |Y| for example.

Corollary 6. Let a protocol having access to a primitive PUV be an ε-
secure implementation of the inner product function IPn in the semi-
honest model. Then H(U |V ) ≥ n− 1− 4n(ε+ h(ε)).

7 Note that our security definition is different from the one used in [4].
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If ε + h(ε) ≤ 1/8, then it immediately follows from Corollary 6 that we
need at least n/2− 1 calls to

(
2
1

)
-OT1 to compute IPn with an error of at

most ε. From the protocol presented in [4] we know that there exists a
perfectly secure protocol that computes IPn from n instances of

(
2
1

)
-OT1.

Therefore, the bound is optimal up to a factor of 2.
For our next lower-bound, the function f : X × Y → Z must satisfy

the following property. There exist y1 ∈ Y such that

∀x 6= x′ ∈ X : f(x, y1) 6= f(x′, y1) , (2.2)

and y2 ∈ Y such that

∀x, x′ ∈ X : f(x, y2) = f(x′, y2) . (2.3)

Let Alice’s input X be uniformly distributed. Loosely speaking, the se-
curity of the protocol implies that the communication gives (almost) no
information about Alice’s input X if Bob’s input is y2. But the commu-
nication must be (almost) independent of Bob’s input, otherwise Alice
could learn Bob’s input. Thus, Alice’s input X is uniform with respect
to the whole communication even when Bob’s input is y1. Let now Bob’s
input be fixed to y1 and let M be the whole communication. Then the
following lower bound can be proved using the given intuition.

H(f(X, y1) |M) ≥ log |X | − 6ε log |X | − 6h(ε) .

As Bob must be able to compute the correct output, one can show that

H(f(X, y1) | VM) ≤ ε log |X |+ h(ε) .

The following lower bound on the mutual information of PUV can be
obtained from these two inequalities.

Theorem 2. Let f : X × Y → Z be a function that satisfies (2.2) and
(2.3). Then for any protocol that implements f from a primitive PUV with
an error of at most ε in the semi-honest model

I(U ;V ) ≥ log |X | − 7ε log |X | − 7h(ε) .

Since properties (2.2) and (2.3) can be satisfied by restricting Alice’s input
in
(
n
t

)
-OTk, we obtain the following corollary.

Corollary 7. Let a protocol having access to PUV be an ε-secure imple-
mentation of

(
n
t

)
-OTk in the semi-honest model where t ≤ bn/2c. Then

I(U ;V ) ≥ tk − 7εtk − 7h(ε) .
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We further generalize Theorem 2 to arbitrary functions f : X × Y →
Z in [40]. In the case of perfect implementations the bound H(U) =
H(U |V ) + I(U ;V ) ≥ log |X | follows from Theorem 1 and the general-
ization of Theorem 2. From this bound we get that any perfectly secure
protocol needs at least log |X | instances of

(
2
1

)
-OT1 to implement a func-

tion f : X × Y → Z, which implies Theorem 4.11 from [4].

2.3 Lower Bounds for Protocols implementing OT(
2
1

)
-OT1 can be implemented from one instance of

(
2
1

)
-OT1 in the opposite

direction [45]. Therefore, it follows immediately from Corollary 4 that for
any ε-secure reduction of

(
2
1

)
-OT1 to PUV , we must also have

H(V | U) ≥ 1− 5(ε+ h(ε)) ,

since any violation of this bound could be used to construct a violation
of the bound from Corollary 4. This bound can be generalized to n > 0.
Together with the bounds from Theorem 1 and 2 we get the following
theorem.

Theorem 3. Let a protocol having access to PUV be an ε-secure imple-
mentation of m instances of

(
n
1

)
-OTk in the semi-honest model. Then

H(U | V ) ≥ m(n− 1)k − 4n(εmk + h(ε)),

H(V | U) ≥ m log n−m(4 log n+ 7)(ε+ h(ε)),

I(U ;V ) ≥ mk − 7εmk − 7h(ε) .

The statement of Corollary 1 follows from the fact that m instances
of
(
n
1

)
-OTk are equivalent to a primitive PUV with H(U | V ) = m(n−1)k,

I(U ;V ) = mk and H(V | U) = m log n.
In the full version of this paper [40], we show that the bounds of

Theorem 1-3 can be generalized to the monotones from [43]. Furthermore,
we derive new bounds for protocols implementing (p)-RabinOTk, and show
that our bounds imply bounds for implementations of oblivious linear
function evaluation (OLFE).

3 Quantum Reductions

3.1 Reversing String OT Efficiently

As the bounds of the last section generalize the known bounds for perfect
implementations of OT from [2, 21, 44, 43] to the statistical case, it is nat-
ural to ask whether similar bounds also hold for quantum protocols, i.e.,
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if the bounds presented in [36] can be generalized to the statistical case.
We give a negative answer to this question by presenting a statistically
secure quantum protocol that violates these bounds.(

2
1

)
-OTk can be implemented from m = O(k + κ) bit commitments

with an error of 2−Ω(κ) [6, 49, 17]. In the protocol, Alice sends m BB84-
states to Bob who measures them either in the computational or in the
diagonal basis. To ensure that he really measures Bob has to commit
to the basis he has measured in and the measurement outcome for ev-
ery qubit received. Alice then asks Bob to open a small subset T of size
αm of these pairs of commitments. OT can then be implemented us-
ing further classical processing. (See [17] for a complete description of the
protocol.) This protocol implements oblivious transfer that is statistically
secure in the quantum universal composability model [38]. Obviously the
m instances of bit commitments can be replaced by a single functionality,
denoted by FA→B,mMCOM , which allows one player to commit to a bit string
of length m and later open an arbitrary substring. The following proto-
col implements FA→B,kMCOM from the oblivious transfer functionality FA→B,kOT

(see [38] for a definition of FA→B,kOT ).

Inputs: Alice has an input b = (b1, . . . , bk) ∈ {0, 1}k in Commit. Bob
has an input T ⊆ [k] in Open.
Commit(b):
For all 1 ≤ i ≤ κ:

1. Alice and Bob invoke FA→B,kOT with random inputs xi0, x
i
1 ∈ {0, 1}k

and ci ∈R {0, 1}k.
2. Bob receives yi = xi

ci
from FA→B,kOT .

3. Alice sends mk := xi0 ⊕ xi1 ⊕ b to Bob.

Open(T):

1. Alice sends b|T , T and xi0|T , xi1|T for all 1 ≤ i ≤ κ to Bob.
2. If mi|T = xi0|T ⊕ xi1|T ⊕ bi|T and yi|T = xic|T for all 1 ≤ i ≤ κ,

Bob accepts and outputs bT , otherwise he rejects.

Lemma 1. There exists a protocol that is statistically secure and uni-
versally composable that realizes FA→B,kMCOM with an error of 2−κ/2 using κ

instances of FA→B,kOT .

Since any protocol that is also statistically secure in the classical uni-
versal composability model [11] is also secure in the quantum universal
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composability model [38], we get, together with the proofs from [17, 38],
the following theorem.

Theorem 4. There exists a protocol that implements
(

2
1

)
-OTk

′
with an

error ε from κ = O(log 1/ε) instances of
(

2
1

)
-OTk in the opposite direction

where k′ = Ω(k) if k = Ω(κ).

Since we can choose k � κ, this immediately implies that the bound
of Corollary 4 does not hold for quantum protocols. Similar violations
can be shown for the other two lower bounds given in Theorem 7. For
example, statistically secure and universally composable8 commitments
can be implemented from shared randomness PUV that is distributed
according to (p)-RabinOT at a rate of H(U | V ) = 1 − p [41]. Using

Theorem 8, one can implement FB→A,kOT with k ∈ Ω(n(1 − p)) from n
copies of PUV . Since I(U ;V ) = p, quantum protocols can also violate the
bound of Corollary 7.

It has been an open question whether noiseless quantum communica-
tion can increase the commitment capacity [41]. Our example implies a
positive answer to this question.

3.2 Lower Bounds

The protocols presented in the previous section prove that the known im-
possibility results for perfectly secure oblivious transfer reductions from
[36] do not hold for statistically secure quantum protocols. Thus, it is nat-
ural to ask whether quantum protocols can even extend oblivious transfer
or, more generally, how efficient statistically secure quantum protocols can
be. In this section we prove an impossibility result that holds for statis-
tically secure quantum protocols and that implies in particular that also
quantum protocols cannot extend OT. Since, in contrast to the classical
case, security against semi-honest adversaries can be trivially achieved
in the quantum setting, we consider in the following protocols that are
secure against malicious adversaries in the stand-alone model. A protocol
is an ε-secure implementation of OT if for any adversary attacking the
protocol (real setting), there exists a simulator using the ideal OT (ideal
setting) such that for all inputs of the honest players the real and the
ideal setting can be distinguished with an advantage of at most ε.

In the following we will give two lower bounds for quantum protocols
that implement

(
2
1

)
-OTk using a trusted resource such as trusted ran-

domness distributed to the players or a bit commitment functionality.

8 Stand-alone statistically secure commitments based on stateless two-party primitives
are universally composable [22].
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Our proofs use similar techniques as the impossibility results in [32, 30,
29]. First, the protocol is replaced by a purified version of the protocol
that is equivalent in a certain sense. In particular the purified version has
the same security properties as the original protocol and the impossibility
of the former implies the impossibility of the latter. In this protocol the
players defer all of their measurements to the very end of the protocol.
See [32, 30, 29] for details.

We use the notation ρAB for a state in the Hilbert space HA ⊗ HB,
and ρA := trB(ρAB). The conditional von Neumann entropy is defined as
H(A | B)ρ := H(ρAB)−H(ρB), where H(ρ) := tr(−ρ log(ρ)).

We first consider protocols where the players have access to a primitive
that generates a pure state |ψ〉ABE , distributes registers A and B to Alice
and Bob respectively and keeps the purification in its register E.

Let Alice choose her inputs X0 and X1 uniformly at random and
let Bob’s input be c. When Alice and Bob execute the purified protocol
honestly the final state just before the honest players perform their mea-
surements is a pure state |ρ〉ABEc , where A and B are the registers of Alice
and Bob and E is the register of the trusted resource.

Loosely speaking, security for Alice guarantees that Bob has (almost)
no information about X0 if c = 1, i.e., the entropy H(X0 | B)ρ1 is almost
maximal. On the other hand, Alice must not be able to learn Bob’s choice
bit. Therefore, we have ρA0 ≈ ρA1 . As shown in [32, 30, 29], this implies
that there exists a unitary on system BE that transforms |ρ〉ABE1 into a

state close to |ρ〉ABE0 . Since Bob can learn X0 if c = 0, this implies that
H(X0 | BE)ρ1 is small. Using these two facts, one can then prove the
following lower bound on the entropy of E.

Theorem 5. To implement one instance of
(

2
1

)
-OTk over strings of size

k with an error of at most ε from a primitive |ψ〉ABE with a quantum
protocol we need

2H(E)ψ ≥ (1− 21ε− 2
√
ε) · k − 11h(ε)− 2h(

√
ε) .

A classical primitive PUV can be modeled by the quantum primitive

|ψ〉ABE =
∑
u,v

√
PUV (u, v) · |u, v〉AB ⊗ |u, v〉E

that distributes the values u and v and keeps the purification in its register
E. Therefore, we get the following corollary from Theorem 5.
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Corollary 8. To implement one instance of
(

2
1

)
-OTk with an error of at

most ε from PUV with a quantum protocol, we need

2H(UV ) ≥ (1− 21ε− 2
√
ε) · k − 11h(ε)− 2h(

√
ε) .

Since m instances of
(

2
1

)
-OTk can be implemented from shared ran-

domness with H(UV ) = 2k + 1 we get the following corollary.

Corollary 9. To implement one instance of
(

2
1

)
-OTk with an error of at

most ε from n instances of
(

2
1

)
-OTk

′
in either direction with a quantum

protocol, we need

2n(2k′ + 1) ≥ (1− 21ε− 2
√
ε) · k − 11h(ε)− 2h(

√
ε) .

Next, we present a bound for implementations of
(

2
1

)
-OTk from com-

mitments. We can model black-box commitments by a trusted functional-
ity that receives bits over a classical channel and stores them in a register
E. When the committer sends the open command, the functionality sends
the bits to the receiver. We can replace the two classical channels with
a quantum channel where the players measure the qubits when sending
and after receiving them. These measurements can then be purified by
the players. The following bound can be obtained by adapting the proof
of Theorem 5 to this scenario.

Theorem 6. To implement a
(

2
1

)
-OTk with an error of at most ε we need

to commit to at least (1− 21ε− 2
√
ε)k/2− 6h(ε)− h(

√
ε) bits in total.

From Corollary 9 and Theorem 6 follows that OTs and commitments
cannot be extended by quantum protocols.

Corollary 10. Any quantum protocol that implement m + 1 instances
of
(

2
1

)
-OT1 from m instances of

(
2
1

)
-OT1 must have an error of at least

5·10−6

m for any m > 0.

Corollary 11. Any quantum protocol that implements m+1 bit commit-
ments out of m commitments must have an error of at least 10−9

m for any
m > 0.

Next, we give an additional lower bound for reductions of OT to com-
mitments that shows that the number of commitments (of arbitrary size)
used in any ε-secure protocol must be at least Ω(log(1/ε)). We model
the commitments as before, but store the commitments of Alice and Bob
separately in EA and EB. The proof idea is the following: We let the
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adversary guess a subset T of commitments that he will be required to
open during the protocol. He honestly executes all commitments in T , but
cheats in all others. If the adversary guesses T right, he is able to cheat
in the same way as in any protocol that does not use any commitments.

Theorem 7. Any quantum protocol that implements
(

2
1

)
-OTk using κ

commitments (of arbitrary length) must have an error of at least 2−κ/36.

3.3 Reduction of OT to String-Commitments

The protocol we described in Section 3.1 uses m = O(k+κ) commitments
to 2 bits to implement

(
2
1

)
-OTk with an error of 2−Ω(κ). If k = ω(κ) this

it is not optimal with respect to Theorem 7. We will now show how to
construct a protocol that is optimal with respect to the lower bounds of
both Theorem 6 and Theorem 7. We modify the protocol by grouping the
m pairs into κ blocks of size b := m/κ. We let Bob commit to the blocks
of b pairs of values at once. The subset T is now of size ακ, and defines
the blocks to be opened by Bob. If Bob is able to open all commitments in
T correctly, then with high probability, he must have correctly measured
almost all qubits. We only need to estimate the error probability of the
sampling strategy that corresponds to the new checking procedure which
Alice applies and apply the proof of [17] to get the following theorem.

Theorem 8. There exists a quantum protocol that implements
(

2
1

)
-OTk

with an error of at most ε out of κ = O(log 1/ε) commitments of size b,
where κb = O(k + log 1/ε).

Using Theorem 8, it can be shown that string-commitments cannot be
extended.

Corollary 12. Let m > 0. If there exists a (quantum) protocol that im-
plements string commitments of length m′+ 1 out of string commitments
of length m′ for all m′ > m with an error of at most ε, then there exists
a constant c > 0 such that ε ≥ c

m .

4 Conclusions

The main contribution of this work are impossibility proofs for statisti-
cal oblivious transfer reductions. In the classical case we have generalized
several known lower bounds for perfect reductions to statistical security.
In the quantum case we have shown that the known bound for perfect
reductions does not apply to statistical reductions, and have presented a
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new bound that does hold in the statistical quantum setting. Our bounds
imply several important impossibility results, for example, that OT can-
not be extended, neither in the classical nor in the quantum setting.

There are many interesting open questions. For example, it is not
known whether more than two instances of

(
2
1

)
-OT1 can be implemented

(in the classical or the quantum setting) from two instances of
(

2
1

)
-OT`,

one in each direction.
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15. Crépeau, C., Santha, M.: On the reversibility of oblivious transfer. In: Davies,
D.W. (ed.) EUROCRYPT 1991. Lecture Notes in Computer Science, vol. 547, pp.
106–113. Springer (1991)
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