
Secure Two-Party Quantum Evaluation of

Unitaries Against Specious Adversaries

Frédéric Dupuis1⋆, Jesper Buus Nielsen2, and Louis Salvail3⋆⋆

1 Institute for Theoretical Physics, ETH Zurich, Switzerland
dupuis@phys.ethz.ch

2 DAIMI, Aarhus University, Denmark
jbn@cs.au.dk

3 Université de Montréal (DIRO), QC, Canada
salvail@iro.umontreal.ca

Abstract. We describe how any two-party quantum computation, spec-
ified by a unitary which simultaneously acts on the registers of both par-
ties, can be privately implemented against a quantum version of classical
semi-honest adversaries that we call specious. Our construction requires
two ideal functionalities to garantee privacy: a private SWAP between
registers held by the two parties and a classical private AND-box equiva-
lent to oblivious transfer. If the unitary to be evaluated is in the Clifford
group then only one call to SWAP is required for privacy. On the other
hand, any unitary not in the Clifford requires one call to an AND-box
per R-gate in the circuit. Since SWAP is itself in the Clifford group, this
functionality is universal for the private evaluation of any unitary in that
group. SWAP can be built from a classical bit commitment scheme or
an AND-box but an AND-box cannot be constructed from SWAP. It
follows that unitaries in the Clifford group are to some extent the easy
ones. We also show that SWAP cannot be implemented privately in the
bare model.

1 Introduction

In this paper, we address the problem of privately evaluating some unitary trans-
form U upon a joint quantum input state held by two parties. Since unitaries
model what quantum algorithms are implementing, we can see this problem as
a natural extension of secure two-party evaluation of functions to the quantum
realm. Suppose that a state |φin〉 ∈ A⊗B is the initial shared state where Alice
holds register A and Bob holds register B. Let U ∈ U(A ⊗ B) be some unitary
transform acting upon A and B. What cryptographic assumptions are needed
for a private evaluation of |φout〉 = U |φin〉 where private means that each player
learns no more than in the ideal situation depicted in Fig. 1? Of course, answers
to this question depend upon the adversary we are willing to tolerate.

⋆ Supported by Canada’s NSERC Postdoctoral Fellowship Program.
⋆⋆ Supported by Canada’s NSERC discovery grant, MITACS, and the QuantumWorks

networks(NSERC).

|φin〉

{
A

U
A

}

|φout〉B B

Fig. 1. Ideal Functionality
for unitary U .

In [18], it was shown that unitaries cannot be
used to implement classical cryptographic prim-
itives. Any non-trivial primitive implemented by
unitaries will necessarily leak information toward
one party. Moreover, this leakage is available to a
weak class of adversaries that can be interpreted
as the quantum version of classical semi-honest ad-
versaries. It follows that quantum two-party computation of unitaries cannot be
used to implement classical cryptographic primitives. This opens the possibility
that the cryptographic assumptions needed for private evaluations of unitaries
are weaker than for their classical counterpart. So, what classical cryptographic
assumptions, if any, are required to achieve privacy in our setting? Are there
unitaries more difficult to evaluate privately than others?

In this work, we answer these questions against a class of weak quantum
adversaries, called specious, related to classical semi-honest adversaries. We say
that a quantum adversary is specious if at any step during the execution of a
protocol, it can provide a judge with some state that, when joined with the state
held by the honest player, will be indistinguishable from a honest interaction.
In other words, an adversary is specious if it can pass an audit with success at
any step. Most known impossibility proofs in quantum cryptography apply when
the adversary is restricted to be specious. Definitions similar to ours have been
proposed for the quantum setting and usually named semi-honest. However,
translating our definition to the classical setting produces a strictly stronger
class of adversaries than semi-honest4 which justifies not adopting the term
semi-honest. We propose the name specious as the core of the definition is that
the adversary must appear to act honestly.

Contributions. First, we define two-party protocols for the evaluation of uni-
taries having access to oracle calls. This allows us to consider protocols with
security relying on some ideal functionalities in order to be private. We then say
that a protocol is in the bare model if it does not involve any call to an ideal
functionality. We then formally define what we mean by specious adversaries.
Privacy is then defined via simulation. We say that a protocol for the two-party
evaluation of unitary U is private against specious adversaries if, for any joint
input state and at any step of the protocol, there exists a simulator that can
reproduce the adversary’s view having only access to its own part of the joint
input state. Quantum simulation must rely on a family of simulators for the
view of the adversary rather than one because quantum information does not
accumulate but can vanish as the protocol evolves. For instance, consider the

4 As an example, assume there exist public key cryptosystems where you can sample
a public key without learning the secret key. Then this is a semi-honest oblivious
transform: The receiver, with choice bit c, samples pkc in the normal way and learns
its corresponding secret key and samples pk1−c without learning its secret key. He
sends (pk0, pk1). Then the sender sends (Epk0

(m0), Epk1
(m1)) and the receiver de-

crypts Epkc(mc). This is not secure against a specious adversary who can sample
pk1−c along with its secret key sk1−c and then delete sk1−c before the audit.

trivial protocol that let Alice send her input register to Bob so that he can apply
locally |φout〉 = U |φin〉 before returning her register. The final state of such a
protocol is certainly private, as Bob cannot clone Alice’s input and keep a copy,
yet at some point Bob had access to Alice’s input thus violating privacy. No
simulator can possibly reproduce Bob’s state after he received Alice’s register
without having access to her input state.

Second, we show that no protocol can be shown statistically private against
specious adversaries in the bare model for a very simple unitary: the swap gate.
As the name suggests, the swap gate simply permutes Alice’s and Bob’s input
states. Intuitively, the reason why this gate is impossible is that at some point
during the execution of such protocol, one party that still has almost all its
own input state receives a non-negligible amount of information (in the quan-
tum sense) about the other party’s input state. At this point, no simulator can
possibly re-produce the complete state held by the receiving party since a call
to the ideal functionality only provides access to the other party’s state while
no call to the ideal functionality only provides information about that party’s
own input. Therefore, any simulator cannot re-produce a state that contains in-
formation about the input states of both parties. It follows that cryptographic
assumptions are needed for the private evaluation of unitaries against specious
adversaries. On the other hand, a classical bit commitment is sufficient to im-
plement the swap privately in our model.

Finally, we give a very simple protocol for the private evaluation of any uni-
tary based on ideas introduced by [8, 7] in the context of fault tolerant quantum
computation. Our construction is similar to Yao’s original construction in the
classical world[23, 10]. We represent any unitary U by a quantum circuit made
out of gates taken from the universal set UG = {X,Y, Z,CNOT,H,P,R} [14]. The
protocol evaluates each gate of the circuit upon shared encrypted input where
the encryption uses the Pauli operators {X,Y, Z} together with the identity. In
addition to the Pauli gates X,Y , and Z, gates CNOT, H, and P can easily be
performed over encrypted states without losing the ability to decrypt. Gates of
that kind belong to what is called the Clifford group. The CNOT gate is the only
gate in UG acting upon more than one qubit while the R-gate is the only one that
does not belong to the Clifford group. In order to evaluate it over an encrypted
state while preserving the ability to decrypt, we need to rely upon a classical
ideal functionality computing securely an additive sharing for the AND of Alice’s
and Bob’s input bits. We call this ideal functionality an AND-box. Upon input
x ∈ {0, 1} for Alice and y ∈ {0, 1} for Bob, it produces a ∈R {0, 1} and b ∈ {0, 1}
to Alice and Bob respectively such that a⊕ b = x ∧ y. An AND-box can be ob-
tained from any flavor of oblivious transfer and is defined the same way than
an NL-box[15, 16] without the property that its output can be obtained before
the input of the other player has been provided to the box (i.e., NL-boxes are
non-signaling). The equivalence between AND-boxes, NL-boxes, and oblivious
transfer is discussed in [22]. At the end of the protocol, each part of the shared
key allowing to decrypt the output must be exchanged in a fair way. For this
task, Alice and Bob rely upon an ideal swap functionality called SWAP. The re-

sult is that any U can be evaluated privately upon any input provided Alice and
Bob have access to one AND-box per R-gate and one call to the an ideal swap.
If the circuit happens to have only gates in the Clifford group then only one call
to an ideal swap is required for privacy. In other words, SWAP is universal for
the private evaluation of circuits in the Clifford group (i.e., those circuits having
no R-gate) and itself belongs to that group (SWAP is not a classical primitive).
To some extent, circuits in the Clifford group are the easy ones. Privacy for cir-
cuits containing R-gates however needs a classical cryptographic primitive to be
evaluated privately by our protocol. It means that AND-boxes are universal for
the private evaluation of any circuit against specious adversaries. We don’t know
whether there exist some unitary transforms that are universal for the private
evaluation of any unitary against specious adversaries.

Previous works. All impossibility results in quantum cryptography we are aware
of apply to classical primitives. In fact, the impossibility proofs usually rely upon
the fact that an adversary with a seemingly honest behavior can force the im-
plementation of classical primitives to behave quantumly. The result being that
implemented that way, the primitive must leak information to the adversary.
This is the spirit behind the impossibility of implementing oblivious transfer
securely using quantum communication[11]. In that same paper the impossi-
bility of any one-sided private evaluation of non-trivial primitives was shown.
All these results can be seen as generalizations of the impossibility of bit com-
mitment schemes based on quantum communication[12, 13]. The most general
impossibility result we are aware of applies to any non-trivial two-party classi-
cal function[18]. It states that it suffices for the adversary to purify its actions
in order for the quantum primitive to leak information. An adversary purify-
ing its actions is specious as defined above. None of these impossibility proofs
apply to quantum primitives characterized by some unitary transform applied
to joint quantum inputs. Blind quantum computation is a primitive that shows
similarities to ours. In [5], a protocol allowing a client to get its input to a quan-
tum circuit evaluated blindly has been proposed. The security of their scheme
is unconditional while in our setting almost no unitary allows for unconditional
privacy.

An unpublished work of Smith[20] shows how one can devise a private pro-
tocol for the evaluation of any unitary that seems to remain private against all
quantum adversaries. However, the techniques used require strong cryptographic
assumptions like homomorphic encryption schemes, zero-knowledge and witness
indistinguishable proof systems. The construction is in the spirit of protocols for
multiparty quantum computation[4, 6] and fault tolerant quantum circuits[19,
2]. Although our protocol only guarantees privacy against specious adversaries,
it is obtained using much weaker cryptographic assumptions.

2 Preliminaries

The N -dimensional complex Euclidean space (i.e., Hilbert space) will be denoted
by HN . We denote quantum registers using calligraphic typeset A. As usual, A⊗

B denotes the space of two such quantum registers. We write A ≈ B when A and
B are such that dim (A) = dim (B). A register A can undergo transformations
as a function of time; we denote by Ai the state of space A at time i. When a
quantum computation is viewed as a circuit accepting input in A, we denote all
wires in the circuit by w ∈ A. If the circuit accepts input in A⊗ B then the set
of all wires is denoted w ∈ A ∪ B.

The set of all linear mappings from A to B is denoted by L(A,B) while L(A)
stands for L(A,A). To simplify notation, for ρ ∈ L(A) and M ∈ L(A,B) we
write M · ρ for MρM †. We denote by Pos(A) the set of positive semi-definite
operators in A. The set of positive semi-definite operators with trace 1 acting
on A is denoted D(A); D(A) is the set of all possible quantum states for register
A. An operator A ∈ L(A,B) is called a linear isometry if A†A = 11A. The set of
unitary operators (i.e., linear isometries with B = A) acting in A is denoted by
U(A). The identity operator in A is denoted 11A and the completely mixed state
in D(A) is denoted by IA. For any positive integer N > 0, 11N and IN denote
the identity operator respectively the completely mixed state in HN . When the
context requires, a pure state |ψ〉 ∈ AB will be written |ψ〉AB to make explicit
the registers in which it is stored.

A linear mapping Φ : L(A) 7→ L(B) is called a super-operator since it belongs
to L(L(A),L(B)). Φ is said to be positive if Φ(A) ∈ Pos(B) for all A ∈ Pos(A).
The super-operator Φ is said to be completely positive if Φ ⊗ 11L(Z) is positive
for every choice of the Hilbert space Z. A super-operator Φ can be physically
realized or is admissible if it is completely positive and preserves the trace:
tr(Φ(A)) = tr(A) for all A ∈ L(A). We call such a super-operator a quantum
operation. Another way to represent any quantum operation is through a linear
isometry W ∈ L(A,B ⊗ Z) such that Φ(ρ) = trZ(W · ρ), for some extra space
Z. Any such isometry W can be implemented by a physical process as long as
the resource to implement Z is available. This is just a unitary transform in
U(A⊗Z) where the system in Z is initially in known state |0Z〉.

For two states ρ0, ρ1 ∈ D(A), we denote by ∆(ρ0, ρ1) the trace norm distance
between ρ0 and ρ1: ∆(ρ0, ρ1) :=

1
2‖ρ0 − ρ1‖. If ∆(ρ0, ρ1) ≤ ε then any quantum

process applied to ρ0 behaves exactly as for ρ1 except with probability at most
ε [17].

Let X ,Y , and Z be the three non-trivial one-qubit Pauli operators. The Bell
measurement is a complete orthogonal measurement on two qubits made out
of the measurement operators {|Ψx,y〉〈Ψx,y|}x,y∈{0,1} where |Ψx,y〉 := 1√

2
(|0, x〉+

(−1)y|1, x〉). We say that the outcome of a Bell measurement is (x, y) ∈ {0, 1}2 if
|Ψx,y〉〈Ψx,y| has been observed. The quantum one-time-pad is a perfectly secure
encryption of quantum states[3]. It encrypts a qubit |ψ〉 as XxZz|ψ〉, where the
key is two classical bits, (x, z) ∈ {0, 1}2 and X0Z0 = 11, X0Z1 = Z, X1Z0 = X

and X1Z1 = Y are the Pauli operators.

2.1 Modeling two-party strategies

Consider an interactive two-party strategy ΠO between parties A and B and
oracle calls O. ΠO can be modeled by a sequence of quantum operations for

each player together with some oracle calls also modeled by quantum operations.
Each quantum operation in the sequence corresponds to the action of one party
at a certain step of the strategy. The following definition is a straightforward
adaptation of n-turn interactive quantum strategies as described in [9]. The
main difference is that here, we provide a joint input state to both parties and
that quantum transmissions taking place during the execution is modeled by a
quantum operation; one that is moving a state on one party’s side to the other
party.

Definition 2.1. A n–step two party strategy with oracle calls denoted ΠO =
(A ,B,O, n) consists of:

1. input spaces A0 and B0 for parties A and B respectively,

2. memory spaces A1, . . . ,An and B1, . . . ,Bn for A and B respectively,

3. an n-tuple of quantum operations (A1, . . . ,An) for A , Ai : L(Ai−1) 7→
L(Ai), (1 ≤ i ≤ n),

4. an n-tuple of quantum operations (B1, . . . ,Bn) for B, Bi : L(Bi−1) 7→
L(Bi), (1 ≤ i ≤ n),

5. memory spaces A1, . . . ,An and B1, . . . ,Bn can be written as Ai = AO
i ⊗A′

i

and Bi = BO
i ⊗ B′

i, (1 ≤ i ≤ n), and O = (O1,O2, . . . ,On) is an n-tuple of
quantum operations: Oi : L(AO

i ⊗ BO
i) 7→ L(AO

i ⊗ BO
i), (1 ≤ i ≤ n).

If Π = (A ,B, n) is a n-turn two-party protocol then the final state of the inter-
action upon input state ρin ∈ D(A0⊗B0⊗R), where R is a system of dimension
dimR = dimA0 dimB0, is:

[A ⊛ B](ρin) :=(11L(A′
n⊗B′

n⊗R) ⊗ On)(An ⊗ Bn ⊗ 11R)

. . . (11L(A′
1
⊗B′

1
⊗R) ⊗ O1)(A1 ⊗ B1 ⊗ 11R)(ρin) .

Step i of the strategy corresponds to the actions of Ai and Bi followed by the
oracle call Oi.

Note that we consider input states defined on the input systems together
with a reference system R; this allows us to show the correctness and privacy
of the protocol not only for pure inputs, but also for inputs that are entangled
with a third party. This is the most general case allowed by quantum mechanics.

A two-party strategy is therefore defined by quantum operation tuples (A1, . . . ,An),
(B1, . . . ,Bn), and (O1, . . . ,On). These operations also define working spaces
A0, . . . ,An,B0, . . . ,Bn together with the input-output spaces to the oracle calls
AO

i and BO
i for 1 ≤ i ≤ n.

A communication oracle from Alice to Bob is modeled by having AO
i ≈

BO
i and letting Oi move the state in AO

i to BO
i and erase AO

i . Similarly for
communication in the other direction. We define a bare model protocol to be one
which only uses communication oracles.

3 Specious Quantum Adversaries

3.1 Protocols for two-party evaluation

Let us consider two-party protocols for the quantum evaluation of unitary trans-
form U ∈ U(A0 ⊗ B0) between parties A and B upon joint input state ρin ∈
D(A0 ⊗ B0 ⊗R):

Definition 3.1. A two-party protocol ΠO
U = (A ,B,O, n) for U ∈ U(A0 ⊗ B0)

is an n–step two-party strategy with oracle calls, where An ≈ A0 and Bn ≈ B0.
It is said to be ε–correct if

∆ ([A ⊛ B](ρin), (U ⊗ 11R) · ρin) ≤ ε for all ρin ∈ D(A0 ⊗ B0 ⊗R) .

We denote by ΠU a two-party protocol in the bare model where, without loss of
generality, we assume that O2i+1 (0 ≤ i ≤ ⌊n

2 ⌋) implements a communication
channel from A to B and O2i (1 ≤ i ≤ ⌊n

2 ⌋) implements a communication
channel from B to A . Communication oracles are said to be trivial.

In other words, a two-party protocol ΠO
U for unitary U is a two-party interac-

tive strategy where, at the end, the output of the computation is stored in the
memory of the players. ΠO

U is correct if, when restricted to the output registers
(and R), the final quantum state shared by A and B is (U ⊗ 11R) · ρin.

As it will become clear when we discuss privacy in Sect. 3.3, we need to
consider the joint state at any step during the evolution of the protocol:

ρ1(ρin) := (11L(A′
1
⊗B′

1
⊗R) ⊗ O1)(A1 ⊗ B1 ⊗ 11L(R))(ρin),

ρi+1(ρin) := (11L(B′
i+1

⊗A′
i+1

⊗R) ⊗ Oi+1)(Ai+1 ⊗ Bi+1 ⊗ 11L(R))(ρi(ρin)) , (1)

for 1 ≤ i < n. We also write the final state of ΠO
U upon input state ρin as

ρn(ρin) = [A ⊛ B](ρin).

3.2 Modeling Specious Adversaries

Intuitively, a specious adversary acts in any way apparently indistinguishable
from the honest behavior, in the sense that no audit can distinguish the behavior
of the adversary from the honest one.

More formally, a specious adversary in ΠO
U = (A ,B,O, n) may use an ar-

bitrary large quantum memory space. However, at any step 1 ≤ i ≤ n, the
adversary can transform its own current state to one that is indistinguishable
from the honest joint state. These transforms are modeled by quantum opera-
tions, one for each step of the adversary in ΠO

U , and are part of the adversary’s
specification. We denote by (T1, . . . ,Tn) these quantum operations where Ti

produces a valid transcript at the end of the i–th step.
Let Ã and B̃ be adversaries in ΠO

U . We denote by ΠO
U (Ã) = (Ã ,B,O, n)

andΠO
U (B̃) = (A , B̃,O, n) the resulting n–step two-party strategies. We denote

by ρ̃i(Ã , ρin) the state defined in (1) for protocol ΠO
U (Ã) and similarly by

ρ̃i(B̃, ρin) that state for protocol ΠO
U (B̃).

Adding the possibility for the adversary to be ε-close to honest, we get the
following definition:

Definition 3.2. Let ΠO
U = (A ,B,O, n) be an n–step two-party protocol with

oracle calls for U ∈ U(A0 ⊗ B0). We say that:

– Ã is ε–specious if ΠO
U (Ã) = (Ã ,B,O, n) is an n–step two-party strategy

with Ã0 = A0 and there exists a sequence of quantum operations (T1, . . . ,Tn)
such that:
1. for every 1 ≤ i ≤ n, Ti : L(Ãi) 7→ L(Ai),
2. for every input state ρin ∈ D(A0 ⊗ B0 ⊗R), and for all 1 ≤ i ≤ n,

∆
(
(Ti ⊗ 11L(Bi⊗R))

(
ρ̃i(Ã , ρin)

)
, ρi(ρin)

)
≤ ε .

– B̃ is ε–specious if ΠO
U (B̃) = (A , B̃,O, n) is a n–step two-party strategy

with B̃0 = B0 and there exists a sequence of quantum operations (T1, . . . ,Tn)
defined as before with Bi, B̃i, and ρ̃i(B̃, ρin) replacing Ai, Ãi, and ρ̃i(Ã , ρin)
respectively.

If a party is ε(m)–specious with ε(m) negligible for m a security parameter then
we say that this party is statistically specious.

3.3 Privacy

Privacy for ΠO
U is defined as the ability for a simulator, having only access to

the adversary’s input and the ideal functionality U , to reproduce the state of
the adversary at any step in the execution of ΠO

U . Our definition is similar to
the one introduced in [21] for statistical zero-knowledge proof systems.

A simulator for an adversary in ΠO
U is represented by a sequence of quantum

operations (Si)
n
i=1, where Si re-produces the view of the adversary after step i.

Si initially receives the adversary’s input and has access to the ideal functional-
ity for U evaluated upon the joint input of the adversary and the honest player.
Because of no-cloning, a simulator calling U loses its input, and the input might
be required to simulate e.g. early steps in the protocol, so we have to allow that
Si does not call U . For this purpose we introduce a bit qi ∈ {0, 1}. When qi = 0,
Si does not call U and when qi = 1, Si must first call the ideal functionality U
before performing some post-processing. More precisely,

Definition 3.3. Let ΠO
U = (A ,B,O, n) be an n–step two-party protocol for

U ∈ D(A0 ⊗ B0). Then,

– S (Ã) = 〈(S1, . . . ,Sn), q〉 is a simulator for adversary Ã inΠO
U if it consists

of:
1. a sequence of quantum operations (S1, . . . ,Sn) where for 1 ≤ i ≤ n,

Si : L(A0) 7→ L(Ãi),

2. a sequence of bits q ∈ {0, 1}n determining if the simulator calls the ideal
functionality at step i: qi = 1 iff the simulator calls the ideal functional-
ity.

– Similarly, S (B̃) = 〈(S1, . . . ,Sn), q
′〉 is a simulator for adversary B̃ in

ΠO
U if it satisfies conditions 1 and 2 above with q′,B0,Bi, and B̃i replacing

q,A0,Ai, and Ãi respectively.

Given an input state ρin ∈ D(A0 ⊗B0 ⊗R), we define the Ã ’s respectively B̃’s
simulated views as:

νi(Ã , ρin) := trB0

(
(Si ⊗ 11L(B0⊗R)) ((U

qi ⊗ 11R) · ρin)
)
,

νi(B̃, ρin) := trA0

(
(11L(A0⊗R) ⊗ Si)

(
(U q′i ⊗ 11R) · ρin

))
.

We say that protocol ΠO
U is private against specious adversaries if there exits a

simulator for the view at any step of any such adversary. In more details,

Definition 3.4. Let ΠO
U = (A ,B,O, n) be a protocol for U ∈ U(A0 ⊗ B0) and

let 0 ≤ δ ≤ 1. We say that ΠO
U is δ–private against ε–specious Ã if there ex-

ists a simulator S (Ã) such that for all input states ρin ∈ D(A0 ⊗ B0 ⊗ R)

and for all 1 ≤ i ≤ n, ∆
(
νi(Ã , ρin), trBi

(ρ̃i(Ã , ρin))
)

≤ δ. Similarly, we say

that ΠU is δ–private against ε–specious B̃ if there exists a simulator S (B̃)
such that for all input states ρin ∈ D(A0 ⊗ B0 ⊗ R) and for all 1 ≤ i ≤
n, ∆

(
νi(B̃, ρin), trAi

(ρ̃i(B̃, ρin))
)

≤ δ. Protocol ΠO
U is δ–private against ε–

specious adversaries if it is δ–private against both Ã and B̃. For γ > 0, if
ΠO

U is 2−γm–private for m ∈ N
+ a security parameter then we say that ΠO

U is
statistically private.

We show next that for some unitary, statistical privacy cannot be satisfied
by any protocol in the bare model.

4 Unitaries with no private protocols

In this section, we show that no statistically private protocol for the swap gate
exists in the bare model. The swap gate, denoted SWAP, is the following unitary
transform:

SWAP : |φA〉A0 |φB〉B0 7→ |φB〉A0 |φA〉B0 ,

for any one qubit states |φA〉 ∈ A0 and |φB〉 ∈ B0 (i.e., dim (A0) = dim (B0) = 2).
Notice that SWAP is in the Clifford group since it can be implemented with three
CNOT gates. It means that universality is not required (gates in the Clifford
groups are not universal for quantum computation) for a unitary to be impossible
to evaluate privately. The impossibility of SWAP essentially follows from no
cloning.

Theorem 4.1 (Impossibility of swapping). There is no correct and statis-
tically private two-party protocol ΠSWAP = (A ,B,O, n(m)) in the bare model.

Proof. Suppose that there exists an ε-correct, ε-private protocol in the bare
model for SWAP for sufficiently small ε; we will show that this implies that one
of the two players must lose information upon receiving a message, which is
clearly impossible.

We will consider the following particular pure input state: |ϕ〉 := |Ψ0,0〉A0RA⊗
|Ψ0,0〉B0RB , a maximally entangled state between A0 ⊗ B0 and the reference
system RA ⊗ RB that is broken down into two subsystems for convenience.
Furthermore, we will consider the “purified” versions of the honest players for
this protocol; in other words, we will assume that the super-operators A1, . . . ,An

and B1, . . . ,Bn are in fact linear isometries and that therefore the players never
discard any information unless they have to send it to the other party. The global
state ρi(ϕ) after step i is therefore a pure state on Ai ⊗ Bi ⊗RA ⊗RB.

After step i of the protocol (i.e., after the ith message has been sent), Alice’s
state must either depend only on her own original input (if qi = 0 for her
simulator), or on Bob’s original input (if qi = 1). More precisely, by the definition
of privacy (Definition 3.4), we have that

∆ (νi(A , ϕ), trBi
[ρi(ϕ)]) ≤ ε ,

where νi(A , ϕ) is A ’s simulated view after step i and ρi(ϕ) is the global state
in the real protocol after step i. Now, suppose that qi = 0, and let |ξ〉 ∈ Ai ⊗
RA ⊗R′

B ⊗Z be a purification of νi(A , ϕ) with Z being the purifying system,

and RB renamed for upcoming technical reasons. The pure state |ξ〉⊗|Ψ0,0〉RBB0

has the same reduced density matrix as νi(A , ϕ) on Ai ⊗RA ⊗RB. Hence, by
Uhlmann’s theorem, there exists a linear isometry V : Bi → B0 ⊗ Z ⊗R′

B such
that

V νi(A , ϕ)V † = |ξ〉〈ξ| ⊗ |Ψ0,0〉〈Ψ0,0|B0RB

and hence

∆
(
V ρi(ϕ)V

†, |ξ〉〈ξ| ⊗ |Ψ0,0〉〈Ψ0,0|B0RB

)
≤

√
2ε .

This means that if qi = 0, then Bob is still capable of reconstructing his own
input state after step i by applying V to his working register. Clearly, this means
that q′i = 0 (i.e., Bob’s simulator must also not call SWAP), and therefore, by
the same argument, Alice must also be able to reconstruct her own input with
an isometry VA : Ai → B0 ⊗ Z ⊗R′

A. The same argument also holds if qi = 1:
we then conclude that q′i = 1 and that Alice and Bob must have each other’s
inputs; no intermediate situation is possible. We conclude that, at every step i
of the protocol, qi = q′i.

Now, before the protocol starts, Alice must have her input, and Bob must
have his, hence, q0 = q′0 = 0. At the end, the two inputs must have been swapped,
which means that qn = q′n = 1; there must therefore be a step k in the protocol
after which the two inputs are swapped but not before, meaning that qk = 1 and
qk−1 = 0. But at each step, only one player receives information, which means
that at this step k, the player who received the message must lose the ability to
reconstruct his own input, which is clearly impossible. ⊓⊔

Using this line of reasoning, Theorem 4.1 can be extended to apply to any
protocol for almost any unitary preventing both parties to recover their input
states from its output.

Sufficient Assumptions for Private SWAP. A private protocol for SWAP

in the bare model would exist if the players could rely on special relativity and
a lower bound on their separation in space: they simply send their messages
simultaneously. The fact that messages cannot travel faster than the speed of
light ensures that the messages are independent of each other. It is also straight-
forward to devise a private protocol for SWAP based on commitment schemes.
A sends one half EPR-pair to B while keeping the other half. A then teleports
(without announcing the outcome of the measurement) her register and commits
on the outcome of the Bell measurement. B sends his register to A before she
opens her commitment.

5 The Protocol

We now describe a private protocol for the two-party evaluation of any unitary
U ∈ U(A0 ⊗ B0) denoted by PO

U = (A ∗,B∗,O, nU + 1) where U is represented
by a circuit CU with u gates in UG. We slightly abuse the notation with respect
to the parameter nU + 1. Given circuit CU , we let nU be the number of oracle
calls (including calls to communication oracles). Setting the last parameter to
nU + 1 instead of nU comes from the fact that in our protocol, A ∗ and B∗

have to perform a last operation each in order to get their outcome. These
last operations do not involve a call to any oracle. Let Gj be the j-th gate in
CU = GuGu−1 . . . G1. The protocol is obtained by composing sub-protocols for
each gate similarly to well-known classical constructions[23, 10]. Notice that PO

U

will not be presented in the form of Definition 3.1. A ∗ is not necessarily sending
the first and the last messages. This can be done without consequences since
we provide a simulation for each step where a message from the honest party is
received or the output of a call to an ideal functionality is available. Putting PO

U

in the standard form of Definition 3.1 is straightforward and changes nothing to
the proof of privacy.

The evaluation of each gate is performed over shared encrypted states. Each
wire in CU will be updated from initially holding the input ρin ∈ D(A0⊗B0⊗R)
to finally holding the output (U ⊗11R) ·ρin ∈ D(A0⊗B0⊗R). The state of wires
w ∈ A0 ∪ B0 after the evaluation of Gj are stored at A ∗’s or B∗’s according if
w ∈ A0 or w ∈ B0. The shared encryption keys for wire w ∈ A0 ∪ B0 updated
after the evaluation of Gj are denoted by Kj

A ∗(w) = (Xj
A ∗(w), Z

j
A ∗(w)) ∈ {0, 1}2

and Kj
B∗(w) = (Xj

B∗(w), Z
j
B∗(w)) ∈ {0, 1}2 for A ∗ and B∗ respectively and are

held privately in internal registers of each party.
The final phase of the protocol is where a call to an ideal functionality is

required. A ∗ and B∗ exchange their own part of each encryption key for the
other party’s wires. In order to do this, the key-releasing phase invokes an ideal
SWAP-gate as functionality: OnU

: L(AO
nU

⊗ BO
nU

) 7→ L(AO
nU

⊗ BO
nU

), where

OnU
(ρ) := SWAP · ρ. Upon joint input state ρin ∈ D(A0 ⊗ B0 ⊗ R), protocol

P
O(U)
U runs the following phases:

Initialization: We assume that A ∗ and B∗ have agreed upon a description of
U by a circuit CU made out of u gates (G1, . . . , Gu) in UG. For all wires
w ∈ A0 ∪ B0, A ∗ and B∗ set their initial encryption keys as K0

A ∗(w) =
(X0

A ∗(w), Z0
A ∗(w)) := (0, 0) and K0

B∗(w) = (X0
B∗(w), Z0

B∗(w)) := (0, 0) re-
spectively.

Evaluation: For each gate number 1 ≤ j ≤ u, A ∗ and B∗ evaluate Gj as
described in details below. This evaluation results in shared encryption un-
der keys Kj

A ∗(w) = (Xj
A ∗(w), Z

j
A ∗(w)) and K

j
B∗(w) = (Xj

B∗(w), Z
j
B∗(w)) for

all wires w ∈ A0 ∪ B0, which at that point hold a shared encryption of
((GjGj−1 . . . G1) ⊗ 11R) · ρin. Only the evaluation of the R-gate requires a
call to an ideal functionality (i.e., an and-box).

Key-Releasing: Let AO
nU

and BO
nU

be the set of registers holding respectively
Ku

A ∗(w) = (Xu
A ∗(w), Zu

A ∗(w)) for w ∈ B0 and Ku
B∗(w) = (Xu

B∗(w), Zu
B∗(w))

for w ∈ A0. We assume w.l.g that dimensions of both sets of registers are
identical5:
1. A ∗ and B∗ run the ideal functionality for the SWAP-gate upon registers

AO
nU

and BO
nU

.
2. A ∗ applies the decryption operatorK

A ∗(w) = (Xu
A ∗(w)⊕Xu

B∗(w), Zu
A ∗(w)⊕

Zu
B∗(w)) to each of her wires w ∈ A0.

3. B∗ applies the decryption operator for keyK
B∗(w) = (Xu

A ∗(w)⊕Xu
B∗(w),

Zu
A ∗(w)⊕ Zu

B∗(w)) to each of his wires w ∈ B0.

Swapping for key-releasing. Notice that the key-releasing phase only uses
the SWAP-gate with classical input states. The reader might therefore wonder
why this functionality is defined quantumly when a classical swap would work
equally well. The reason is that, perhaps somewhat surprisingly, a classical swap
is a potentially stronger primitive than a quantum swap. From a classical swap
one can build a quantum swap by encrypting the quantum states with classical
keys, exchange the encrypted states using quantum communication, and then
using the classical swap to exchange the keys. Obtaining a classical swap from
a quantum one, however, is not obvious. Suppose that registers A and B should
be swapped classically while holding quantum states beforehand. These registers
could be entangled with some purification registers before being swapped. Using
a quantum swap between A and B will always leave these registers entangled
with the purification registers until they become measured while a classical swap
will ensure that A and B become unentangled with the purification registers after
its invocation. In other words, a classical swap could prevent an adversary from
exploiting entanglement in his attack.

The ideal AND-box functionality. As we are going to see next, a call to an
ideal AND-box is required during the evaluation of the R-gate. Unlike the ideal

5 Otherwise, add enough registers initially in state |0〉 to the smaller set.

SWAP used for key-releasing, the AND-box will be modeled by a purely classical
primitive denoted and-box. This is required for privacy of our protocol since
any implementation of it by some unitary will necessarily leak[18]. The quantum
operation implementing it will first measure the two one-qubit input registers in
the computational basis in order to get classical inputs x, y ∈ {0, 1} for A ∗ and
B∗ respectively. The classical output bits are then set to a ∈R {0, 1} for A ∗ and
b = a⊕ xy for B∗.

5.1 Computing over Encrypted States

Before the execution of Gj+1 in CU , A ∗ and B∗ share an encryption of ρj =
((Gj ·Gj−1 · . . . ·G1)⊗ 11R) · ρin in registers6 holding wires w ∈ A0 ∪ B0. Each
wire w ∈ A0 ∪ B0 is encrypted by a shared quantum one-time pad as

((
⊗

w∈A0∪B0

XXj

A∗ (w)⊕Xj

B∗ (w)ZZj

A∗ (w)⊕Zj

B∗ (w)

)
⊗ 11R

)
· ρj , (2)

whereKj
A ∗(w) := (Xj

A ∗(w), Z
j
A ∗(w)) ∈ {0, 1}2 andKj

B∗(w) := (Xj
B∗(w), Z

j
B∗(w)) ∈

{0, 1}2 are two bits of secret keys for A ∗ and B∗ respectively. In other words,
wires w ∈ A0 ∪B0 are encrypted by XxZz where x = X

j
A ∗(w)⊕Xj

B∗(w) and z =

Z
j
A ∗(w)⊕Zj

B∗(w) are additive sharings for the encryption of w. Then, evaluating

Gj+1 upon state (2) will produce a new sharing Kj+1
A (w) := (Xj+1

A (w), Zj+1
A (w))

and Kj+1
B (w) := (Xj+1

B (w), Zj+1
B (w)) for the encryption of state ρj+1 = (Gj+1 ⊗

11R) · ρj. In the following, we describe how to update the keys for the wires in-
volved in the current gate to be evaluated—all other wires retain their previous
values.

5.2 Evaluation of Gates in the Pauli and Clifford Groups

Non-trivial Pauli gates (i.e., X,Y, and Z) can easily be computed on encrypted
quantum states since they commute or anti-commute pairwise. Let Gj+1 ∈
{X,Y, Z} be the Pauli gate to be executed on wire w. It means that up to
an irrelevant phase factor, it suffices for the owner of w to apply Gj+1 without

the need for neither party to update their shared keys, i.e., Kj+1
A ∗ (w) := K

j
A ∗(w)

and Kj+1
B∗ (w) := K

j
B∗(w).

Now, suppose that Gj+1 ∈ {H,P}. Each of these one-qubit gates applied
upon wire w will be computed by simply letting the party owning w apply Gj+1.
Encryption keys are updated locally as:

H : Kj+1
A ∗ = (Xj+1

A ∗ (w), Zj+1
A ∗ (w)) := (Zi

A ∗(w), X
j
A ∗(w)) ,

K
j+1
B∗ = (Xj+1

B∗ (w), Zj+1
B∗ (w)) := (Zj

B∗(w), X
j
B∗(w)) ,

P : Kj+1
A ∗ = (Xj+1

A ∗ (w), Zj+1
A ∗ (w)) := (Xj

A ∗(w), X
j
A ∗(w)⊕ Z

j
A ∗(w)) ,

6 To ease the notation in the following, we assume ρj ∈ D(A0 ⊗ B0) rather than in
D(A0 ⊗B0 ⊗R). It is easy to see that this can be done without loss of generality.

K
j+1
B∗ = (Xj+1

B∗ (w), Zj+1
B∗ (w)) := (Xj

B∗(w), X
j
B∗(w)⊕ Z

j
B∗(w)) .

Any one-qubit gate in the Clifford group can be implemented the same way using
their own commutation relations with the Pauli operators used for encryption. A
CNOT-gate on local wires can be evaluated in a similar way. That is, whenever
both wires w and w

′ feeding the CNOT belong to the same party. Assume that
w is the control wire while w′ is the target and that A ∗ holds them both. Then,
A ∗ simply applies CNOT on wires w and w

′. Encryption keys are updated as:

CNOT : Kj+1
A ∗ (w) = (Xj+1

A ∗ (w), Zj+1
A ∗ (w)) := (Xj

A ∗(w), Z
j
A ∗(w)⊕ Z

j
A ∗(w

′)) ,

K
j+1
A ∗ (w′) = (Xj+1

A ∗ (w′), Zj+1
A ∗ (w′)) := (Xj

A ∗(w
′)⊕X

j
A ∗(w), Z

j
A ∗(w

′)) ,

K
j+1
B∗ (w) := K

j
B∗(w) and K

j+1
B∗ (w′) := K

j
B∗(w

′) .

When B∗ holds both wires, the procedure is simply performed with the roles of
A ∗ and B∗ reversed.

Nonlocal CNOT. We now look at the case where Gj+1 = CNOT upon wires w
and w

′, one of which is owned by A ∗ while the other is owned by B∗. In this
case, interaction is unavoidable for the evaluation of the gate. Let us assume
w.l.g that A ∗ holds the control wire w while B∗ holds the target wire w

′ (i.e.,
w ∈ A0 and w

′ ∈ B0). We start from a construction introduced in [8] in the
context of fault tolerant quantum computation.

w

Bell

ax

•

|Ψ0,0〉

{ az

•

• Z X Z

|Ψ0,0〉

{
�������� X X Z

Bell

bx
•

w
′

bz
•

_ _ _ _ _
�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

_ _ _ _ _

Fig. 2. Evaluation of CNOT.

The idea behind the sub-protocol is de-
picted in Fig. 2. The effect of the Bell mea-
surement is to teleport the input state of wires
w and w

′ through the CNOT-gate[8]. The input
to the CNOT appearing in the circuit of Fig. 2
is independent of both input wires w and w

′

(they are just two half epr-pairs).
The sub-protocol for the evaluation of

CNOT simply consists in executing the circuit
of Fig. 2 without the decryption part (i.e., the
part inside the dotted rectangle). The state
|ξ〉 := (11A ⊗ CNOT ⊗ 11B)|Ψ0,0〉|Ψ0,0〉 can be prepared by one party. We let the
holder of the control wire (i.e., A ∗ in Fig. 2) prepare |ξ〉 before sending its two
rightmost registers to the other party. The decryption in the dotted-rectangle
is used to update the encryption keys according to the measurement outcomes
(ax, az, bx, bz):

CNOT : Kj+1
A ∗ (w) := (Xj

A ∗(w)⊕ ax, Z
j
A ∗(w)⊕ az) ,

K
j+1
B∗ (w) := (X i

B∗(w), Z
j
B∗(w)⊕ bz) ,

K
j+1
A ∗ (w′) := (Xj

A ∗(w
′)⊕ ax, Z

j
A ∗(w

′)) ,

K
j+1
B∗ (w′) := (Xj

B∗(w
′)⊕ bx, Z

j
B∗(w

′)⊕ bz) .

As for all previous gates, the key updating phase is performed locally without
the need for communication.

5.3 Evaluation of the R-Gate

The only gate left in UG is Gj+1 := R. We assume without loss of generality
that A ∗ owns wire w upon which R is applied (i.e., w ∈ A0). The subprotocol
needs a call to an ideal and-box in order to guarantee privacy during the key
updating process. Observe first that the R-gate commutes with Pauli encryption
operator Z. It means that applying the R-gate upon a state encrypted with Z
produces the correct output state still encrypted with Z. However, the equality
R ·X = e−iπ/4Y P ·R tells us that a P-gate should be applied for the decryption of
the output when the input has been encrypted usingX . This breaks the invariant
that wires after each gate are all encrypted by Pauli operators. We remove the
P-gate by converting it into a sequence of Pauli operators.

Ignoring an irrelevant global phase, the result of applying R on wire w is

RZZj

A∗ (w)⊕Zi
B∗ (w)XXj

A∗ (w)⊕Xj

B∗ (w) =

ZZj

A∗ (w)⊕Zj

B∗ (w)⊕Xj

A∗ (w)⊕Xj

B∗ (w)XXj

A∗ (w)⊕Xj

B∗ (w)P
Xj

A∗ (w)⊕Xj

B∗ (w)R ,
(3)

Xj

A∗ (w) r r′

w R P X Z

P X Z

Xj

B∗ (w)
s s′

Fig. 3. Implementation of the R-gate.

To remove the P-gate, we let
each party remove his part of

P
Xj

A∗ (w)⊕Xj

B∗ (w) in a private in-
teractive process. To do this,
A ∗ picks random bits r and
r′, and B∗ picks random bits s
and s′. A ∗ applies the operator
XrZr′PXi

A∗ (w) and sends the re-
sulting quantum state to B∗. B∗ applies the operator XsZs′PXj

B∗ (w) and sends
the result back to A ∗. The resulting protocol is shown in Fig. 3. It starts with
A ∗ applying R upon the encrypted state before the one-round interactive process
described above starts.

After A ∗’s application of R, the resulting state is as described on the right-
hand side of (3). At the end of the process (i.e., circuit of Fig. 3), the encryption
becomes:

Zs′Xs
P
Xj

B∗ (w)Zr′Xr
P
Xj

A∗ (w)

ZZj

A∗ (w)⊕Zj

B∗(w)⊕Xj

A∗ (w)⊕Xj

B∗ (w)XXj

A∗ (w)⊕Xj

B∗ (w)P
Xj

A∗ (w)⊕Xj

B∗ (w) .
(4)

Now, we use the fact that Z commutes with P and P ·X = XZ · P. In addition,
since for a, b ∈ {0, 1}, Pa+b = ZabPa⊕b we re-write (4) as

Zs′⊕r′⊕Xj

A∗ (w)⊕Xj

B∗ (w)⊕Zj

A∗ (w)⊕Zj

B∗ (w)⊕(r⊕Xj

A∗ (w))·Xj

B∗ (w)

Xs⊕r⊕Xj

A∗ (w)⊕Xj

B∗ (w) .
(5)

Encryption (5) is not a proper additive sharing since the Z-operator depends on
(r⊕Xj

A ∗(w))·Xj
B∗(w); the logical and between a value known only by A ∗ (i.e., r⊕

X
j
A ∗(w)) and a value known only by B∗ (i.e., X

j
B∗(w)).

r ⊕ Xj

A∗ (w) //

and-box

// α

Xj

B∗ (w) // // β

Fig. 4. α ⊕ β = (r ⊕ X
j

A ∗(w)) ·
X

j

B∗ (w) from an and-box.

To get back to an additive sharing, A ∗ and
B∗ can simply call the and-box once with
inputs r ⊕ X

j
A ∗(w) and X

j
B∗(w) respectively

as depicted in Fig. 4. After this, A ∗ and
B∗ share a proper encryption of the result-
ing state. The new encryption key for A ∗’s wire w becomes:

R : Kj+1
A ∗ (w) := (r ⊕X

j
A ∗(w), r

′ ⊕ α⊕ Z
j
A ∗(w)⊕X

j
A ∗(w)) ,

K
j+1
B∗ (w) := (s⊕X

j
B∗(w), s

′ ⊕ β ⊕ Z
j
B∗(w)⊕X

j
B∗(w)) .

5.4 On the Necessity of Swapping Privately

One may ask whether relying upon SWAP is necessary for the protocol to be pri-
vate against specious adversaries. For instance, what would happen if one party
announces the encryption keys before the other party? We now show that as soon
as one party gets the other party’s decryption key before having announced its
own, a specious adversary can break privacy.

Consider the protocol for a quantum circuit made out of one single CNOT-
gate. Suppose that A ∗ holds the control wire w while B∗ holds the target wire w′.
Suppose also the key-releasing phase first asks B∗ to announce the encryption
keys K

B∗(w) before A ∗ announces K
A ∗(w′). Suppose Ã ’s input state is |0〉.

The adversary Ã can now act as follows. Ã runs the protocol for CNOT

without performing the Bell measurement until she receives the encryption key
bz from B∗. Clearly, Ã ’s behavior is specious up to that point since she could
re-produce the honest state by just applying the Bell measurement on her input
state . However, given bz she could also in principle compute the CNOT upon
any input state of her choice. This means that the state she holds after bz has
been announced and before applying her Bell measurement contains information
about B∗’s input. On the one hand, when Ã ’s input state is |0〉 no information
whatsoever on B∗’s input state should be available to her (i.e., in this case
CNOT behaves like the identity). On the other hand, had her input state been
|−〉, information about B∗’s state would have become available since the control
and target wires exchange their roles when the input states are in the Hadamard
basis. However, when Ã ’s input state is |0〉, any simulation of her view can only
call the ideal functionality with input state |0〉. It follows that no simulator can
reproduce Ã ’s state right after the announcement of bz.

6 Proof of Privacy

Privacy of the Evaluation Phase. We start by showing privacy of protocol
PO
U = (A ∗,B∗, nU + 1) at all steps 1 ≤ i ≤ nU − 1 occurring during the

evaluation phase of quantum circuit CU implementing U with u gates in UG.
The last step of the evaluation phase is nU − 1 since only one oracle call is left
to complete the execution. This phase is the easy part of the simulation since
all transmissions are independent of the joint input state ρin ∈ D(A0 ⊗B0⊗R).

The lemma below can easily be proven and provides a perfect simulation of any
adversary’s view generated during the evaluation of any gate in CU . No call to
the ideal functionality for U is required.

Lemma 6.1. PO
U = (A ∗,B∗, nU +1) admits a simulator S (Ã) for any adver-

sary Ã (not necessarily specious) that does not call the ideal functionality for
U ∈ U(A0 ⊗B0) such that for any joint input state ρin ∈ D(A0 ⊗B0⊗R), every
1 ≤ i ≤ nU − 1:

∆
(
νi(Ã , ρin), trBi

(
ρ̃i(Ã , ρin)

))
= 0 .

The same holds against any adversary B̃.

Privacy of the Key-Releasing Phase. Before proving privacy of the key-
releasing phase, we need the following lemma establishing that at the end of the
protocol, specious adversaries must leave their extra working registers (used to
implement the attack) independent of the joint input state. In other words, no
extra information is available to the adversary at the very end of any correct
protocol. Hence, if the adversary can break the privacy of a protocol, then he
must “rush” to do so before the last step.

Lemma 6.2 (Rushing Lemma). Let ΠO
U = (A ,B, n) be a correct protocol

for the two party evaluation of U . Let Ã be any ε–specious adversary in ΠO
U .

Then, there exists an isometry T : Ãn → An ⊗ Â and a mixed state ˜̺ ∈ D(Â)
such that for all joint input states ρin ∈ D(A0 ⊗ B0 ⊗R),

∆
(
(T ⊗ 11Bn⊗R) ·

(
[Ã ⊛ B](ρin)

)
, ˜̺⊗ (U ⊗ 11R) · ρin

)
≤ 12

√
2ε .

The same also applies to any ε–specious adversary B̃.

Proof. We shall only prove the statement for an ε–specious Ã ; the statement for
an ε–specious B̃ is identical. Furthermore, by convexity, it is sufficient to prove
the theorem for pure ρin.

Consider any pair of pure input states |ψ1〉 and |ψ2〉 in A0⊗B0⊗R. Now, let
R′ := R ⊗R2, where R2 = span{|1〉, |2〉} represents a single qubit, and define
the state |ψ〉 := 1√

2
(|ψ1〉|1〉+ |ψ2〉|2〉) ∈ A0 ⊗B0 ⊗R′. Note that trR2

(|ψ〉〈ψ|) =
1
2 |ψ1〉〈ψ1|+ 1

2 |ψ2〉〈ψ2|. Due to the correctness of the protocol and to the specious-

ness of Ã , there exists a quantum operation Tn : L(Ãn) → L(An) such that

∆
(
(Tn ⊗ 11L(Bn⊗R′))([Ã ⊛ B](|ψ〉〈ψ|)), (U ⊗ 11R′) · |ψ〉〈ψ|

)
≤ 2ε .

Now, consider any isometry T : Ãn → An ⊗ Â such that Tn(σ) = trÂ(TσT
†)

for every σ ∈ L(Ãn) — in other words, any operation that implements Tn while

keeping any information that would otherwise be destroyed in Â. By Uhlmann’s
theorem, there must exist a state ˜̺∈ D(Â) such that

∆
(
(T ⊗ 11Bn⊗R′) ·

(
[Ã ⊛ B](|ψ〉〈ψ|)

)
, ˜̺⊗ ((U ⊗ 11R′) · |ψ〉〈ψ|)

)
≤ 2

√
2ε .

Now, the trace distance is monotonous under completely positive, trace non-
increasing maps. In particular, we can apply the projector P1 = 11L(An⊗Bn⊗R)⊗
|1〉〈1| to both states in the above trace distance and the inequality will still hold.
In other words, we project both states onto |1〉 on R2, thereby turning |ψ〉〈ψ|
into 1

2 |ψ1〉〈ψ1|. Factoring out the 1
2 , we get that

∆
(
(T ⊗ 11Bn⊗R) ·

(
[Ã ⊛ B](|ψ1〉〈ψ1|)

)
, ˜̺⊗ ((U ⊗ 11R) · |ψ1〉〈ψ1|)

)
≤ 4

√
2ε .

Likewise, projecting onto |2〉 yields

∆
(
(T ⊗ 11Bn⊗R) ·

(
[Ã ⊛ B](|ψ2〉〈ψ2|)

)
, ˜̺⊗ ((U ⊗ 11R) · |ψ2〉〈ψ2|)

)
≤ 4

√
2ε .

Our only problem at this point is that ˜̺ in principle depends on |ψ1〉 and |ψ2〉.
However, repeating the above argument with |ψ1〉 and |ψ3〉 for any |ψ3〉 will yield
a ˜̺′ with

∆
(
(T ⊗ 11Bn⊗R) ·

(
[Ã ⊛ B](|ψ1〉〈ψ1|)

)
, ˜̺′ ⊗ ((U ⊗ 11R) · |ψ1〉〈ψ1|)

)
≤ 4

√
2ε

and hence, by the triangle inequality, ∆(˜̺, ˜̺′) ≤ 8
√
2ε. Therefore, for any state

|ϕ〉 ∈ A0 ⊗ B0 ⊗R, there exists a state ρ̃ ∈ Â with ∆(ρ̃, ˜̺) ≤ 8
√
2ε such that

∆
(
(T ⊗ 11Bn⊗R) ·

(
[Ã ⊛ B](|ϕ〉〈ϕ|)

)
, ρ̃⊗ ((U ⊗ 11R) · |ϕ〉〈ϕ|)

)
≤ 4

√
2ε .

The lemma then follows by the triangle inequality:

∆
(
(T ⊗ 11Bn⊗R) ·

(
[Ã ⊛ B](|ϕ〉〈ϕ|

)
, ˜̺⊗ ((U ⊗ 11R) · |ϕ〉〈ϕ|)

)

≤ ∆
(
(T ⊗ 11Bn⊗R) ·

(
[Ã ⊛ B](|ϕ〉〈ϕ|)

)
, ρ̃⊗ ((U ⊗ 11R) · |ϕ〉〈ϕ|)

)
+∆(ρ̃, ˜̺)

≤ 4
√
2ε+ 8

√
2ε = 12

√
2ε .

⊓⊔
In order to conclude the privacy of PO

U , families S (Ã) and S (B̃) need one

more simulator each: SnU
∈ S (Ã) and S ′

nU
∈ S (B̃) corresponding to the

simulation of the key-releasing phase. This time, these simulators need to query
the ideal functionality for U and also need the adversary to be specious. We
show that privacy of the key-releasing phase follows from the “Rushing Lemma”
(Lemma 6.2). This is the role of the ideal SWAP to make sure that before the
adversary gets the output of the computation, the information needed by the
honest player to recover its own output has been given away by the adversary.

It should be mentioned that we’re not explicitly simulating the final state of
the adversary since simulating the SWAP allows also to get Ã ’s final state by
simply adding Ã ’s last quantum operation to the simulated view. We therefore
set step nU in PO

U to be the step reached after the call to SWAP. This abuses

the notation a bit since after SWAP, Ã and B∗ must each apply a final quan-
tum operation with no more oracle call. We’ll denote by ÃnU+1 and B∗

nU+1

these last operations allowing to reconstruct the output of the computation (no
comunication).

Lemma 6.3. For any ε-specious quantum adversary Ã against PO
U = (A ∗,B∗, nU+

1), there exist simulators SnU
∈ S (Ã) such that for all ρin ∈ D(A0 ⊗B0 ⊗R),

∆
(
νnU

(Ã , ρin), trBnU

(
ρ̃nU

(Ã , ρin)
))

≤ 24
√
2ε .

Simulator SnU
calls the ideal functionality for U and can be used directly to

simulate step nU + 1 as well. The same holds for adversary B̃.

Proof (sketch). We only prove privacy against adversary Ã , privacy against
B̃ follows directly since the key-releasing phase is symmetric. The idea behind
the proof is to run Ã and B∗ upon a dummy joint input state until the end
of the protocol. Since the adversary is specious, it can re-produce the honest
state at the end. The Rushing Lemma tells us that at this point, the output
of the computation is essentially in tensor product with all the other registers.
Moreover, the state of all other registers is independent of the input state upon
which the protocol is executed. The dummy output can then be replaced by the
output of the ideal functionality for U before Ã goes back to the stage reached
just after SWAP.

More formally, we define a simulator SnU
∈ S (Ã) producing Ã ’s view

just after the call to SWAP. Let ÃSWAP ∈ L(A0, ÃnU
) and B∗

SWAP
∈ L(B0, B̃nU

)

be the quantum operations run by Ã and B∗ respectively until after SWAP

is executed. Notice that at this point, Ã ’s and B∗’s registers do not have any
further oracle registers since no more communication or oracle call will take
place. Let ÃnU

∈ L(ÃnU
, ÃnU+1 ⊗ Z) be the isometry implementing Ã ’s last

quantum operation taking place after the call to SWAP (and producing her final
state) and let BnU

∈ L(BnU
,BnU+1 ⊗ W) be the isometry implementing B∗’s

last quantum operation. Finally, let T ∈ L(ÃnU+1,AnU+1 ⊗ Â) be the isometry
implementing TnU+1 as defined in Lemma 6.2 (i.e., the transcript produced at
the very end of the protocol). As usual, let ρin ∈ D(A0 ⊗ B0 ⊗ R) be the joint
input state. The simulator SnU

performs the following operations:

1. SnU
generates the quantum state σ(φ∗) = [ÃSWAP ⊛ B∗

SWAP
](|φ∗〉〈φ∗|) ∈

D(ÃnU
⊗BnU

) implementing Ã interacting with B∗ until SWAP is applied.
The execution is performed upon a predetermined (dummy) arbitrary input
state |φ∗〉 ∈ A0 ⊗ B0.

2. SnU
sets σ′(φ∗) = (T ÃnU

⊗BnU
) ·σ(φ∗) ∈ D(AnU+1⊗BnU+1⊗Z⊗Â⊗W).

3. SnU
replaces register AnU+1 ≈ A0 by A ∗’s output of the ideal functionality

for U evaluated upon ρin. That is, SnU
generates the state σ′(ρin) = (U ⊗

11R) · ρin ⊗ trAnU+1BnU+1
(σ′(φ∗)) ∈ D(AnU+1 ⊗ BnU+1 ⊗R⊗Z ⊗ Â ⊗W).

4. SnU
finally sets νnU

(Ã , ρin) = trBnU+1W((T ÃnU
⊗ 11BnU+1R)† · σ′(ρin)) ∈

D(ÃnU
⊗R).

Notice that execution of the ideal SWAP ensures that the keys swapped are
independent of each other and of the joint input state ρin. This is because for
any input state, all these keys are uniformly distributed bits if they are outcomes

of Bell measurements and otherwise are set to 0. By Lemma 6.2 and the fact
that Ã is ε–specious, we have:

∆
(
trZÂW (σ′(φ∗)) , ˜̺⊗ U · |φ∗〉〈φ∗|

)
≤ 12

√
2ε and

∆
(
(TnU+1 ⊗ 11L(BnU+1))

(
[Ã ⊛ B

∗](ρin)
)
, ˜̺⊗ U · ρin

)
≤ 12

√
2ε .

It follows using the triangle inequality that,

∆
(
(TnU+1 ⊗ 11L(BnU+1))

(
[Ã ⊛ B

∗](ρin)
)
, trZÂW (σ′(ρin))

)
≤ 24

√
2ε . (6)

Using the fact that isometries cannot increase the trace-norm distance and that
(T ÃnU

)† allows Ã to go back from the end of the protocol to the step reached
after SWAP, we get from (6) that

∆
(
νnU

(Ã , ρin), trBnU

(
ρ̃nU

(Ã , ρin)
))

=

∆
(
(TnU+1 ⊗ 11L(BnU+1))

(
[Ã ⊛ B

∗](ρin)
)
, trZÂW (σ′(ρin))

)
≤ 24

√
2ε .

The proof of the statement follows. ⊓⊔

7 Main Result and Open Questions

Putting Lemma 6.1 and Lemma 6.3 together gives the desired result:

Theorem 7.1 (Main Result). Protocol PO
U is statistically private against any

statistically specious quantum adversary and for any U ∈ U(A0 ⊗B0). If U is in
the Clifford group then the only non-trivial oracle call in O is one call to an ideal
SWAP. If U is not in the Clifford group then O contains an additional oracle
call to and-box for each R-gate in the circuit for U .

It should be mentioned that it is not too difficult to modify our protocol in
order to privately evaluate quantum operations rather than only unitary trans-
forms. Classical two party computation together with the fact that quantum
operations can be viewed as unitaries acting in larger spaces can be used to
achieve this extra functionality. Privacy can be preserved by keeping these extra
registers encrypted after the execution of the protocol. We leave this discussion
to the full version of the paper.

A few interesting questions remain open:

– It would be interesting to know whether there exists a unitary transform that
can act as a universal primitive for private two-party evaluation of unitaries.
This would allow to determine whether classical cryptographic assumptions
are required for this task.

– Finally, is there a way to compile quantum protocols secure against specious
adversaries into protocols secure against arbitrary quantum adversaries? An
affirmative answer would allow to simplify greatly the design of quantum
protocols. Are extra assumptions needed to preserve privacy against any
adversary?

8 Acknowledgements

The authors would like to thank the referees for their comments and suggestions.
We would also like to thank Thomas Pedersen for numerous helpful discussions
in the early stage of this work.

References

1. Physical Review Letters, volume 78, April 1997.
2. D. Aharonov and M. Ben-Or. Fault-tolerant quantum computation with constant

error. In 29th Annual ACM Symposium on Theory of Computing (STOC), pages
176–188, 1997.

3. Andris Ambainis, Michele Mosca, Alain Tapp, and Ronald de Wolf. Private quan-
tum channels. In 41st Annual IEEE Symposium on Foundations of Computer
Science (FOCS), pages 547–553, 2000.

4. Michael Ben-Or, Claude Crépeau, Daniel Gottesman, Avinatan Hassidim, and
Adam Smith. Secure multiparty quantum computation with (only) a strict honest
majority. In 47th Annual IEEE Symposium on Foundations of Computer Science
(FOCS), pages 249–260, 2006.

5. Anne Broadbent, Joseph Fitzsimons, and Elham Kashefi. Universal blind quantum
computation, December 2009. available at http://arxiv.org/abs/0807.4154.

6. Claude Crépeau, Daniel Gottesman, and Adam Smith. Secure multi-party quan-
tum computation. In 34th Annual ACM Symposium on Theory of Computing
(STOC), pages 643–652, 2002.

7. Daniel Gottesman and Isaac L. Chuang. Demonstrating the viability of universal
quantum computation using teleportation and single-qubit operations. Nature,
402:390–393, November 1999.

8. Daniel Gottesman and Isaac L. Chuang. Quantum teleportation is a universal
computational primitive. http://arxiv.org/abs/quant-ph/9908010, August 1999.

9. G. Gutoski and J. Watrous. Quantum interactive proofs with competing provers.
In 22nd Annual Symposium on Theoretical Aspects of Computer Science (STACS),
volume 3404 of Lecture Notes in Computer Science, pages 605–616. Springer, March
2005.

10. Joe Kilian. Founding cryptography on oblivious transfer. In 20th Annual ACM
Symposium on Theory of Computing (STOC), pages 20–31, 1988.

11. Hoi-Kwong Lo. Insecurity of quantum secure computations. Physical Review A,
56(2):1154–1162, 1997.

12. Hoi-Kwong Lo and Hoi Fung Chau. Is quantum bit commitment really possible?
In Physical Review Letters [1], pages 3410–3413.

13. Dominic Mayers. Unconditionally secure quantum bit commitment is impossible.
In Physical Review Letters [1], pages 3414–3417.

14. Michael A. Nielsen and Isaac L. Chuang. Quantum Computation and Quantum
Information. Cambridge university press, 2000.

15. Sandu Popescu and Daniel Rohrlich. Quantum nonlocality as an axiom. Founda-
tions of Physics, 24(3):379–385, 1994.

16. Sandu Popescu and Daniel Rohrlich. Causality and nonlocality as axioms
for quantum mechanics. In symposium on Causality and Locality in Mod-
ern Physics and Astronomy: Open Questions and Possible Solutions, 1997.
http://arxiv.org/abs/quant-ph/9709026.

17. Renato Renner and Robert König. Universally composable privacy amplification
against quantum adversaries. In Theory of Cryptography Conference (TCC), vol-
ume 3378 of Lecture Notes in Computer Science, pages 407–425. Springer, 2005.

18. Louis Salvail, Miroslava Sotáková, and Christian Schaffner. On the power of two-
party quantum cryptography. In Advances in Cryptology—ASIACRYPT 2009,
volume 5912 of Lecture Notes in Computer Science, pages 70–87. Springer, 2009.

19. Peter W. Shor. Fault-tolerant quantum computation. In 37th Annual IEEE Sym-
posium on Foundations of Computer Science (FOCS), pages 56–65, 1996.

20. Adam Smith. Techniques for secure distributed computing with quantum data.
Presented at the Field’s institute Quantum Cryptography and Computing work-
shop, October, 2006.

21. John Watrous. Limits on the power of quantum statistical zero-knowledge. In 43rd
Annual IEEE Symposium on Foundations of Computer Science (FOCS), pages
459–468, 2002.

22. Stefan Wolf and Jürg Wullschleger. Oblivious transfer and quantum non-locality.
In International Symposium on Information Theory (ISIT 2005), pages 1745–1748,
2005.

23. Andrew Yao. How to generate and exchange secrets. In 27th Annual IEEE Sym-
posium on Foundations of Computer Science (FOCS), 1986.

